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Abstract. Today, in state of the art process engine architectures, pro-
cess models are executed by a central orchestrator (i.e. one per process).
There are however a lot of drawbacks in using a central orchestrator,
including a single point of failure and performance degradation. Decen-
tralization algorithms that distribute the workload of the central orches-
trator exist, but the result still suffers from a tight coupling between
the different decentralized orchestrators and therefore has a decreased
scalability. In this paper, we show practical transformations to decen-
tralize a process model into autonomous, independent process engines.
This solves the fundamental problems of the classical decentralization al-
gorithms, increases the availability of the global process flow and makes
it easier to re-specify and redeploy process models.

1 Introduction

In the last couple of years, process modeling received increasing attention from
researchers and practitioners. Especially with the arrival of service oriented com-
puting, process modeling became even more important. Starting from atomic
services, new aggregate services can be built by combining the atomic services
and describing an execution flow between the different entities. This way com-
posite services are created, which can again be used in other compositions.
When these compositions are described with a specific executable language (e.g.
BPEL4WS [1] or BPMN 2.0 [2]), automated enactment using a process engine
can be accomplished. The description of the process flow can be interpreted by
a process engine (or orchestrator), which coordinates and triggers the described
work.

Typically, the execution of each composite service (or process) is coordinated
by one central entity (Fig. la, coordinator CO0). This central orchestrator is
initiated upon a request from a client and starts the execution of the workflow
logic described in the composite service (Fig. la, tasks T1, T2 and T3). This is
called CENTRALIZED ORCHESTRATION [3].
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Fig. 1. Centralized, Decentralized and Event-Based Orchestration

The use of a central orchestrator per process struggles, however, with major
problems in today’s highly decentralized world. Using a central orchestrator (or
execution engine) for a composite service creates: (a) a single point of failure,
the services (work items) are distributed and decentralized (Fig. la: S1, S2 and
S3), but the decision logic and coordination of the workflow is still located at
one point (Fig. la: CO0). Failure of the coordinator means failure of the entire
process, even if the services are still available; (b) unnecessary network traffic,
all (data) traffic from- and to- services invoked by the orchestrator runs through
this central orchestrator, even if the data is of no importance to the orchestrator
itself (e.g. data from S1 to S2 in Fig. 1a); and (c¢) a performance bottleneck, the
number of process instances can run up very quickly and if all are coordinated at
one point in the IT infrastructure, performance decreases significantly [4,5,6,7].

To overcome this bottleneck, solutions are given to decentralize the coor-
dination work [4,5,6]. This results in separated process engines, which remove
the need for a central orchestrator and decentralize the workflow logic (Fig. 1b,
process engines C1, C2 and C3). This is DECENTRALIZED ORCHESTRATION.

Simple decentralization of the process flow fixes the fundamental problems of
centralized orchestration (single point of failure and performance degradation),
but not to a full extend [7]. Execution engines are still mutually tightly coupled
in the process enactment infrastructure. For example, the start of execution
engine C2 in Fig. 1b relies on its invocation by execution engine C1. C2 isn’t
autonomous and has to rely on decisions made by C1 (i.e. its request to start
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C2). The logic of the next step in the process is located with the caller (C1), and
not with the callee (C2). This tight coupling creates inflexible IT infrastructures
and decreases scalability of the process architecture [8].

To solve the tight coupling, we proposed an extension to decentralized orches-
tration, which uses an event-based architecture as the communication paradigm
in decentralized orchestration (see Fig. 1¢) [7]. DECENTRALIZED EVENT-BASED
ORCHESTRATION will create autonomous process engines, capable of assessing
their environment and deciding on their own when to initiate their execution
(which is a useful property in process management [9]). It also creates a highly
loose coupled infrastructure, which makes changes to the process flow relatively
easy (‘plug and play’ of process engines). Notice that we’ve introduced an event
driven architecture to support the decentralization of the process flow (full ar-
rowhead arrows in Fig. 1), not for the invocation of services (open arrowhead
arrows in Fig. 1), which has already been accomplished by many others (SOA
and EDA [10]).

To gain the benefits from decentralized event-based orchestration, funda-
mental transformations of the modeled process flow are necessary. In this paper
we’ll introduce the practical transformations involved in transforming a stan-
dard (global) process to a decentralized event-based orchestrated process. The
outcome of this transformation is a process model that can be executed by sev-
eral event-based process engines (or orchestrators). Each orchestrator will be
autonomous and distributed, which increases scalability and removes the single
point of failure.

In the next section we briefly explain decentralized event-based orchestration,
followed by the positioning of the transformations in process development and
enactment (Sect. 3). In Sect. 4 we show the actual transformations involved in
transforming a process model to a decentralized event-based model. In Sect. 5
we end the paper with a conclusion and some implications of this research.

2 Decentralized Event-Based Orchestration

Decentralized event-based orchestration is the coordination of a single process
flow by multiple, autonomous orchestrators [7]. Each orchestrator coordinates a
little piece of the global, entire process flow. Thus, combined, they coordinate the
global process as modeled by the process modeler. Communication between the
orchestrators is accomplished by means of an event based architecture. An event
based architecture is a communication paradigm that uses a publish/subscribe
interaction scheme. An event is something that happens, and when an event oc-
curs, a notification of this event occurrence is published in the architecture. The
architecture then routes this notification to interested parties (the subscribers).

Using a publish/subscribe interaction scheme accomplishes loose coupling be-
tween two communicating entities. These include: space decoupling (unawareness
of interaction partners), time decoupling (interaction partners don’t need to be
active at the same time) and synchronization decoupling (asynchronous send and
receive) [11,7]. Using an event based architecture for decentralized orchestration
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thus removes the tight coupling between the different distributed execution en-
gines, which makes the process architecture more scalable. New process engines
which consume already published events, can simply be added to the process
architecture without making any changes to the already running infrastructure.
Note that the supporting entities in an event based architecture (the cloud in
Fig. 1c) are also loosely coupled and don’t add another single point of failure.
Many solutions exist that distribute the event based architecture itself [8].

A second consequence of using an event driven architecture in a process
decentralization setting is that each execution engine becomes autonomous. A
decentralized orchestrator can asses its environment, and when the environment
is in a certain state (i.e. some specific events happened), it starts its execution.
An orchestrator doesn’t rely anymore on messages that request its initiation,
in stead it decides for itself when to start. After execution, the orchestrator
publishes a notification of its occurrence. This event alters the environment,
whereupon other orchestrators may react and execute their process logic. A chain
of these event publications and consummations (assessment of the environment)
results in the execution of the process flow as modeled by the process modeler.

3 Deploying a Process Specification

Transforming a process model to a decentralized event-based model happens at
deployment time. This enables the process modeler to not take decentraliza-
tion into account when designing the process model. Figure 2 shows a process
specification-deployment structure. First a process modeler designs a global, fully
specified, executable process model. This model not only specifies the flow, but
also specifies which service(s) will handle which tasks defined in the process flow
(service invocations, see top part of Fig. 3). After process specification, the pro-
cess can be deployed. It is at this time that the specified process will undergo a
transformation which decomposes the process into smaller parts. Note again that
our decentralization focuses on transforming the process logic, not the invocation
of services.

unit of decomposition has to be cho-
sen. The unit of decomposition can
be anything from a task to a group
of process elements (tasks, gateways,
...). Each unit of decomposition will
be deployed to a separate execution
engine, resulting in a one-to-one map-
ping between unit of decomposition
and coordinator. This is illustrated in
Fig. 3, with the unit of decomposition
a task. Each task in the original pro-
cess flow (T1, T2, T3 and T4) is to

To decentralize the process flow, a
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be deployed on its own process engine (C1, C2, C3 and C4).

After deployment, re-specification and redeployment of the process model
can be done with little effort. The process modeler can re-specify the global
process model, after which only the changed items in the process flow will need
to be redeployed (see Fig. 2). The already existing not-changed items can be
left running without interruption. This is possible due to the space decoupling
property of event-based orchestration [7].
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Fig. 3. Deploying a process specification to a decentralized event-based orchestration

4 Transformation

To illustrate the transformations involved in deploying a process specification to
a decentralized event-based orchestration, we use BPMN 2.0 [2] as the notation
in which the process is specified. Besides a workflow notation, BPMN 2.0 has
a token based execution semantics. This makes it possible to directly execute
process models defined in BPMN 2.0. Process engine solutions like jBPM [12]
and Activiti [13] already support this feature. Because BPMN 2.0 defines a vast
amount of entities that can occur in the process model, we define the scope for our
transformations to the Standard Process Models as defined by [14]. A Standard
Process Model embodies process elements which are connected to each other
by transitions. A process element is either an activity, an AND-Split, a XOR-
Split, an OR-Split, an AND-Join and a XOR-Join. These elements correspond
to the basic control flow patterns, together with the multi-choice control flow
pattern [15].

The outcome of our decentralization is also compliant with the BPMN 2.0
metamodel. This way, any BPMN 2.0 process engine can eventually run the de-
centralized process model (if it supports the used concepts and a publish/subscribe
communication architecture).

101



Proceedings

4.1 Translating the Unit of Decomposition

We choose a task as the unit of decomposition in our transformation. This guar-
antees a fine grained decentralization. Each task gets translated to a separate
process containing that same original task, (multiple) start event(s) and one
end event (see Fig. 4 for an example). The unique end event indicates the no-
tification of the tasks accomplishment. This end event is transcribed in BPMN
2.0 as a throw signal event. Signal events indicate events that are not process
bound, multiple processes can have start events that are triggered from the same
broadcasted signal. The semantics of a signal-event resemble closely an event-
notification of an event-based architecture. They are thus the most appropriate
notation to symbolize our loosely coupled event structure.

As start for the new process, event rules need to be calculated. An event rule
is a rule stating in which situation this new process can start. For example, the
start rule (EventA AND EventB) XOR (EventC), simply says that the process
starts after the occurrence of event A and event B or after the occurrence of
event C. For each task, this rule is deduced from the original global process
model (the input for the transformation). Event rules are transcribed by using
a catch signal event. A conjunction in the event rule is indicated by displaying
the start event with a parallel multiple marker. Disjunctions in the event rule
are denoted by using multiple start events. This notation ensures that an event
rule is always expressed in a Disjunctive Normal Form (DNF). Figure 4 shows
an example of the resulting new process for one unit of decomposition (task).

Signal-EventB

o

Signal-EventC

Signal-EventT

Fig. 4. Result of a single task after the decomposition of a process flow

4.2 Event Rules

To find the start event rule of a task, the preceding elements in the process flow
have to be investigated:

SEQUENCE FLOW. The most basic start rule for a task is that it can only start
after the successful completion of the preceding task in the sequence flow.
Figure 5a shows the corresponding transformation. Task X starts after the
completion of task A. Our unit of decomposition is a task, thus it is put in
a separate process, with as start event a catch of the signal indicating the
end of task A.
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EXCLUSIVE GATEWAY. If the incoming flow of a task is connected with an
exclusive gateway, the start of the task is dependent on the successful execu-
tion of one of the tasks preceding the exclusive gateway. The event rule for a
task connected with an exclusive gateway is thus a disjunction of the signals
indicating the completion of the process elements preceding the exclusive
gateway. Figure 5bb shows this transformation.

CONDITIONS ON PRECEDING SEQUENCE FLOWS. BPMN 2.0 states that the con-
ditions belonging to an OR- and XOR-split are put on the sequence flows
succeeding the OR~ and XOR- gateway (conditional flow). If the condition
is valid, that specific path in the process is ‘chosen’. These conditions should
be conveyed to the newly created decentralized process and displayed on the
correct sequence flow (see Fig. 5¢). This means that the (decentralized) task
will only start when the environment is in a certain state (i.e. some events
happened) and when the condition on the respective sequence flow is true. It
is possible that, when multiple exclusive gateways are linked together, mul-
tiple conditions should be true before the task can start. All these conditions
are put in conjunction on the respective sequence flow.

PARALLEL GATEWAY. Figure 5d and 5e illustrate the transformation for a
task with its incoming sequence flow connected to a parallel gateway (ei-
ther AND-split or AND-join). The event rule becomes a conjunction of the
completion-notifications of the process elements preceding the parallel gate-
way. Observe that for an AND-split only one signal event (Signal-EventA)
is used to trigger the multiple catch events (for tasks X and Y). This reduces
the number of different event messages that need to be exchanged in the de-
centralized orchestration, compared to creating a separate signal event for
each flow outgoing the AND-gateway.

LINKED GATEWAYS. Gateways can also be directly linked together by sequence
flows (see Fig. 5d). In this situation the event rule has to be calculated
recursively according to the transformations described above. The eventual
rule is put in DNF so that it can be represented in the BPMN schema (see
Sect. 4.1). Figure 5d shows an example. Following the transformations stated
above results in an event rule for task X: TaskA A (TaskBV TaskC') and in
DNF: (TaskA A TaskB) V (TaskA N TaskC).

4.3 Formal Implementation

We have implemented the transformation in the Atlas Transformation Language
(ATL) [16]. ATL is available as a plugin in the Eclipse Modeling Framework
and provides a way to declaratively describe the transformation of a source
model (supported by a metamodel) to a target model. Figure 6a shows the
transformation structure. As input, the transformation takes a source model
which conforms to the BPMN 2.0 metamodel (any BPMN Diagram Interchange
file [2]). The output of the transformation is also a model conforming to the
BPMN 2.0 metamodel. The output file (a BPMN Diagram Interchange file)
can be directly uploaded in any process engine supporting BPMN 2.0. If the
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engine implements signal event communication in a publish/subscribe fashion,
the benefits described in [7] will become available.

A small excerpt of the ATL transformation code is found in Fig. 6b. The
transformation contains only one matching rule' which translates a task in the
source model to a new resulting process as described in Sect. 4.1.

rule Task2Process {

from
Conforms to s: BPMN20!Task
to
newTask: BPMN20!Task (
Ecore id <- s.id,
MetaMetaModel name <- s.name
Conforms to Conforms to Conforms to endev: BPMN20!EndEvent (
id <- ’EndEvent’ + s.id,
ATL eventDefinitions <- outputDef
BPMN BPMN ),
. | \q; .
2.0 Conf(gms to 2.0 o.utputPef. BPMI\}QO.Sl.gnalEventDeﬁmtlon (
id <- ’outputDef” + s.id,
Conforms to Conforms to signalRef <- outputSignal
):
‘ BPMN2EventBPMN ‘ outputSignal: BPMN20!Signal (
Source Transformation Target id <- ’Signal’ + s.id),
”””””””””” ),
Model Model process: BPMN20!Process (

id <- ’sid-Process’ + s.id,

flowElements <- Sequence{newTask},
flowElements <- Sequence{outputSeqFlow},
flowElements <- Sequence{endev},
flowElements <- s.getEventRule()

-> collect(e | thisModule.createStartEvents(e))
)

(b) Excerpt of the ATL BPMN2EventBPMN

transformation code

(a) ATL transformation structure

Fig. 6. ATL Transformation

5 Conclusion, Implications and Future Research

In this paper we introduced the practical transformations necessary to transform
a standard process model to a decentralized event-based orchestration.

Using an event based communication paradigm in a decentralized orchestra-
tion creates highly flexible, autonomous entities, which increase scalability and
availability of the process flow. By doing the transformations at deployment, the
process modeler doesn’t need to know the decentralization details. Deployment
of a changed process flow can also be done fairly quickly, without the need to
interrupt the current (unchanged) process entities.

Another implication of working with an event based architecture in process
enactment is that event-logs of the running processes become readily available.

1 A matching rule is a rule that matches an entity from the source model to new
entities in the target model

105



Proceedings

This enables easier access to process mining [17] or complex event processing [18].
Yet another application can be agent based development, where the operations
of the agents are noted in a process flow-like style.

Future research includes widening the scope of the transformable process

elements to a level 2 process modeling [19], which includes subprocesses, inter-
mediate events, transactions, ...as well as including data management. We also
intend to prove the correctness of the transformation rules with process algebra
and formally validate the added value by testing on availability (stress testing)
and scalability of the decentralized event-based process flow.
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