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Multi-armed Bandit problem

* Each round i of T the player chooses arm j of K and receives a payout
of p;; (alternatively, pays cost c; ;)

» Adaptive (adversarial): payouts (or costs) of each ¢ Full information: The player receives the payout
round are dependent on the outcomes of the from the arm he chose, but also learns the
previous rounds payouts of all other arms each round

* Non-adaptive (stochastic): payouts (or costs) of e Bandit: The player only receives the payout of
each round are independent of any previous the arm chosen, and learns nothing of the
rounds payouts of the other arms
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EXP3 (Exponential weights for Exploration and Exploitation)



EXP3 algorithm

* High probability (at least 1- €) regret of the form O(JTKlog(TK/s))

* Accounts: with probability at least 1-¢, 0(\/TKlogK * log %)

* Improvement achieved with better balance of exploration vs
exploitation

* The Accounts algorithm is a refinement of EXP3



Accounts algorithm

* Motivation:
Explore any given arm until enough confident enough that it’s a poor
choice to overcome regret due to variance of exploration at low

probability

“Absorb” the cost of exploring poor choices to increase likelihood of
better payouts in the remaining rounds

* For each arm have an account, or allowance, for exploration. If the
exponential weighting would reduce the probability that an arm is
chosen below a certain amount, and it still has allowance for
exploration, keep the probability and take from the account




Let S C RE denote the simplex of probability distributions over {1,...,K}. Our algorithm is
defined in terms of two functions f : RX — § and g : R>g — [0,1]. The boldface variables are
vectors in R¥.

Algorithm 3.1: ACCOUNTS(f,g)

C:=A:=0.
for 1:=1to T
Set P = (pla s a‘pK) = f(a)
Sample M = M" from 1,..., K according to the distribution p.
Pull arm M. Observe and incur cost c;.
if g(An) < pu |
then f‘:M = 6M ~+ ‘M

Py

else Ay := Ay + M

Pnm

Henceforth, we will work with the following specific choice of f. Let n = /In K/TK. For
z=(21,....25) €ERE and j € {1,..., K}, let
e %
fi(z) = - .
i(2) SK

We define our barrier function g by
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Proof Overview

* First establish that the account value AjT rarely underestimates by
much the contribution of “stepwise variance” to R,

* Then show that the contribution of “stepwise expectations” to R; + A/'
cuts off sharply at 0(\/TKlogK)

 The result follows from these two claims

Theorem 1.1. Let R denote the regret of the “Accounts” algorithm for the K-armed bandit, on
any adaptively chosen cost sequence of length T'. Then, for every a > 1,

A log K
Pr (ﬁ’- > (a+7)VTKn H) < 1000K v/a exp (—‘ﬁ :D ‘) .

It follows that
E(R)=0(VTKInK).



Notation

]
Let Rj;=) ¢\, —cj. denote the regret with regards to arm j at time i
=1
Note that this gives us a new formula for the final regret, R, namely,

R = max Rf
1<G<K

For j € {1,..., K}, let ®; denote the following function from RE - R.
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This definition implies that, for each j, V®; = e; — f, i. e., for each 1, j,

E@jiz} =

—fi(z) otherwise.

o {1—;;—{3} ifi=j



Notation continued

Define &H_f’. — Rt _ il

J J
AdHt -— Bl i—1
AP = &' —
4t .— At i—1
AAL = AL — AL

Denote by H, the history of the game prior to round i

Y] := AR} + A®; + AAS — E (AR + A®Y + AA] | H,),

T
Y =Y;:=) Y}
i=1

Note that Yji is @ martingale difference sequence



Proof, given

Lemma 4.1. Let 1 < j < K. Then, for every a > 1,

Pr (Yj —A?Z} (rt—i—l}x/m) < (15\/5_'_ 128 )exp (_\/Elnﬁ)

mhK In*K 8

Lemma 4.2.

T
Pr (Elj Y E(AR; +A®;' + AAj | H:) > 6VTKInK

i=1

) ( _3VTKInK )
S exp 26

Assume wlog that (a+7) VTKInK <'T, then by definition of Y,

T T
*r;,-:Z}j;:R}“—Rg+¢-}-¢}’+A§“—Ag—ZE(aR;+a@ji+aA}|H1-)

i=1 i=1
Since R? = A? = 0 and (I*f,r-] — @f < ®(0) = % = VT K In K, this implies

T
R} <Y;—A] + ) E(AR;+A®;' + AAj | H:) + VIKInK

i=1



Proof cont.

By lemmas 4.1 and 4.2, we have R < max Rf <(a+T7WVTKhhK

And summing error probabilities completes the proof for the tail inequality

128 ) ( Jaln I{) (—Sv”I'Kln 1«:)
exp | — + exp .

In® K 8 26

Pr (H_ > (a+ 7T)VTK In }-:) < 2“1”}";@ exp (_@)
11

Pr (H > (a+7)WTKn I{) <K (ii’f +

To prove the upper bound on expectation, we note that, in general.
0
E(R) < E(max{R,0}) = [ Pr (R = z)dx.
0

The desired bound E(R)=0(VTKInK) follows



Needed theorems

Theorem 5.1 (McDiarmid). Suppose X1,.... X, 15 a martingale difference sequence, and b is

an uniform upper bound on the steps X;. Let V' denote the sum of conditional variances,

V=> Var(Xi|Xi,...,Xi1).

i=1

Then, for every a,v = 0,

a2
Pr (Z XN, Zaand V < 'L') < exp (—m) i

Theorem 5.2. Suppose Xq,...,X,, V, are as in Theorem 5.1. Let B denote the marimum “con-
ditional positive deviation,”

B = maxsup(X; | X1,...,Xi—1)

i3

Then, for every a,b,v = 0,

2
Pr(E X;,>aand V <w andBib)iexp(—%m).
v+ 2ab/:
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