CEUR-WS.org/Vol-3303/paper6.pdf

On the Factory Floor: ML Engineering for
Industrial-Scale Ads Recommendation Models

Rohan Anil’, Sandra Gadanho!, Da Huang’, Nijith Jacob!, Zhuoshu Li, Dong Lin’,
Todd Phillips’, Cristina Pop’, Kevin Regan’, Gil I. Shamir!, Rakesh Shivanna’and Qiqi Yan'

'Google Inc.

Abstract

For industrial-scale advertising systems, prediction of ad click-through rate (CTR) is a central problem. Ad clicks constitute a
significant class of user engagements and are often used as the primary signal for the usefulness of ads to users. Additionally,
in cost-per-click advertising systems where advertisers are charged per click, click rate expectations feed directly into value
estimation. Accordingly, CTR model development is a significant investment for most Internet advertising companies.
Engineering for such problems requires many machine learning (ML) techniques suited to online learning that go well
beyond traditional accuracy improvements, especially concerning efficiency, reproducibility, calibration, credit attribution.
We present a case study of practical techniques deployed in a search ads CTR model at a large Internet company. This paper
provides an industry case study highlighting important areas of current ML research and illustrating how impactful new ML
methods are evaluated and made useful in a large-scale industrial setting.

Keywords
Personalization, Recommender system, Content optimization, Content ranking, Content diversity, Causal bandit, Contextual
bandit, View-through attribution, Holistic optimization

1. Introduction

Ad click-through rate (CTR) prediction is a key com-
ponent of online advertising systems that has a direct
impact on revenue, and continues to be an area of active
research [1, 2, 3, 4]. This paper presents a detailed case
study to give the reader a "tour of the factory floor” of a
production CTR prediction system, describing challenges
specific to this category of large industrial ML systems
and highlighting techniques that have proven to work
well in practice.

The production CTR prediction model consists of bil-
lions of weights, trains on more than one hundred bil-
lion examples, and is required to perform inference at
well over one hundred thousand requests per second.
The techniques described here balance accuracy improve-
ments with training and serving costs, without adding
undue complexity: the model is the target of sustained
and substantial R&D and must allow for effectively build-
ing on top of what came before.

1.1. CTR for Search Ads
Recommendations
The recommender problem surfaces a result or set of re-

sults from a given corpus, for a given initial context. The
initial context may be a user demographic, previously-

ORSUM@ACM RecSys 2022: 5th Workshop on Online Recommender
Systems and User Modeling, jointly with the 16th ACM Conference on
Recommender Systems, September 23rd, 2022, Seattle, WA, USA

@77 © 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).
[==== CEUR Workshop Proceedings (CEUR-WS.org)

viewed video, search query, or other. Search advertis-
ing specifically looks at matching a query g with an ad
a. CTR models for recommendation specifically aim to
predict the probability P(click|x), where the input x is
an ad-query pair (q,), potentially adorned with addi-
tional factors affecting CTR, especially related to user
interface: how ads will be positioned and rendered on a
results page (Section 6).

Beyond surfacing maximally useful results, recom-
mender systems for ads have important additional cali-
bration requirements. Actual click labels are stochastic,
reflecting noisy responses from users. For any given ad-
query x; and binary label y;, we typically hope to achieve
precisely P(click|x;) := E(xl-,yi>~D[yi = click|x;] over some
sample of examples D (in test or training). While a typical
log-likelihood objective in supervised training will result
in zero aggregate calibration bias across a validation set,
per-example bias is often non-zero.

Ads pricing and allocation problems create the per-
example calibration requirement. Typically, predictions
will flow through to an auction mechanism that incor-
porates bids to determine advertiser pricing. Auction
pricing schemes (e.g, VCG [5]) rely on the relative value
of various potential outcomes. This requires that pre-
dictions for all potential choices of x be well calibrated
with respect to each other. Additionally, unlike simple
recommenders, ads systems frequently opt to show no
ads. This requires estimating the value of individual ads
relative to this "null-set” of no ads, rather than simply
maximizing for ad relevance.

Consider a query like “yarn for sale”; estimated CTR
for an ad from “yarn-site-1.com” might be 15.3%. Esti-

https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

mated CTR for an ad from “yarn-site-2.com” might be
10.4%. Though such estimates can be informed by the
semantic relevance of the websites, the requirements for
precision are more than what one should expect from gen-
eral models of language. Additionally, click-through data
is highly non-stationary: click prediction is fundamen-
tally an online recommendation problem. An expectation
of 15.3% is not static ground truth in the same sense as,
for example, translation or image recommendation; it is
definitively more subject to evolution over time.

1.2. Outline

For ads CTR predictors, minor improvements to model
quality will often translate into improved user experience
and overall ads system gains. This motivates continuous
investments in model research and development. Theo-
retical and benchmark improvements from ML literature
rarely transfer directly to problem-dependent settings of
real-world applications. As such, model research must
be primarily empirical and experimental. Consequently,
a great deal of attention must be paid to the machine
costs of model training experiments while evaluating
new techniques. In Section 2 we first give a general
overview of the model and training setup; Section 3 then
discusses efficiency concerns and details several suc-
cessfully deployed techniques. In Section 4, we survey
applications of modern ML techniques targeted at improv-
ing measures of accuracy and geared explicitly toward
very-large-scale models. Section 4.4 summarizes empiri-
cal results roughly characterizing the relative impact of
these techniques.

Deep neural networks (DNNs) provide substantial
improvements over previous methods in many appli-
cations, including large-scale industry settings. How-
ever, non-convex optimization reveals (and exacerbates)
a critical problem of prediction: irreproducibility
[6,7,38,9,10, 11]. Training the same model twice (iden-
tical architecture, hyper-parameters, training data) may
lead to metrics of the second model being very differ-
ent from the first. We distinguish between model ir-
reproducibility, strictly related to predictions on fixed
data, and system irreproducibility, where a deployed
irreproducible model affects important system metrics.
Section 5 characterizes the problem and describes im-
provements to model irreproducibility.

An effective click prediction model must be able to
generalize across different Ul treatments, including:
where an ad is shown on the page and any changes to
the formatting of the ad (e.g., bolding specific text or
adding an image). Section 6 describes a specific model fac-
torization that improves UI generalization performance.
Finally, Section 7 details a general-purpose technique
for adding bias constraints to the model that has been
applied to both improve generalization and system irre-

producibility.

This paper makes the following contributions: 1) we
discuss practical ML considerations from many perspec-
tives including accuracy, efficiency and reproducibility,
2) we detail the real-world application of techniques that
have improved efficiency and accuracy, in some cases
describing adaptations specific to online learning, and
3) we describe how models can better generalize across
UI treatments through model factorization and bias con-
straints.

2. Model and Training Overview

A major design choice is how to represent an ad-query
pair x. The semantic information in the language of the
query and the ad headlines is the most critical component.
Usage of attention layers on top of raw text tokens may
generate the most useful language embeddings in current
literature [12], but we find better accuracy and efficiency
trade-offs by combining variations of fully-connected
DNNs with simple feature generation such as bi-grams
and n-grams on sub-word units. The short nature of user
queries and ad headlines is a contributing factor. Data
is highly sparse for these features, with typically only a
tiny fraction of non-zero feature values per example.
All features are treated as categorical and mapped to
sparse embedding tables. Given an input x, we concate-
nate the embedding values for all features to form a vector
e, the embedding input layer of our DNN. E denotes a
minibatch of embedding values e across several examples.
Next, we formally describe a simplified version of
the model’s fully-connected neural network architec-
ture. Later sections will introduce variations to this ar-
chitecture that improve accuracy, efficiency, or repro-
ducibility. We feed E into a fully-connected hidden layer
H; = c(EW;) that performs a linear transformation of
E using weights W; followed by non-linear activation
0. Hidden layers H; = o(H;_;W,) are stacked, with the
output of the kth layer feeding into an output layer
y=sigmoid(H W) that generates the model’s predic-
tion corresponding to a click estimate j. Model weights
are optimized following miny, Y,; Z (3, ;). We found
ReLUs to be a good choice for the activation function;
Section 5 describes improvements using smoothed activa-
tion functions. The model is trained through supervised
learning with the logistic loss of the observed click label
y with respect to y. Sections 4 and 7 describe additional
losses that have improved our model. Training uses syn-
chronous minibatch SGD on Tensor Processing Units
(TPUs) [13]: at each training step ¢, compute gradients
G; of the loss on a batch of examples (ranging up to mil-
lions of examples), and weights are optimized with an
adaptive optimizer. We find that AdaGrad [14, 15] works
well for optimizing both embedding weights and dense

network weights. Moreover, In Section 4.2 discusses ac-
curacy improvements from deploying a second-order
optimizer: Distributed Shampoo [16] for training dense
network weights, which to our knowledge, is the first
known large-scale deployment in a production scale neu-
ral network training system.

2.1. Online Optimization

Given the non-stationarity of data in ads optimization,
we find that online learning methods perform best in
practice [1]. Models train using a single sequential pass
over logged examples in chronological order. Each model
continues to process new query-ad examples as data ar-
rives [17]. For evaluation, we use models’ predictions on
each example from before the example is trained on (i.e.,
progressive validation) [18]. This setup has a number
of practical advantages. Since all metrics are computed
before an example is trained on, we have an immediate
measure of generalization that reflects our deployment
setup. Because we do not need to maintain a holdout
validation set, we can effectively use all data for training,
leading to higher confidence measurements. This setup
allows the entire learning platform to be implemented as
a single-pass streaming algorithm, facilitating the use of
large datasets.

3. ML Efficiency

Our CTR prediction system provides predictions for all
ads shown to users, scoring a large set of eligible ads for
billions of queries per day and requiring support for infer-
ence at rates above 100,000 QPS. Any increase in compute
used for inference directly translates into substantial ad-
ditional deployment costs. Latency of inference is also
critical for real-time CTR prediction and related auctions.
As we evaluate improvements to our model, we carefully
weigh any accuracy improvements against increases in
inference cost.

Model training costs are likewise important to consider.
For continuous research with a fixed computational bud-
get, the most important axes for measuring costs are
bandwidth (number of models that can be trained con-
currently), latency (end-to-end evaluation time for a new
model), and throughput (models that can be trained per
unit time).

Where inference and training costs may differ, several
ML techniques are available to make trade-offs. Distilla-
tion is particularly useful for controlling inference costs
or amortizing training costs (see Section 4.1.2). Tech-
niques related to adaptive network growth [19] can con-
trol training costs relative to a larger final model (with
larger inference cost).

Efficient management of computational resources

for ML training is implemented via maximizing model
throughput, subject to constraints on minimum band-
width and maximum training latency. We find that re-
quired bandwidth is most frequently governed by the
number of researchers addressing a fixed task. For an
impactful ads model at a large internet company, this
may represent many dozens of engineers attempting in-
cremental progress on a single modelling task. Allowable
training latency is a function of researcher preference,
varying from hours to weeks in practice. Varying par-
allelism (i.e., number of accelerator chips) in training
controls development latency. As in many systems, low-
ered latency often comes at the expense of throughput.
For example, using twice the number of chips speeds
up training, but most often does so sub-linearly (train-
ing is less than twice as fast) because of parallelization
overhead.

For any given ML advancement, immediate gains must
be weighed against the long-term cost to future R&D.
For instance, naively scaling up the size of a large DNN
might provide immediate accuracy but add prohibitive
cost to future training (Table 1 includes a comparison of
techniques and includes one such naive scaling baseline).

We have found that there are many techniques and
model architectures from literature that offer significant
improvements in model accuracy, but fail the test of
whether these improvements are worth the trade-offs
(e.g., ensembling many models, or full stochastic varia-
tional Bayesian inference [20]). We have also found that
many accuracy-improving ML techniques can be recast
as efficiency-improving via adjusting model parameters
(especially total number of weights) in order to lower
training costs. Thus, when we evaluate a technique, we
are often interested in two tuning points: 1) what is the
improvement in accuracy when training cost is neutral
and 2) what is the training cost improvement if model ca-
pacity is lowered until accuracy is neutral. In our setting,
some techniques are much better at improving training
costs (e.g., distillation in Section 4.1.2) while others are
better at improving accuracy. Figure 1 illustrates these
two tuning axes.

We survey some successfully deployed efficiency tech-
niques in the remainder of this section. Section 3.1 details
the use of matrix factorization bottlenecks to approxi-
mate large matrix multiplication with reduced cost. Sec-
tion 3.2 describes AutoML, an efficient RL-based architec-
ture search that is used to identify model configurations
that balance cost and accuracy. Section 3.3 discusses a
set of effective sampling strategies to reduce data used
for training without hurting accuracy.

3.1. Bottlenecks

One practical way to achieve accuracy is to scale up the
widths of all the layers in the network. The wider they

Data Sampling
Data Sampling

f

Efficient Model ?

Advancing ML
Techniques

Structures

Model Quality

Larger
Neural
Networks

Machine Cost ———

Figure 1: "Switch-backs” of incremental

<+—— Mask_i

Matmul of Layer i

Weight-sharing Network

Constraints
(e.g. training speed,

<—— Decisions serving latency)

Sample 'A
1
!
. Queryl
/
\\Update ’
~ < V4
S~o o -> Reinforcement Learning _ e
Controller

costly quality-improving techniques and Figure 2: Weight-sharing based NAS with cost constraints.

efficiency methods. (Illustration not to
any scale.)

are, the more non-linearities there are in the model, and
in practice this improves model accuracy. On the other
hand, the size of the matrices involved in the loss and
gradient calculations increases, making the underlying
matmul computations slower. Unfortunately, the cost of
matmul operations (naively) scale up quadratically in the
size of their inputs. To compute the output of a hidden
layer H; = o(H;,_{W;) where W; € R™", we perform
m x n multiply-add operations for each input row in H;_;.
The ‘wider is better’ strategy typically isn’t cost-effective
[21]. We find that carefully inserting bottleneck layers
of low-rank matrices between layers of non-linearities
greatly reduces scaling costs, with only a small loss of
relative accuracy.

Applying singular value decomposition to W;’s, we of-
ten observe that the top half of singular values contribute
to over 90% of the norm of singular values. This suggests
that we can approximate H;_;W; by a bottleneck layer
H;_UV;, where U; € Rk V; € R®". The amount of com-
pute reduces to m x k + k x n, which can be significant for
small enough k. For a fixed k, if we scale m, n by constant
¢, compute scales only linearly with c. Empirically, we
found that accuracy loss from this approximation was
indeed small. By carefully balancing the following two
factors, we were able to leverage bottlenecks to achieve
better accuracy without increasing computation cost: (1)
increasing layer sizes toward better accuracy, at the cost
of more compute, and (2) inserting bottleneck layers to
reduce compute, at a small loss of accuracy. Balancing
of these two can be done manually or via AutoML tech-
niques (discussed in the next section). A recent man-
ual application of this technique to the model (without
AutoML tuning) reduced time per training step by 7%
without impacting accuracy (See Table 2 for a summary
of efficiency techniques).

3.2. AutoML for Efficiency

To develop an ads CTR prediction model architecture
with optimal accuracy/cost trade-off, we typically have
to tune the embedding widths of dozens of features and
layer widths for each layer in the DNN. Assuming even
just a small constant number of options for each such
width, the combinatorial search space quickly reaches
intractable scales. For industrial-scale models, it is not
cost-effective to conduct traditional architecture search
with multiple iterations [22, 23]. We have successfully
adopted neural architecture search based on weight shar-
ing [24] to efficiently explore network configurations
(e.g., varying layer width, embedding dimension) to find
versions of our model that provide neutral accuracy with
decreased training and serving cost. As illustrated in
Figure 2, this is achieved by three components: a weight-
sharing network, an RL controller, and constraints.

The weight-sharing network builds a super-network
containing all candidate architectures in the search space
as sub-networks. In this way, we can train all candidate
architectures simultaneously in a single iteration and
select a specific architecture by activating part of the
super-network with masking. This setup significantly re-
duces the number of exploration iterations from O(1000)
to O(1).

The reinforcement learning controller maintains a sam-
pling distribution, 8, over candidate networks. It sam-
ples a set of decisions (d;, ds, ...) to activate a sub-network
at each training step. We then do a forward pass for the
activated sub-network to compute loss and cost. Based
on that, we estimate the reward value R(d;,d,,...) and
conduct a policy gradient update using the REINFORCE
algorithm [25] as follows:

Ouist = Oaist + @0 - (R(dy, dp, ...) — R) - Vlog P(dy, dy, ...|01st),

where R denotes the moving average value of the reward
and a is the learning rate for the reinforcement learn-
ing algorithm. Through the update at each training step,
the sampling rate of better architectures will gradually
increase and the sampling distribution will eventually
converge to a promising architecture. We select the ar-
chitecture with maximum likelihood at the end of the
training. Constraints specify how to compute the cost
of the activated sub-network, which can typically be
done by estimating the number of floating-point opera-
tions or running a pre-built hardware-aware neural cost
model. The reinforcement learning controller incorpo-
rates the provided cost estimate into the reward (e.g.,
R = Raccuracy + ¥ * [cost/target — 1|, where y < 0) [24] in
order to force the sampling distribution to converge to
a cost-constrained point. In order to search for architec-
tures with lower training cost but neutral accuracy, in our
system we set up multiple AutoML tasks with different
constraint targets (e.g. 85%/90%/95% of the baseline cost)
and selected the one with neutral accuracy and smallest
training cost. A recent application of this architecture
search to the model reduced time per training step by
16% without reducing accuracy.

3.3. Data Sampling

Historical examples of clicks on search ads make up a
large dataset that increases substantially every day. The
diminishing returns of ever larger datasets dictate that
it is not beneficial to retain all the data. The marginal
value for improving model quality goes toward zero, and
eventually does not justify any extra machine costs for
training compute and data storage. Alongside using ML
optimization techniques to improve ML efficiency, we
also use data sampling to control training costs. Given
that training is a single-pass over data in time-order, there
are two ways to reduce the training dataset: 1) restricting
the time range of data consumed; and 2) sampling the
data within that range. Limiting training data to more
recent periods is intuitive. As we extend our date range
further back in time, the data becomes less relevant to
future problems. Within any range, clicked examples
are more infrequent and more important to our learning
task; so we sample the non-clicked examples to achieve
rough class balance. Since this is primarily for efficiency,
exact class balance is unnecessary. A constant sampling
rate (a constant class imbalance prior) can be used with a
simple single-pass filter. To keep model predictions unbi-
ased, importance weighting is used to up-weight negative
examples by the inverse of the sampling rate. Two addi-
tional sampling strategies that have proved effective are
as follows:

» Sampling examples associated with a low logistic
loss (typically examples with low estimated CTR
and no click).

« Sampling examples that are very unlikely to have
been seen by the user based on their position on
the page.

The thresholds for the conditions above are hand-
tuned and chosen to maximize data reduction without
hurting model accuracy. These strategies are imple-
mented by applying a small, constant sampling rate to all
examples meeting any of the conditions above. Pseudo-
Random sampling determines whether examples should
be kept and re-weighted or simply discarded. This en-
sures that all training models train on the same data. This
scheme may be viewed as a practical version of [26] for
large problem instances with expensive evaluation. Sim-
ple random sampling allows us to keep model estimates
unbiased with simple constant importance re-weighting.
It is important to avoid very small sampling rates in this
scheme, the consequent large up-weighting can lead to
model instability. Re-weighting is particularly impor-
tant for maintaining calibration, since these sampling
strategies are directly correlated to labels.

For sampling strategies that involve knowing the loss
on an example, calculating that loss would require run-
ning inference on the training example, removing most
of the performance gains. For this reason, we use a proxy
value based on a prediction made by a “teacher model”.
In this two-pass approach. We first train once over all
data to compute losses and associated sampling rates, and
then once on the sub-sampled data. The first pass uses
the same teacher model for distillation (Section 4.1.2)
and is only done once. Iterative research can then be
performed solely on the sub-sampled data. While these
latter models will have different losses per example, the
first pass loss-estimates still provide a good signal for
the ‘difficulty’ of the training example and leads to good
results in practice. Overall our combination of class re-
balancing and loss-based sampling strategies reduces the
data to < 25% of the original dataset for any given period
without significant loss in accuracy.

4. Accuracy

Next we detail a set of techniques aimed at improving the
accuracy of the system. We discuss: additional losses that
better align offline training-time metrics with important
business metrics, the application of distillation to our
online training setting, the adaptation of the Shampoo
second-order optimizer to our model, and the use of Deep
and & Cross networks.

4.1. Loss Engineering

Loss engineering plays an important role in our system.
As the goal of our model is to predict whether an ad

will be clicked, our model generally optimizes for logis-
tic loss, often thought of as the cross-entropy between
model predictions and the binary task (click/no-click)
labels for each example. Using logistic loss allows model
predictions to be unbiased so that the prediction can
be interpreted directly as a calibrated probability. Bi-
nary predictions can be improved by introducing soft
prediction through distillation methods [27]. Beyond es-
timating the CTR per ad, it is important that the set of
candidate ads for a particular query is correctly ranked
(such that ads with clicks have higher CTR than ads with-
out clicks), thus incorporating proper ranking losses is
also important. In this section, we discuss novel auxil-
iary losses and introduce multi-task and multi-objective
methods for joint training with these losses

4.1.1. Rank Losses

We found that Area under the ROC curve computed per
query (PerQueryAUC) is a metric well correlated with
business metrics quantifying the overall performance
of a model. In addition to using PerQueryAUC during
evaluation, we also use a relaxation of this metric, i.e.,
rank-loss, as a second training loss in our model. There
are many rank losses in the learning-to-rank family [28,
29]. We find one effective approximation is Ranknet loss
[30], which is a pairwise logistic loss:

_ Z Z log(sigmoid(s;, s;)),

ie{y=1} je{y#1}

where s;, 5; are logit scores of two examples.

Rank losses should be trained jointly with logistic loss;
there are several potential optimization setups. In one
setup, we create a multi-objective optimization problem
[31]:

ZW) = grank(Yranka s)+(1—o)glogistic(y’ s),

where s are logit scores for examples, y,, are ranking
labels, y are the binary task labels, and o; € (0, 1) is the
rank-loss weight. Another solution is to use multi-task
learning [32, 33], where the model produces multiple
different estimates s for each loss.

L (Wshareds I/Vlogistic’ Wrank) =
a 3rank(y’ Srank) + (1 — al)glogistic(y’ Slogistic)s

where Wy ,req are weights shared between the two losses,
Wiogistic are for the logistic loss output, and Wiy are
for the rank-loss output. In this case, the ranking loss
affects the "main” prediction sjogjstic as a "regularizer” on
Wohared-

As rank losses are not naturally calibrated predictors of
click probabilities, the model’s predictions will be biased.
A strong bias correction component is needed to ensure

the model’s prediction is unbiased per example. More
detail can be found in Section 7. Application of ranklosses
to the model generated accuracy improvements of —0.81%
with a slight increase in training cost of 1%.

4.1.2. Distillation.

Distillation adds an additional auxiliary loss requiring
matching the predictions of a high-capacity teacher
model, treating teacher predictions as soft labels [27].
In our model, we use a two-pass online distillation
setup. On the first pass, a teacher model records its predic-
tions progressively before training on examples. Student
models consume the teacher’s predictions while train-
ing on the second pass. Thus, the cost of generating
the predictions from the single teacher can be amortized
across many students (without requiring the teacher to
repeat inference to generate predictions). In addition
to improving accuracy, distillation can also be used for
reducing training data costs. Since the high-capacity
teacher is trained once, it can be trained on a larger data
set. Students benefit implicitly from the teachers prior
knowledge of the larger training set, and so require train-
ing only smaller and more recent data. The addition of
distillation to the model improved accuracy by 0.41%
without increasing training costs (in the student).

4.1.3. Curriculums of Losses

In machine learning, curriculum learning [34] typically
involves a model learning easy tasks first and gradually
switching to harder tasks. We found that training on all
classes of losses in the beginning of training increased
model instability (manifesting as outlier gradients which
cause quality to diverge). Thus, we apply an approach
similar to curriculum learning to ramp up losses, starting
with the binary logistic loss and gradually ramping up
distillation and rank losses over the course of training.

4.2. Second-order Optimization

Second-order optimization methods that use second
derivatives and/or second-order statistics are known to
have better convergence properties to first-order meth-
ods [35]. Yet to our knowledge, second-order methods are
rarely reported to be used in production ML systems for
DNNs. Recent work on Distributed Shampoo [16, 36] has
made second-order optimization feasible for our model
by leveraging the heterogneous compute offered by TPUs
and host-CPUs, and employing additional algorithmic
and efficiency improvements.

In our system, Distributed Shampoo provided much
faster convergence with respect to training steps, and
yielded better accuracy when compared to standard adap-
tive optimization techniques including AdaGrad [15],

Devices

[Preconditioner computation - Layer 1
CPU "]
coren Preconditioner computation - Layer N

Step 1

Preconditioners

Step N

Transfers

Preconditioner computation - Layer 1

BH

Statistics

Preconditioner computation - Layer N

Step N+1 Step 2N Transfers

Time

Figure 3: Distributed Shampoo [16]: inverse-p" root computations in double precision runs every Nsteps and asynchronously

pipelined on all CPU cores attached to the TPU accelerators.

Adam [37], Yogi [38], and LAMB [39]. While, second-
order methods like Distributed Shampoo is known to
provide faster convergence compared to first-order meth-
ods in the literature - It often fails to provide competitive
wall-clock time due to the computational overheads in
the optimizer on smaller scale benchmarks. For our train-
ing system, second-order optimization method was an
ideal candidate due to large batch sizes used in training
which amortizes the cost of costly update rule. Train-
ing time only increased by approximately 10% and the
improvements to model accuracy far outweighed the in-
crease in training time. We next discuss some of the more
salient implementation details specific to our model.

Learning Rate Grafting. One of the main challenges in
online optimization is defining a learning rate schedule.
In contrast to training on static datasets, the number of
steps an online model will require is not known and may
be unbounded. Accordingly, popular learning rate sched-
ules from literature depending on fixed time horizons,
such as cosine decay or exponential decay, perform worse
in contrast to the implicit data-dependent adaptive sched-
ule from AdaGrad [15]. As observed in literature [40], we
also find that AdaGrad’s implicit schedule works quite
well in the online setting; especially after the ¢ parame-
ter (the initial accumulator value) is tuned. Accordingly,
we bootstrap the schedule for Distributed Shampoo via
grafting the per layer step size from AdaGrad. More pre-
cisely, we use the direction from Shampoo while using
the magnitude of step size from AdaGrad at a per-layer
granularity. An important feature of this bootstrapping
is that it allowed us to inherit hyper-parameters from
previous AdaGrad tunings to search for a Pareto optimal
configuration.

Momentum. Another effective implementation choice
is the combination of Nesterov-styled momentum with
the preconditioned gradient. Our analysis suggests that
momentum added modest gains on top of Shampoo
without increasing the computational overhead while
marginally increasing the memory overhead. Computa-
tional overhead was addressed via the approximations

described in [41].

Stability & Efficiency. Distributed Shampoo has higher
computational complexity per step as it involves multi-
plication of large matrices for preconditioning and statis-
tics/preconditioner computation. We address these over-
heads with several techniques in our deployment. For
example, the block-diagonalization suggested in [16] was
effective at reducing the computational complexity while
also allowing the implementation of parallel updates for
each block in the data-parallel setting via weight-update
sharding [42]. This reduced the overall step time. More-
over, optimizer overheads are independent of batch size,
and thus we increased batch size to reduce overall com-
putational overhead. Finally, we found that condition
number of statistics used for preconditioning can vary
in range reaching more than 10'°. Because, numerical
stability and robustness is of utmost importance in pro-
duction; we make use of double precision numerics. To
compute the preconditioners, we use the CPUs attached
to the TPUs to run inverse- pth roots and exploit a faster
algorithm, the coupled Newton iteration for larger pre-
conditioners [43] as in Figure 3.

When integrated with the ad click prediction model
the optimizer improved our primary measure of accu-
racy, Area under the ROC curve computed per query
(PerQueryAuc), by 0.44%. Accuracy improvements above
0.1% are considered significant. For comparison: a naive
scaling of the deep network by 2x yields a PerQueryAUC
improvement of 0.13%. See Table 1 for a summary of
accuracy technique results.

4.3. Deep & Cross Network

Learning effective feature crosses is critical for recom-
mender systems [3, 44]. We adopt an efficient variant of
DCNv2 [44] using bottlenecks. This is added between the
embedding layer e described in Section 2 and the DNN.
We next describe the Deep & Cross Network architec-
ture and its embedding layer input. We use a standard
embedding projection layer for sparse categorical fea-

Technique Accuracy Training Cost Inference Cost
Improvement Increase Increase
Technique Training Cost

Deep & Cross Network 0.18% 3% 1% q Decrease
Shampoo Optimizer 0.44% 10% 0%
Distillation 0.46% A% 0% Bottlenecks 7%
Rank Losses 0.81% <1% 0% AutoML 16%

Data Sampling 75%
Baseline: 2x DNN Size 0.13% 36% 10%

Table 1

Accuracy improvement and training/inference costs for accuracy improving
techniques.” Distillation does not include teacher cost which,

is a small fraction of overall training costs.

tures. We project categorical feature i from a higher
dimensional sparse space to a lower dimensional dense
space using & = W,x;, where x; € {0, 1}"; W; € R™ is
the learned projection matrix; é; is the dense embedding
representation; and v; and m; represent the vocabulary
and dense embedding sizes respectively. For multivalent
features, we use average pooling of embedding vectors.
Embedding dimensions {m;} are tuned for efficiency and
accuracy trade-offs using AutoML (Section 3.2). Output
of the embedding layer is a wide concatenated vector
ey = concat(é;, &, ... ép) € R™ for F features. For crosses,
we adopt an efficient variant of [44], applied directly on
top of the embedding layer to explicitly learn feature
crosses: ¢ = az(eo © l]i\/iei_l) +¢_1, where ¢, 1 € R™
represent the output and input of the ith cross layer, re-
spectively; Uy € R™¥ and V; € RF™ are the learned
weight matrices leveraging bottlenecks (Section 3.1) for
efficiency; a; is a scalar, ramping up from 0 — 1 during
initial training, allowing the model to first learn the em-
beddings and then the crosses in a curriculum fashion.
Furthermore, this ReZero initialization [45] also improves
model stability and reproducibility (Section 5).

In practice adding the Deep & Cross Network to the
model yielded an accuracy improvement of 0.18% with
a minimal increase in training cost of 3%.

4.4. Summary of Efficiency and Accuracy
Results

Below we share measurements of the relative impact of
the previously discussed efficiency and accuracy tech-
niques as applied to the production model. The goal is
to give a very rough sense of the impact of these tech-
niques and their accuracy vs. efficiency tradeoffs. While
precise measures of accuracy improvement on one par-
ticular model are not necessarily meaningful, we believe
the coarse ranking of techniques and rough magnitude
of results are interesting (and are consistent with our
general experience).

The baseline 2x DNN size model doubles the number

Table 2
Training cost improvements of

applied techniques.
due to amortization,

of hidden layers. Note, that sparse embedding lookups
add to the overall training cost, thus doubling the number
layers does not proportionally increase the cost.

5. Irreproducibility

Irreproducibility, noted in Section 1, may not be easy to
detect because it may appear in post deployment sys-
tem metrics and not in progressive validation quality
metrics. A pair of duplicate models may converge to
two different optima of the highly non-convex objective,
giving equal average accuracy, but different individual
predictions, but with different downstream system/auc-
tion outcomes. Model deployment leads to further diver-
gence, as ads selected by deployed models become part
of subsequent training examples [17]. This can critically
affect R&D: experimental models may appear beneficial,
but gains may disappear when they are retrained and
deployed in production. Theoretical analysis is complex
even in the simple convex case, which is considered only
in very recent work [46]. Many factors contribute to ir-
reproducibility [47, 48, 49, 10, 50, 51], including random
initialization, non-determinism in training due to highly-
parallelized and highly-distributed training pipelines, nu-
merical errors, hardware, and more. Slight deviations
early in training may lead to very different models [52].
While standard training metrics do not expose system
irreproducibility, we can use deviations of predictions on
individual examples as a cheap proxy, allowing us to fail
fast prior to evaluation at deployment-time. Common sta-
tistical metrics (standard deviation, various divergences)
can be used [53, 54] but they require training many more
models, which is undesirable at our scale. Instead, we use
the Relative Prediction Difference (PD) [7, 9] metric

A= 1/M- Z 91 = J2l/[Ght + 312)/2]

, measuring absolute point-wise difference in model pre-
dictions for a pair of models (subscripts 1 and 2), nor-
malized by the pair’s average prediction. Computing PD

requires training a pair of models instead of one, but
we have observed that reducing PD is sufficient to im-
prove reproducibility of important system metrics. In this
section, we focus on methods to improve PD; Section 7
focuses on directly improving system metrics.

PDs may be as high as 20% for deep models. Per-
haps surprisingly, standard methods such as fixed ini-
tialization, regularization, dropout, data augmentation,
as well as new methods imposing constraints [55, 56]
either failed to improve PD or improved PD at the cost
of accuracy degradation. Techniques like warm-starting
model weights to values of previously trained models
may not be preferable because they can anchor the model
to a potentially bad solution space and do not help the
development cycle for newer more reproducible models
for which there is no anchor.

Other techniques have shown varying levels of suc-
cess. Ensembles [57], specifically self-ensembles [58],
where we average predictions of multiple model dupli-
cates (each initialized differently), can reduce prediction
variance and PD. However, maintaining ensembles in a
production system with multiple components builds up
substantial technical debt [59]. While some literature
[60, 61, 62] describes accuracy advantages for ensembles,
in our regime, ensembles degraded accuracy relative to
equal-cost single networks. We believe this is because,
unlike in the benchmark image models, examples in on-
line CTR systems are visited once, and, more importantly,
the learned model parameters are dominated by sparse
embeddings. Relatedly, more sophisticated techniques
based on ensembling and constraints can also improve
PD [63, 7, 8].

Techniques described above trade accuracy and com-
plexity for better reproducibility, requiring either ensem-
bles or constraints. Further study and experimentation
revealed that the popular use of Rectified Linear Unit
(ReLU) activations contributes to increased PD. ReLU’s
gradient discontinuity at 0 induces a highly non-convex
loss landscape. Smoother activations, on the other hand,
reduce the amount of non-convexity, and can lead to
more reproducible models [9]. Empirical evaluations of
various smooth activations [64, 65, 66, 67] have shown
not only better reproducibility compared to ReLU, but
also slightly better accuracy. The best reproducibility-
accuracy trade-offs in our system were attained by the
simple Smooth reLU (SmeLU) activation proposed in [9].
The function form is:

0; z<-f
2

Fran@ =1 G5 <p (1)
z; z2p.

In our system, 3-component ensembles reduced PD
from 17% to 12% and anti-distillation reduced PD further
to 10% with no accuracy loss. SmeLU allowed launching

Quality Vector (Q Ul Vector (U)
Ul Cache

Run on accelerated

hardware (TPUs) 5
Loaded into memory,
run on CPUs

Quality ul
DNN DNN
T Ad Position

Ad Extensions

Various Quality Features Other Ad & search result contexts

Figure 4: Model factorization into separable Quality and Ul
models with estimated CTR :=7(Q -U)

a non-ensemble model with PD less than 10% that also
improved accuracy by 0.1%. System reproducibility met-
rics also improved to acceptable levels compared to the
unacceptable levels of ReLU single component models.

6. Generalizing Across Ul
Treatments

One of the major factors in CTR performance of an ad is
its UI treatment, including positioning, placement rela-
tive to other results on the page, and specific renderings
such as bolded text or inlined images. A complex auc-
tion must explore not just the set of results to show, but
how they should be positioned relative to other content,
and how they should be individually rendered [68]. This
exploration must take place efficiently over a combinato-
rially large space of possible treatments.

We solve this through model factorization, replacing
estimated CTR with 7(Q - U), composed of a transfer
function r where Q, U are separable models that output
vectorized representations of the Quality and the UI, re-
spectively, and are combined using an inner-product.
While Q, consisting of a large DNN and various feature
embeddings, is a costly model, it needs to be evaluated
only once per ad, irrespective of the number of UI treat-
ments. In contrast, U, being a much lighter model, can be
evaluated hundreds of times per ad. Moreover, due to the
relatively small feature space of the UI model, outputs
can be cached to absorb a significant portion of lookup
costs (as seen in Figure 4).

Separately from model performance requirements, ac-
counting for the influence of Ul treatments on CTR is
also a crucial factor for model quality. Auction dynamics
deliberately create strong correlations between individ-
ual ads and specific UI treatments. Results that are lower
on the page may have low CTR regardless of their rele-
vance to the query. Failure to properly disentangle these
correlations creates inaccuracy when generalizing over
Ul treatments (e.g., estimating CTR if the same ad was
shown higher on the page). Pricing and eligibility deci-

5

§ |constraints & i @ fowerloss

e ¢ optimum
solutions for|
original loss

Ay

'
£ 405
03

original loss landscape

W osition

original objective

” .
LI [function

c | M 4

S Y LA ,
T~ N » with bias constraints
R - -

E e et

uniform bias (goal)

! estimated CTR

(b)

Figure 5: (a) Loss landscape for a model with non-identifiability across two weights and how bias constraints help find the
right solution: we add additional criteria (red and orange curves) such that we choose the correct solution at optimum loss
(dark blue curve). (b) Calibration bias across buckets of estimated CTR. For calibrated predictions, we expect uniform bias
(black curve). Whereas a model with the original objective function is biased for certain buckets of estimated CTR (blue curve),
we can get much closer to uniform with bias constraints (red curve).

sions depend crucially on CTR estimates of sub-optimal
UIs that are rarely occurring in the wild. For instance, our
system shouldn’t show irrelevant ads, and so such sce-
narios will not be in the training corpus, and so estimates
of their irrelevance (low CTR) will be out of distribution.
But these estimates are needed to ensure the ads do not
show. Even for relevant ads, there is a similar problem.
Performance of ads that rarely show in first position may
still be used to set the price of those ads that often do
show in first position. This creates a specific generaliza-
tion problem related to Ul, addressed in Section 7.

Calibration is an important characteristic for large-
scale ads recommendation. We define calibration bias
as label minus prediction, and want this to be near zero
per ad. A calibrated model allows us to use estimated
CTR to determine the trade-off between showing and
not showing an ad, and between showing one ad versus
another; both calculations can be used in downstream
tasks such as Ul treatment selection, auction pricing, or
understanding of ad viewability.

The related concept of credit attribution is similar to
counterfactual reasoning [69] or bias in implicit feedback
[70]. 1t is a specific non-identifiability in model weights
that can contribute to irreproducibility (Section 5). Con-
sider an example to illustrate the UI effect (Section 6):
assume that model A has seen many training examples
with high-CTR ads in high positions, and (incorrectly)
learned that ad position most influences CTR. Model B,
defined similar to A, trains first on the few examples
where high-CTR ads appear in low positions, and (cor-
rectly) learns that something else (e.g., ad relevancy to
query) is causing high CTR. Both models produce the
same estimated CTR for these ads but for different rea-
sons, and when they are deployed, model A will likely
show fewer ads because it will not consider otherwise
useful ads in lower positions; these models will show
system irreproducibility.

In our system, we use a novel, general-purpose tech-
nique called bias constraints to address both calibration
and credit attribution. We add calibration bias constraints

to our objective function, enforced on relevant slices of
either the training set or a separate, labelled dataset. This
allows us reduce non-identifiability by anchoring model
loss to a desired part of the solution space (e.g., one that
satisfies calibration) (Figure 5a). By extension, we reduce
irreproducibility by anchoring a retrained model to the
same solution.

Our technique is more lightweight than other meth-
ods used for large-scale, online training (counterfactual
reasoning [69], variations of inverse propensity scoring
[70, 71]): in practice, there are fewer parameters to tune,
and we simply add an additional term to our objective
rather than changing the model structure. To address cal-
ibration, [72] adjusts model predictions in a separate cal-
ibration step using isotonic regression, a non-parametric
method. Our technique does calibration jointly with esti-
mation, and is more similar to methods which consider
efficient optimization of complex and augmented objec-
tives (e.g., [73, 74]). Using additional constraints on the
objective allows us to address a wide range of calibration
and credit attribution issues.

7. Bias Constraints

7.1. Online Optimization of Bias
Constraints

We now optimize our original objective function with
the constraint that Vkvi € S, (y; — ;) = 0. Here, Sy are
subsets of the training set which we’d like to be calibrated
(e.g., under-represented classes of data) or new training
data that we may or may not optimize the original model
weights over (e.g., out-of-distribution or off-policy data
gathered from either randomized interventions or explo-
ration scavenging [75, 70, 76]). To aid optimization, we
first transform this into an unconstrained optimization
problem by introducing a dual variable A ; for each con-
straint and maximizing the Lagrangian relative to the
dual variables. Next, instead of enforcing zero bias per
example, we ask that the squared average bias across S

is zero. This reduces the number of dual variables to {A},
and is equivalent to adding an L2 regularization on Ay
with a constraint of zero average bias. For a constant a3
controlling regularization, and tuned via typical hyper-
parameter tuning techniques (e.g. grid search), our new
optimization is:

K
. Y Y a
min max Z L) + Z Z(’l"(y" —- ?3/1’%)
W A i k=1i€S;

Any degraded accuracy or stability is mitigated by com-
binations of the following tunings, ordered by impact:
ramping up the bias constraint term, reducing the learn-
ing rate on {44}, increasing a3, or adding more or finer-
grained constraints (breaking up Sg). We believe the first
two can help normalize any differences between the mag-
nitude of the dual variables and other weights, and the
latter two help lessen the strength of the bias term if S
aren’t optimally selected.

7.2. Bias Constraints for General
Calibration

If we plot calibration bias across buckets of interesting
variables, such as estimated CTR or other system met-
rics, we expect a calibrated model to have uniform bias.
However, for several axes of interest, our system shows
higher bias at the ends of the range (Figure 5b). We ap-
ply bias constraints to this problem by defining S to be
examples in each bucket of, e.g., estimated CTR. Since
we don’t use the dual variables during inference, we can
include estimated CTR in our training objective. With
bias constraints, bias across buckets of interest becomes
much more uniform: variance is reduced by more than
half. This can in turn improve accuracy of downstream
consumers of estimated CTR.

7.3. Exploratory Data and Bias
Constraints

We can also use bias constraints to solve credit attribution
for Ul treatments. We pick S; by focusing on classes
of examples that represent uncommon UI presentations
for competitive queries where the ads shown may be
quite different. For example, S; might be examples where
a high-CTR ad showed at the bottom of the page, S,
examples where a high-CTR ad showed in the second-to-
last position on the page, etc. Depending on how model
training is implemented, it may be easier to define S in
terms of existing model features (e.g., for a binary feature
f, we split one sum over S into two sums). We choose {f}
to include features that generate partitions large enough
to not impact convergence but small enough that we
expect the bias per individual example will be driven to
zero (e.g., if we think that query language impacts ad

placement, we will include it in {f}). For the model in
Table 3, we saw substantial bias improvements on several
data subsets Sy related to out-of-distribution ad placement
and more reproducibility with minimal accuracy impact
when adding bias constraints.

S, Bias | S, Bias | S; Bias | Loss | Ads/Query Churn
-15% -75% -43% | +0.03% -85%
Table 3

Progressive validation and deployed system metrics reported
as a percent change for a bias constraint over the original
model (negative is better). Ads/Query Churn records how
much the percent difference in the number of ads shown
above search results per query between two model retrains
changes when deployed in similar conditions; we want this to
be close to zero.

Viewing the bias constraints as anchoring loss rather
than changing the loss landscape (Figure 5a), we find that
the technique does not fix model irreproducibility but
rather mitigates system irreproducibility: we were able
to cut the number of components in the ensemble by half
and achieve the same level of reproducibility.

8. Conclusion

We detailed a set of techniques for large-scale CTR pre-
diction that have proven to be truly effective “in pro-
duction”: balancing improvements to accuracy, training
and deployment cost, system reproducibility and model
complexity—along with describing approaches for gener-
alizing across Ul treatments. We hope that this brief visit
to the factory floor will be of interest to ML practitioners
of CTR prediction systems, recommender systems, online
training systems, and more generally to those interested
in large industrial settings.

References

[1] H. B. McMahan, G. Holt, D. Sculley, M. Young,
D. Ebner, J. Grady, L. Nie, T. Phillips, E. Davydov,
D. Golovin, et al., Ad click prediction: a view from
the trenches, in: SIGKDD, 2013.

X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi,
A. Atallah, R. Herbrich, S. Bowers, J. Q. n. Candela,
Practical lessons from predicting clicks on ads at
facebook, 2014.

G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma,
Y. Yan, J. Jin, H. Li, K. Gai, Deep interest network for
click-through rate prediction, in: SIGKDD, 2018.
X. Ling, W. Deng, C. Gu, H. Zhou, C. Li, F. Sun,
Model ensemble for click prediction in bing search
ads, in: WWW, 2017.

(2]

(3]

(4]

(5]
(6]

(12]

(13]

(15]

(16]

H. R. Varian, C. Harris, The vcg auction in theory
and practice, American Economic Review (2014).
M. W. Dusenberry, D. Tran, E. Choi, J. Kemp,
J. Nixon, G. Jerfel, K. Heller, A. M. Dai, Analyzing
the role of model uncertainty for electronic health
records, in: CHIL, 2020.

G. I. Shamir, L. Coviello, Anti-distillation: Im-
proving reproducibility of deep networks, arXiv
preprint arXiv:2010.09923 (2020).

G. L. Shamir, L. Coviello, Distilling from ensem-
bles to improve reproducibility of neural networks,
2020.

G. L. Shamir, D. Lin, L. Coviello, Smooth activa-
tions and reproducibility in deep networks, arXiv
preprint arXiv:2010.09931 (2020).

R. R. Snapp, G. I. Shamir, Synthesizing irre-
producibility in deep networks, arXiv preprint
arXiv:2102.10696 (2021).

A. D’Amour, K. Heller, D. Moldovan, B. Adlam,
B. Alipanahi, A. Beutel, C. Chen, J. Deaton, J. Eisen-
stein, M. D. Hoffman, F. Hormozdiari, N. Houlsby,
S. Hou, G. Jerfel, A. Karthikesalingam, M. Lucic,
Y. Ma, C. McLean, D. Mincu, A. Mitani, A. Mon-
tanari, Z. Nado, V. Natarajan, C. Nielson, T. F.
Osborne, R. Raman, K. Ramasamy, R. Sayres,
J. Schrouff, M. Seneviratne, S. Sequeira, H. Suresh,
V. Veitch, M. Vladymyrov, X. Wang, K. Webster,
S. Yadlowsky, T. Yun, X. Zhai, D. Sculley, Un-
derspecification presents challenges for credibil-
ity in modern machine learning, arXiv preprint
arXiv:2011.03395 (2020).

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, 1. Polosukhin, At-
tention is all you need, in: NeurIPS, 2017.

N. P. Jouppi, D. H. Yoon, G. Kurian, S. Li, N. Patil,
J. Laudon, C. Young, D. Patterson, A domain-
specific supercomputer for training deep neural
networks, Communications of the ACM (2020).

H. B. McMahan, M. Streeter, Adaptive bound op-
timization for online convex optimization, arXiv
preprint arXiv:1002.4908 (2010).

J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient
methods for online learning and stochastic opti-
mization, JMLR (2011).

R. Anil, V. Gupta, T. Koren, K. Regan, Y. Singer,
Second order optimization made practical,
https://arxiv.org/abs/2002.09018 (2020).

A. Swaminathan, T. Joachims, Batch learning from
logged bandit feedback through counterfactual risk
minimization, JMLR (2015).

A.Blum, A. Kalai, J. Langford, Beating the hold-out:
Bounds for k-fold and progressive cross-validation,
in: COLT, 1999.

T. Chen, 1. Goodfellow, J. Shlens, Net2net: Ac-
celerating learning via knowledge transfer, arXiv

(21]

[22]

preprint arXiv:1511.05641 (2015).

C. Blundell, J. Cornebise, K. Kavukcuoglu, D. Wier-
stra, Weight uncertainty in neural network, in: In-
ternational conference on machine learning, PMLR,
2015, pp. 1613-1622.

M. Denil, B. Shakibi, L. Dinh, M. Ranzato, N. de Fre-
itas, Predicting parameters in deep learning, CoRR
B. Zoph, V. Vasudevan, J. Shlens, Q. V. Le, Learn-
ing transferable architectures for scalable image
recognition, in: CVPR, 2018.

E. Real, A. Aggarwal, Y. Huang, Q. V. Le, Regu-
larized evolution for image classifier architecture
search, in: AAAI 2019.

G. Bender, H. Liu, B. Chen, G. Chu, S. Cheng, P.-].
Kindermans, Q. V. Le, Can weight sharing outper-
form random architecture search? an investigation
with tunas, in: CVPR, 2020.

R. J. Williams, Simple statistical gradient-following
algorithms for connectionist reinforcement learn-
ing, Machine learning (1992).

W. Fithian, T. Hastie, Local case-control sampling:
Efficient subsampling in imbalanced data sets, The
Annals of Statistics (2014).

G. Hinton, O. Vinyals, J. Dean, Distilling the knowl-
edge in a neural network, in: NIPS Deep Learning
and Representation Learning Workshop, 2015.

R. K. Pasumarthi, S. Bruch, X. Wang, C. Li, M. Ben-
dersky, M. Najork,]J. Pfeifer, N. Golbandi, R. Anil,
S. Wolf, Tf-ranking: Scalable tensorflow library for
learning-to-rank, in: SIGKDD, 2019.

C.]J. Burges, From Ranknet to Lambdarank to Lamb-
daMart: An overview, Learning (2010).

C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton, G. Hullender, Learning
to rank using gradient descent, in: ICML, 2005.

D. Sculley, Combined regression and ranking, in:
In KDD’10, 2010.

R. Caruana, Multitask learning, Machine Learning
(1997).

S. Ruder, An overview of multi-task learning in
deep neural networks, 2017. arxiv:1706.05098.
Y. Bengio, J. Louradour, R. Collobert, J. Weston,
Curriculum learning, in: ICML, 2009.

J. Nocedal, S. J. Wright, Numerical Optimization,
Springer, 2006.

V. Gupta, T. Koren, Y. Singer, Shampoo: Precon-
ditioned stochastic tensor optimization, in: ICML,
2018.

D. P. Kingma, J. Ba, Adam: A method for stochas-
tic optimization, arXiv preprint arXiv:1412.6980
(2014).

M. Zaheer, S. Reddi, D. Sachan, S. Kale, S. Ku-
mar, Adaptive methods for nonconvex optimization,
NeurlIPS (2018).

http://arxiv.org/abs/1706.05098

(39]

(40]

(43]

(47]

(48]

Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar,
S. Bhojanapalli, X. Song, J. Demmel, K. Keutzer,
C. Hsieh, Large batch optimization for deep learn-
ing: Training bert in 76 minutes, arXiv preprint
arXiv:1904.00962 (2019).

N. Agarwal, R. Anil, E. Hazan, T. Koren, C. Zhang,
Disentangling adaptive gradient methods from
learning rates, arXiv preprint arXiv:2002.11803
(2020).

L. Sutskever, J. Martens, G. Dahl, G. Hinton, On the
importance of initialization and momentum in deep
learning, in: ICML, 2013.

Y. Xu, H. Lee, D. Chen, H. Choi, B. Hechtman,
S. Wang, Automatic cross-replica sharding of
weight update in data-parallel training, arXiv
preprint arXiv:2004.13336 (2020).

C.-H. Guo, N. J. Higham, A schur-newton method
for the matrix\boldmath p th root and its inverse,
SIAM Journal on Matrix Analysis and Applications
(2006).

R. Wang, R. Shivanna, D. Cheng, S. Jain, D. Lin,
L. Hong, E. Chi, Dcn v2: Improved deep & cross
network and practical lessons for web-scale learn-
ing to rank systems, in: WWW, 2021.

T. Bachlechner, B. P. Majumder, H. Mao, G. Cottrell,
J. McAuley, Rezero is all you need: Fast conver-
gence at large depth, in: UAI 2021.

K. Ahn, P. Jain, Z. Ji, S. Kale, P. Netrapalli, G. I.
Shamir, Reproducibility in optimization: The-
oretical framework and limits, arXiv preprint
arXiv:2202.04598 (2022).

S. Fort, H. Hu, B. Lakshminarayanan, Deep en-
sembles: A loss landscape perspective, 2020.
arXiv:1912.02757.

J. Frankle, G. K. Dziugaite, D. Roy, M. Carbin, Linear
mode connectivity and the lottery ticket hypothesis,
in: International Conference on Machine Learning,
2020.

C.J. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein,
R. Frostig, G. E. Dahl, Measuring the effects of
data parallelism on neural network training, arXiv
preprint arXiv:1811.03600 (2018).

C. Summers, M. J. Dinneen, On nondeterminism
and instability in neural network optimization,
2021.

D. Zhuang, X. Zhang, S. L. Song, S. Hooker,
Randomness in neural network training: Char-
acterizing the impact of tooling, arXiv preprint
arXiv:2106.11872 (2021).

A. Achille, M. Rovere, S. Soatto, Critical learning
periods in deep neural networks, arXiv preprint
arXiv:1711.08856 (2017).

Z.Chen, Y. Wang, D. Lin, D. Cheng, L. Hong, E. Chi,
C. Cui, Beyond point estimate: Inferring ensem-

(63]

ble prediction variation from neuron activation
strength in recommender systems, arXiv preprint

arXiv:2008.07032 (2020).

H. Yu, Z. Chen, D. Lin, G. Shamir, J. Han, Dropout
prediction variation estimation using neuron acti-
vation strength, arXiv preprint arXiv:2110.06435
(2021).

S. Bhojanapalli, K. J. Wilber, A. Veit, A. S. Rawat,
S.Kim, A. K. Menon, S. Kumar, On the reproducibil-
ity of neural network predictions, 2021.

G. L. Shamir, Systems and methods for improved
generalization, reproducibility, and stabilization of
neural networks via error control code constraints,
2018.

T. G. Dietterich, Ensemble methods in machine
learning, Lecture Notes in Computer Science (2000).
Z. Allen-Zhu, Y. Li, Towards understanding en-
semble, knowledge distillation and self-distillation
in deep learning, arXiv preprint arXiv:2012.09816
(2020).

D. Sculley, G. Holt, D. Golovin, E. Davydov,
T. Phillips, D. Ebner, V. Chaudhary, M. Young, Ma-
chine learning: The high interest credit card of
technical debt (2014).

D. Kondratyuk, M. Tan, M. Brown, B. Gong,
When ensembling smaller models is more effi-
cient than single large models, arXiv preprint
arXiv:2005.00570 (2020).

E. Lobacheva, N. Chirkova, M. Kodryan, D. Vetrov,
On power laws in deep ensembles, arXiv preprint
arXiv:2007.08483 (2020).

X. Wang, D. Kondratyuk, E. Christiansen, K. M.
Kitani, Y. Alon, E. Eban, Wisdom of committees: An
overlooked approach to faster and more accurate
models, arXiv preprint arXiv:2012.01988 (2021).

R. Anil, G. Pereyra, A. Passos, R. Ormandi, G. E.
Dahl, G. E. Hinton, Large scale distributed neural
network training through online distillation, arXiv
preprint arXiv:1804.03235 (2018).

J. T. Barron, Continuously differentiable exponen-
tial linear units, arXiv preprint arXiv:1704.07483
(2017).

D. Hendrycks, K. Gimpel, Gaussian error lin-
ear units (gelus), arXiv preprint arXiv:1606.08415
(2016).

P. Ramachandran, B. Zoph, Q. V. Le,
ing for activation functions,
arXiv:1710.05941 (2017).

H. Zheng, Z. Yang, W. Liu, J. Liang, Y. Li, Improv-
ing deep neural networks using softplus units, in:
TJCNN, 2015.

R. Cavallo, P. Krishnamurthy, M. Sviridenko, C. A.
Wilkens, Sponsored search auctions with rich ads,
CoRR abs/1701.05948 (2017). URL: http://arxiv.org/
abs/1701.05948. arXiv:1701.05948.

Search-
arXiv preprint

http://arxiv.org/abs/1912.02757
http://arxiv.org/abs/1701.05948
http://arxiv.org/abs/1701.05948
http://arxiv.org/abs/1701.05948

(69]

(72]

L. Bottou, J. Peters, J. Quifionero-Candela, D. X.
Charles, D. M. Chickering, E. Portugaly, D. Ray,
P. Simard, E. Snelson, Counterfactual reasoning and
learning systems: The example of computational
advertising, JMLR (2013).

T. Joachims, A. Swaminathan, T. Schnabel, Un-
biased learning-to-rank with biased feedback, in:
WSDM, 2017.

D. Lefortier, A. Swaminathan, X. Gu, T. Joachims,
M. de Rijke, Large-scale validation of counterfac-
tual learning methods: A test-bed, arXiv preprint
arXiv:1612.00367 (2016).

A. Borisov, J. Kiseleva, I. Markov, M. de Rijke, Cal-

(73]

(74]

[75]

ibration: A simple way to improve click models,
CIKM (2018).

E. Eban, M. Schain, A. Mackey, A. Gordon, R. A.
Saurous, G. Elidan, Scalable learning of non-
decomposable objectives, in: AlStats, 2017.

G. S. Mann, A. McCallum, Simple, robust, scalable
semi-supervised learning via expectation regular-
ization, in: ICML, 2007.

X. Wang, M. Bendersky, D. Metzler, M. Najork,
Learning to rank with selection bias in personal
search, in: ACM SIGIR, 2016.

[76] J. Langford, A. Strehl, J. Wortman, Exploration

scavenging, in: ICML, 2008.

	1 Introduction
	1.1 CTR for Search Ads Recommendations
	1.2 Outline

	2 Model and Training Overview
	2.1 Online Optimization

	3 ML Efficiency
	3.1 Bottlenecks
	3.2 AutoML for Efficiency
	3.3 Data Sampling

	4 Accuracy
	4.1 Loss Engineering
	4.1.1 Rank Losses
	4.1.2 Distillation.
	4.1.3 Curriculums of Losses

	4.2 Second-order Optimization
	4.3 Deep & Cross Network
	4.4 Summary of Efficiency and Accuracy Results

	5 Irreproducibility
	6 Generalizing Across UI Treatments
	7 Bias Constraints
	7.1 Online Optimization of Bias Constraints
	7.2 Bias Constraints for General Calibration
	7.3 Exploratory Data and Bias Constraints

	8 Conclusion

