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Abstract

Deep learning music generation systems have made
progress in generating music artifacts ranging from
scores to audio. The most successful deep learning
methodologies require large amounts of computational
resources, usually only available to large organizations.
The environmental impact of training is non-negligible,
and the computational resources can be prohibitive for
research groups or independent artists engaging in co-
creative design. While successful, many of these mod-
els do not take into account existing musicological do-
main knowledge which could yield better model per-
formance. As a proof of concept, we augment a deep
learning music generation model with an extension of a
mathematical model of dissonance perception, using it
to construct harmonic tension curves as an internal rep-
resentation in a deep learning model. We train embed-
dings based on our representation and substitute them
in an off-the-shelf transformer music generator. Our
representation performs marginally better than baseline,
with a significant reduction in training time. We ex-
plore how our representation may yield greater control
of the generative space. We discuss how these results in-
form future research in utilizing existing domain knowl-
edge in audio and music in order to augment deep learn-
ing models, and suggest pathways for further collabora-
tion between computational creativity and deep learning
spaces.

Introduction
Large machine learning models, particularly deep learning
models that utilize many parameters to train on and general-
ize to a large set of data, have demonstrated incredible abil-
ity at completing complex tasks with no obvious algorithmic
method. Training these large machine learning models how-
ever are computationally intensive, taking hours if not days
to train. This results in high power consumption, high fi-
nancial costs, and negative environmental impacts (Strubell,
Ganesh, and McCallum 2020). For example, BERT (Bidi-
rectional Encoder Representations from Transformers), a
large machine learning model released by Google consisting
of 110M parameters, is estimated to require 79 hours for ini-
tial training. During this initial training, BERT is estimated
to consume 12kW of power, cost between 3, 751−12,570,
and emit 719 lbs of CO2. (Strubell, Ganesh, and McCallum

2020). This problem affects many domains, including ma-
chine learning music generation as models such as MuseNet
and Coconet consist of thousands if not millions of param-
eters. The size and required resources for these large mod-
els make it hard for computational creativity researchers to
work with them.

Data representation has a significant impact on model
training as well as the quality of music generated from ma-
chine learning models (Briot, Hadjeres, and Pachet 2017).
Symbolic music representations, such as sheet music, MIDI,
and chord symbols are known to decrease training time
when compared to pure audio representations. Historically,
work has been done on constructing additional models of
how humans perceive audio and music. However, there is
a lack of research on incorporating these existing theories
of music perception into current representations of music,
which can be useful for improving training efficiency. We
aim to address this in our work.

We chose harmonic tension as our representation because
it has been considered by a number of music theorists to be
a strong indicator of musical coherence (Bigand, Parncutt,
and Lerdahl 1996). In addition, many methods have been
developed for both quantifying and modeling the harmonic
tension and resolution across a piece. Specifically, we fo-
cus on the concept of a tension curve, a graphical model of
the harmonic tension over a given chord progression (Yoo
and Lee 2006). Currently, such methods are either limited
to western models of music theory or only consider a fi-
nite number of chordal tones. Thus, we’ve designed a novel
method of calculating tension curves based on psychoacous-
tics. To evaluate the impact of this method on the training
time of machine learning music generation, we conducted
a comparative study on our dataset of tension curves and a
symbolic representation of music.

Data representation choice has another advantage, partic-
ularly in providing control over the generative space of the
ML model. By using a representation that is suited for mu-
sic similarity, for example, it is possible to take an ML mu-
sic generation model, which is often seen as a black box
(Castelvecchi 2016) and allow the user more control over
the generative space. We perform exploratory analysis on
the models output to determine the potential for greater har-
monic controllability.



Related Work
Methods of Improving Training Efficiency
Current methods of improving training efficiency either fall
within framework level optimization, parallel opportuni-
ties, or hardware developments (Sharir, Peleg, and Shoham
2020). Framework level optimization such as regularization
and adaptive learning rate have been commonly utilized for
improving model performance and training efficiency (Staib
et al. 2019). However, more complex optimization ap-
proaches, such as co-designed algorithms and natural gradi-
ents have emerged more recently. Though these algorithms
can lead to a quicker training time, they also can result in
worse model performance (Wang et al. 2022). Current par-
allel opportunities, mainly within Distributed ML, are di-
vided into two categories: data parallelism and model par-
allelism (Wang et al. 2022). Data parallelism requires the
data to be partitioned between different nodes before fed into
multiple instances of the machine learning model for train-
ing. Model parallelism requires the machine learning model
be split up and placed on different devices in such a way
that it can still be trained concurrently (Peteiro-Barral and
Guijarro-Berdiñas 2013). While distributed ML has demon-
strated success in improving training efficiency, it is very
difficult to implement and more vulnerable to system fail-
ure as components are decentralized (Peteiro-Barral and
Guijarro-Berdiñas 2013). Computational efficiency at the
hardware level has also shown promise in improving train-
ing efficiency. There are many hardware development ap-
proaches such as memory management, dedicated hardware,
and resource allocation (Markidis et al. 2018). Such ap-
proaches however have physical limitations that require con-
stant iterations as machine learning model size increases.

Tension Curves
Even though there have been developments in expert au-
thored music representations (Downie 2003), they haven’t
been utilized for machine learning music generation. One
of the most notable of these representations is harmonic
tension curves (Sethares 1993; Plomp and Levelt 1965;
Navarro-Cáceres et al. 2020a; Yoo and Lee 2006). A har-
monic tension curve models the harmonic tension and res-
olutions over a given piece of music by mapping a combi-
nation of tones within a chord into a single value. Common
approaches are geometric mappings based on the distances
between notes, such as Lerdahl’s Tonal Pitch Space (Ler-
dahl and others 2001) or Chew’s Spiral Array (Chew 2000).
While useful, these do not capture any information about
how humans physically perceive dissonance.

Krumhansl (Krumhansl and Shepard 1979) constructed a
method where subjects were to assign a numerical rating of
stability of certain pitches within a scale. While this ap-
proach takes into account human perception, it can only cal-
culate the dissonance values of twelve notes in respect to a
certain scale, and doesn’t take into account the full complex-
ity of the interaction of a note and its overtones. To mitigate
this, we construct a mapping function based on an existing
mathematical model of the perceived dissonance between
two or more notes. To do this, we build on the approach

of Vassilakis (Vassilakis and Fitz 2007), who parameterized
a dissonance curve derived by Plomp and Levelt (Plomp and
Levelt 1965). Not only does this allow the calculation of
a dissonance value for any arbitrary collection of notes no
matter the tuning or temperament, but it also includes the
interaction between any arbitrary notes and their overtones.

Tension Calculation
Dissonance for Three or More Tones
In this section, we build on the work of Vassilakis to for-
mulate a tension function able to consider a chord with an
arbitrary size within the context of a piece. First, we expand
Vassilakis’s dissonance function to consider a chord of an ar-
bitrary size. For chords with more than two complex tones,
we calculate the dissonance of every combination of com-
plex tones. We define D as the dissonance function devel-
oped by Vassilakis. The resulting dissonance function then
becomes

Dv(C) = D(C1, C2, . . . , Cn) =

Nc∑
i=1

D(Ca, Cb)

where Ca and Cb is a unique complex tone combination
from the set {C1, C2, . . . , Cn} and Nc is the number of pos-
sible complex tone pairs within C.

Harmonic Tension Calculation
We will now introduce contextual components. In addi-
tion to vertical dissonance, we will also consider key tonal
distance and contextual tension, as inspired by (Navarro-
Cáceres et al. 2020b). However rather than use different
models to calculate each component, we will be using the
same dissonance function.

In regards to key tonal distance, we represent the key of
our piece as a chord where each note in the key is repre-
sented in the scale. We will represent a chord representation
of a key with a K where K = [K1,K2, . . . ,Kn]. Given a
chord L, we will superimpose the notes of L onto the notes
of K making sure to remove all duplicate notes. The disso-
nance therefore is calculated as

Dk(L,K) = D{L1, L2, . . . , Ln,K1,K2, . . . ,Kn}

Contextual tension is based on the understanding that the
perception of a chord is influenced by the chords that pre-
cede it. Similar to finding key tonal distance, we will super-
impose the chord of interest onto the chord before making
sure to eliminate any duplicates. Given two chords M and
N with notes [M1,M2, . . . ,Mn] and [N1, N2, . . . , Nn] re-
spectively. The dissonance therefore is calculated as

DP (M,N) = D{M1, N2, . . . , Nn,M1,M2, . . . ,Mn}

Now that we have defined how to calculate every compo-
nent of tension we will consider in this paper, we will now
define how we aggregate these components to calculate total
tension. Suppose we have a chord Cn where n is the chord
position in a given piece of music in the key of K. Then we
will define the total tension of chord Cn as



DT (Cn) = Dv(Cn) +Dk(Cn,K) +

W∑
i=1

γiD(Cn, Cn−i)

for i ≥ n where W is the window size and γ is the de-
cay. Window size, W , determines how many chords before
the chord of interest we consider in our contextual tension
calculation. Decay, γ, determines how much our contextual
tension is influenced by chords further in the past. These
two values will serve as parameters to control for how much
a chord’s previous context influences its tension value.

Methodology
Data and Preprocessing
Our data consisted of 329 Bach chorales provided from the
Music21 library (Cuthbert and Ariza 2010) designed for
music analysis and processing. For every chorale in our
dataset, we extracted the chords placed on the strong beats
and transformed them into a list of vectors. For our ten-
sion representation, we applied our tension function to our
dataset of chord vectors. For the window size parameter, W,
we chose the values 1, 2, 3, 4, 5, 6, and 7 due to Bach’s
typical 8 beat phrasing. Since the decay parameter is con-
fined to the range [0, 1], we chose 0.125, 0.25, 0.5, 0.75
and 0.875, in order to have an equidistant spread of values
across its range. We passed our vector dataset into our ten-
sion function for all combinations of W and γ, resulting in
35 datasets of tension values. For each dataset, we allocated
80% for training, 10% for validation, and 10% for testing.
Figure 1 shows a diagram of the pipeline followed for our
experiment.

Training Procedure
We perform a comparative study on our symbolic represen-
tation as ground truth and our tension representation. We
utilized the Music Transformer model developed by Huang
et al. due to its recency in development and its manageable
overhead (i.e. required training time, training data, com-
putation power, etc) compared to other Transformer models
(Huang et al. 2018). We trained our Music Transformer on
the symbolic dataset using its given embedding layer and on
each of our tension datasets replacing the existing embed-
ding layer with our pretrained embedding layer. We used
a batch size of 64 and trained our model for 50 epochs,
each epoch consisting of 155 iterations to ensure our Music
Transformer did not overfit. We used Cross Entropy Loss
to evaluate the loss for each model prediction. For accu-
racy, we averaged the number of correct predictions across
a chorale.

Results
Model Performance Analysis
We first look at the training and validation loss and accuracy
curves acquired after training our Music Transformer on the
symbolic dataset and our tension datasets. We only include
one graph, Figure 2, for space concerns, however it depicts
the benefits of our representation at a high level. Our tension

Test Dataset Loss Accuracy
Symbolic Control 0.671 0.823

γ = 0.125 0.667 0.824
γ = 0.75 0.613 0.818

Table 1: Best performing parameters for W = 7

Test Dataset Loss Accuracy
Symbolic Control 0.671 0.823

W = 4 0.666 0.822
W = 6 0.670 0.823

Table 2: Best performing parameters for γ = 0.5

representations starts at a higher training and validation loss
but results in a lower training and validation loss compared
to the symbolic representation. Similarly, our tension repre-
sentations results in a lower training and validation accuracy
but results in a higher training and validation accuracy for
both compared to the symbolic representation. In addition,
our tension representation converges to a lower training and
validation loss and a higher training and validation accuracy
quicker then the symbolic representation.

In regards to window size, higher window sizes start with
higher training and validation loss values and lower training
and validation accuracy values, but end with lower training
and validation loss values and higher training and valida-
tion accuracy values compared to the symbolic representa-
tion. Additionally, higher window sizes increase the rate of
convergence for all loss and accuracy curves. These effects
begin to diminish however for window sizes greater than
3. Decay however, had no significant effect on initial and
ending values for training and validation loss and accuracy
curves as well as their rates of convergence.

To evaluate the influence of our tension representation on
our Music Transformer’s ability to generalize to new data,
we compared the testing loss and accuracy values obtained
from our tension representation to that of the symbolic repre-
sentation. The dataset with γ = 0.75 and W = 7 produced
a lower testing loss compared to the symbolic representa-
tion and the dataset with γ = 0.125 and W = 7 produced a
higher accuracy compared to that of our symbolic represen-
tation. Nevertheless, there are no significant improvements
in testing loss and accuracy using our tension representation
compared to our symbolic representation. Table 1 and Ta-
ble 2 show testing loss and accuracy across tension function
parameters W = 7 and γ = 0.5 respectively.

Discussion: Overall, our tension representation yields
better training and validation loss and accuracy values as
well as a quicker convergence time compared to the sym-
bolic representation. This suggests that having a represen-
tation informed by human perception may allow for faster
ML model training. Furthermore, using some form of inter-
mediate representation, such as ours, to reduce training time
would be beneficial for those looking to generate music with



Figure 1: General Procedural Pipeline for Music Generation

Figure 2: Validation Loss: For all γ and W = 7

limited resources.

Model Output Results
We explore our Music Transformer’s output using an ac-
cepted metric of harmonic variation, Chord Histogram En-
tropy (CHE), proposed by (Yeh et al. 2021). To observe any
correlations our decay parameter has with harmonic varia-
tion, we set W = 7 and calculated the CHE of both our
tension representation outputs for all decay values. Our cal-
culations exhibit a parabolic correlation, with R2 = .875, be-
tween decay and CHE. There is not a clear correlation how-
ever, between our window size parameter and CHE.

Discussion: Our results suggest that the decay parame-
ter, γ, has a parabolic correlation with harmonic variation.
Even though we are only able to establish correlation, these
results leave room for future work to determine if a causal re-
lationship exists. Nevertheless, our model demonstrates the
potential for more control and creativity focused ML models
that rely on existing knowledge rather than brute-force gen-
eration. There is clearly more work to be done on making
models that are sufficient for music generation tasks without
the overhead of long training time and resource consump-
tion.

Threats to Validity and Future Work
In this work, we expanded the dissonance function, pro-
posed by Vassilakis, to incorporate both an arbitrary number
of chordal tones and contextual information such as key and
previous chords which we then utilized to generate a dataset

of tension values to train our Music Transformer model on.
Our results on model performance suggests that incorporat-
ing human perception into ML training results in higher ac-
curacy, lower loss, and quicker training time all while pro-
ducing comparable testing results. Furthermore, our results
on model output explore the relationship between our ten-
sion representation parameters and the harmonic character-
istics of our Music Transformer’s output suggesting a cor-
relation between contextual harmonic information and har-
monic variance.

One limitation is the absence of subjective evaluation met-
rics such as a case study or a listening test. This makes it
difficult for us to create any strong claims on the influence
of our tension representation on music quality. Another lim-
itation is that by only extracting chords on the strong beats,
we limit the chord voicing range and rhythmic variance of
our generated music, making it unusable for practical appli-
cations. Due to the lack of clearly detailed objective music
evaluative methods, we only explored one aspects of har-
monic structure, leaving many harmonic characteristics of
our generated output unexplored. However due to the lack
of research in utilizing psychoacoustic models for ML mu-
sic generation, we believe that our limitations are valid and
will be helpful for further studies in this area.

In addition to the future work that can be made to mitigate
the limitations mentioned above, we used window size and
decay as tension function parameters to control influence of
previous chords on tension value. Our research suggests that
window size influences loss and accuracy initial and ending
values as well as convergence time. What other parameters
can be included in our tension function to further improve
model training speed? Furthermore, our research suggests
decay exhibits a correlation to harmonic variance. However,
does this parameter influence harmonic variance? And if
so, what other parameters can be included in a tension func-
tion to influence other music characteristics? In addition,
work has been done in performing tension curve alterations
using geometric formulas to reharmonize a chord progres-
sion (Yoo and Lee 2006). In what ways can we utilize
the geometric transformation of tension curves to control
harmonic interest in model output? Finally, we only con-
sidered modeling harmony for computational music genera-
tion. What other models can we create to influence machine
learning training efficiency such as rhythm, melody, and tex-
ture through computational music generation?
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