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Interpolative Rus-Reich-Ćirić Type
Contractions via Simulation Functions

Erdal Karapınar and Ravi P. Agarwal

Abstract

In this paper, we introduce the notion of interpolative Rus-Reich-
Ćirić type Z- contractions in the setting of complete metric space. We
also consider some immediate consequences of our main results.

1 Introduction and Preliminaries

Let A and B be two Banach spaces. If A and B are algebraically and topolog-
ically imbedded in a separated topological linear space, then the pair of A and
B is called a Banach couple and is denoted by (A,B). If there is a Banach space
E for the Banach couple (A,B) such that the imbedding A∩B ⊂ E ⊂ A+B
holds, then E is called and intermediate space of (A,B).

Let (A,B) and (C,D) be two Banach couples. A linear mapping T acting
from the space A+B to C +D is called a bounded operator from (A,B) to
(C,D) if the restrictions of T to the spaces A and B are bounded operators
from A to C and B to D, respectively.

We denote by L(AB,CD) the linear space of all bounded operators from
the couple (A,B) to the couple (C,D). This is a Banach space in the norm

‖T‖L(AB,CD) = max {‖T‖A→B , ‖T‖C→D}.
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Definition 1.1 ([38]). Let (A,B) and (C,D) be two Banach couples, and E
(respectively F ) be intermediate for the spaces of the Banach couple (A,B)
(respectively (C,D)). The triple (A,B,E) is called an interpolation triple,
relative to (C,D, F ), if every bounded operator from (A,B) to (C,D) maps E
to F .

A triple (A,B,E) is said to be an interpolation triple of type γ (0 ≤ α ≤ 1)
relative to (C,D, F ) if it is an interpolation triple and the following inequality
holds:

‖T‖E→F ≤ c‖T‖
γ
A→B · ‖T‖

1−γ
C→D,

for some constant c.

Very recently, inspired from the interpolation theory, an attractive fixed
point result via interpolation was reported in [28]. More precisely, in [28], the
notion of interpolative Kannan contraction was introduced as follows: For a
metric space (X, d), a mapping T : X → X is called an interpolative Kannan
contraction if

d (Tx, Ty) ≤ λ [d (x, Tx)]
γ · [d (y, Ty)]

1−γ
, (1)

for all x, y ∈ X with x, y ∈ X\Fix(T ), where Fix(T ) is the set of all fixed
point of T , λ ∈ [0, 1) and γ ∈ (0, 1). The main result in [28] is the following.

Theorem 1.1 ([28]). Let (X, d) be a complete metric space and T be an
interpolative Kannan type contraction. Then T has a fixed point in X.

In [28], an example was given to show that the interpolative Kannan type
contraction is more effective than the classical Kannan contraction. This initial
result was followed by further extensions see e.g. [29, 30].

On the other hand, in 2015, Khojasteh et al. [37] introduced the notion of
simulation function.

Definition 1.2. (See [37]) A simulation function is a mapping ζ : [0,∞) ×
[0,∞)→ R satisfying the following conditions:

(ζ1) ζ(0, 0) = 0;

(ζ2) ζ(t, s) < s− t for all t, s > 0;

(ζ3) if {tn}, {sn} are sequences in (0,∞) such that lim
n→∞

tn = lim
n→∞

sn > 0,

then
lim sup
n→∞

ζ(tn, sn) < 0. (2)
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In the same year, 2015, this notion was refined by Argoubi et al. [1] by re-
moving the first axiom (ζ1). Indeed, it is derived form (ζ2). From now on, we
consider the simulation functions in the sense of Argoubi et al. [1], that is,
ζ satisfies only (ζ2) and (ζ3). In the sequel, the the letter Z will denote the
family of all simulation functions ζ : [0,∞)× [0,∞)→ R that satisfy (ζ2) and
(ζ3). Notice also that the axiom (ζ2) yields that

ζ(t, t) < 0 for all t > 0. (3)

Example 1.1. (See e.g.[37, 40, 3]) Let φi : [0,∞) → [0,∞) be continuous
functions with φi(t) = 0 if, and only if, t = 0. For i = 1, 2, 3, 4, 5, 6, we define
the mappings ζi : [0,∞)× [0,∞)→ R, as follows

(i) ζ1(t, s) = φ1(s) − φ2(t) for all t, s ∈ [0,∞), where φ1(t) < t ≤ φ2(t) for
all t > 0.

(ii) ζ2(t, s) = s− f(t, s)

g(t, s)
t for all t, s ∈ [0,∞), where f, g : [0,∞)2 → (0,∞)

are two continuous functions with respect to each variable such that
f(t, s) > g(t, s) for all t, s > 0.

(iii) ζ3(t, s) = s− φ3(s)− t for all t, s ∈ [0,∞).

(iv) If ϕ : [0,∞) → [0, 1) is a function such that lim supt→r+ ϕ(t) < 1 for all
r > 0, and define

ζ4(t, s) = s ϕ(s)− t for all s, t ∈ [0,∞).

(v) If η : [0,∞) → [0,∞) is an upper semi-continuous mapping such that
η(t) < t for all t > 0 and η(0) = 0, and define

ζ5(t, s) = η(s)− t for all s, t ∈ [0,∞).

(vi) If φ : [0,∞) → [0,∞) is a function such that
∫ ε
0
φ(u)du exists and∫ ε

0
φ(u)du > ε, for each ε > 0, and define

ζ6(t, s) = s−
∫ t

0

φ(u)du for all s, t ∈ [0,∞).

It is clear that each function ζi (i = 1, 2, 3, 4, 5, 6) forms a simulation function.

For further examples and more details on simulation functions see e.g.
[37, 40, 3, 4, 5, 14, 15, 25, 26, 27].
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Suppose (X, d) is a metric space, T is a self-mapping on X and ζ ∈ Z. We
say that T is a Z-contraction with respect to ζ [37], if

ζ(d(Tx, Ty), d(x, y)) ≥ 0 for all x, y ∈ X. (4)

Again from (ζ2), we have the following inequality

d(Tx, Ty) 6= d(x, y) for all distinct x, y ∈ X. (5)

Thus, we conclude that T cannot be an isometry whenever T is a Z-contraction.
In other words, if a Z-contraction T in a metric space has a fixed point, then
it is necessarily unique.

Theorem 1.2. Every Z-contraction on a complete metric space has a unique
fixed point.

The concept of comparison function is introduced by Rus [42] and it has
been extensively studied by several of authors to expand more general form of
contraction type mappings.

Definition 1.3. [42] An increasing function φ : [0,∞)→ [0,∞) is said to be
a comparison if φn(t) → 0 as n → ∞ for every t ∈ [0,∞), where φn is the
n-th iterate of φ.

The collection of all comparison functions will be denoted by Φ.
Let Ψ be the family of nondecreasing functions ψ : [0,∞) → [0,∞) satis-

fying the following condition :

(Ψ2)

+∞∑
n=1

ψn(t) <∞ for all t > 0, where ψn is the nth iterate of ψ.

The functions in the class of Ψ are called (c)-comparison functions and hence
Ψ ⊂ Φ. Fundamental properties of (c)-comparison functions are collected
below:

Lemma 1.1. (See e.g. [42]) If ψ ∈ Ψ, then the following hold:

(i) (ψn (t))n∈N converges to 0 as n→∞ for all t ∈ R+;

(ii) ψ (t) < t, for any t ∈ R+;

(iii) ψ is continuous at 0;

(iv) the series
∑∞
k=1 ψ

k (t) converges for any t ∈ R+.
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The notion of α-admissible mappings [41] and the concept of triangular
α-admissible mappings [36] were reconsidered and refined by Popescu [39] in
the following way:

Definition 1.4. [39] Let α : X ×X → [0,∞) be a mapping and X 6= ∅. A
self-mapping T : X → X is said to be an α−orbital admissible if for all s ∈ X,
we have

α(s, Ts) ≥ 1⇒ α(Ts, T 2s) ≥ 1. (6)

Furthermore, an α−orbital admissible mapping T is called triangular α-orbital
admissible if it holds the following condition:

(TO) α(s, t) ≥ 1 and α(s, T t) ≥ 1 implies that α(s, T t) ≥ 1, for all s, t ∈ X.

It is obvious that each α−admissible mapping is an α-orbital admissible
mapping but not the converse see e.g. [39]. For further attractive results,
more examples with details see e.g. [2, 4]-[9]-[10]-[13],[17],[22],[18],[19], [36],
[23], [24] and the references therein.

In this paper, we introduce a new interpolative contraction by using the
simulation function together with the admissible mappings in the context
of complete metric spaces. More precisely, we shall revisit one of the the
renowned results in the fixed point theory that was proved independently by
Rus, Reich and Ćirić see e.g. [43, 44, 45, 46, 47]. For the sake of the com-
pleteness of the paper, we recollect here:

Theorem 1.3. Let (X, d) be a complete metric spaces and T : X → X be a
Rus-Reich-Ćirić contraction mapping, i.e.,

d (Tx, Ty) ≤ λ [d(x, y) + d(x, Tx) + d(y, Ty)] , (7)

for all x, y ∈ X, where λ ∈
[
0, 13
)
. Then T has a unique fixed point.

Note that the theorem above was proved independently by Rus [46, 47] and
Reich [43, 44, 45] and Ćirić. Notice that several variation of Rus-Reich-Ćirić
contraction (7) can be stated also as

d (Tx, Ty) ≤ ad(x, y) + bd(x, Tx) + cd(y, Ty),

where a, b, c are nonnegative real numbers such that 0 ≤ a+ b+ c < 1.

2 Main results

We start with the following definition.
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Definition 2.1. Let T be a self-mapping defined on a metric space (X, d). If
there exist ζ ∈ Z, ψ ∈ Ψ, γ, β ∈ (0, 1) with γ + β < 1 and α : X ×X → [0,∞)
such that

ζ(α(x, y)d(Tx, Ty), ψ(R(x, y))) ≥ 0 for all x, y ∈ X, (8)

where
R(x, y) := [d (x, y)]

β · [d (x, Tx)]
γ · [d (y, Ty)]

1−γ−β
,

then we say that T is an interpolative Rus-Reich-Ćirić type Z-contraction with
respect to ζ.

If α(x, y) = 1, then T turns into a Z-contraction with respect to ζ.

Remark 2.1. If T is an α-admissible Z-contraction with respect to ζ, then

α(x, y)d(Tx, Ty) < ψ(R(x, y))) for all x, y ∈ X. (9)

To prove the assertion, we assume that x 6= y. Then d(x, y) > 0. If Tx =
Ty, then α(x, y)d(Tx, Ty) = 0 < ψ(R(x, y))). Otherwise, Tx 6= Ty, then
d(Tx, Ty) > 0. If α(x, y) = 0, then the inequality is satisfied trivially. So
assume that α(x, y) > 0 and applying (ζ2) with (8), we derive that

0 ≤ ζ(α(x, y)d(Tx, Ty), ψ(R(x, y)))) < ψ(R(x, y)))− α(x, y)d(Tx, Ty),

so (9) holds.

We can now state the main result of this paper.

Theorem 2.1. Let (X, d) be a complete metric space, ζ ∈ Z. If a self-mapping
T : X → X forms an interpolative Rus-Reich-Ćirić type Z-contraction with
respect to ζ and satisfies

(i) T is triangular α−orbital admissible,

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1,

(iii) T is continuous,

then there exists u ∈ X such that Tu = u.

Proof. On account of the assumption (ii), there exists x0 ∈ X such that
α(x0, Tx0) ≥ 1. Starting with this initial point x0 ∈ X an iterative sequence
{xn} is constructed by xn+1 = Txn for all n ≥ 0. Throughout the proof,
without loss of generality, we assume that

d(xn, xn+1) > 0, for all n = 0, 1, . . . . (10)
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Indeed, if there exists an k0 such that xk0 = xk0+1, then u = xk0 becomes
a fixed point of T which completes the proof. Accordingly, we suppose that
xn 6= xn+1 for all n, that is, (10) holds.

By taking the assumption (ii) into account and by regarding that T is
α−orbital admissible, we obtain that

α(xn, xn+1) ≥ 1, for all n = 0, 1, . . . . (11)

From (8) and (11), it follows that for all n ≥ 1, we have

0 ≤ ζ(α(xn, xn−1)d(Txn, Txn−1), ψ(R(xn, xn−1)))
= ζ(α(xn, xn−1)d(xn+1, xn), ψ(R(xn, xn−1)))
< ψ(R(xn, xn−1))− α(xn, xn−1)d(xn+1, xn).

(12)

Consequently, we derive that

d(xn, xn+1) ≤ α(xn, xn−1)d(xn, xn+1) < ψ(R(xn, xn−1)) < R(xn, xn−1),
(13)

for all n = 1, 2, . . ., where,

R(xn, xn−1) = [d (xn, xn−1)]
β · [d (xn, Txn)]

γ · [d (xn−1, Txn−1)]
1−γ−β

.

= [d (xn, xn−1)]
β · [d (xn, xn+1)]

γ · [d (xn−1, xn)]
1−γ−β

.

= · [d (xn, xn+1)]
γ · [d (xn−1, xn)]

1−γ
.

By a simple elimination, the inequality (15) implies that

[d (xn, xn+1)]
1−γ ≤ λ [d (xn−1, xn)]

1−γ
. (14)

Hence, we conclude that the sequence {d(xn, xn−1)} is non-decreasing and
bounded from below by zero. Moreover, we deduce, from the monotonicity of
{d(xn, xn−1)}, that R(xn, xn−1) ≤ d(xn, xn−1) and consequently, the inequal-
ity (13) turns into

d(xn, xn+1) ≤ α(xn, xn−1)d(xn, xn+1) < ψ(R(xn, xn−1))
< R(xn, xn−1) ≤ d(xn, xn−1).

(15)

Accordingly, there exists L ≥ 0 such that lim
n→∞

d(xn, xn−1) = L ≥ 0. We

shall prove that
lim
n→∞

d(xn, xn−1) = 0. (16)

Suppose, on the contrary that L > 0. Note that from the inequality (15), we
derive that

lim
n→∞

α(xn, xn−1)d(xn, xn+1) = L, (17)
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and
lim
n→∞

R(xn, xn+1) = L. (18)

Letting sn = α(xn, xn−1)d(xn, xn+1) and tn = R(xn, xn−1) and taking (ζ3)
into account, we get that

0 ≤ lim sup
n→∞

ζ(α(xn, xn−1)d(xn+1, xn), R(xn, xn−1)) < 0 (19)

which is a contradiction. Thus, we have L = 0.
Now, we shall prove that the iterative sequence {xn} is Cauchy. Again we

use the method of Reductio ad absurdum. Suppose, on the contrary that, {xn}
is not a Cauchy sequence. Thus, there exists ε > 0, for all N ∈ N, there exist
n,m ∈ N with n > m > N and d(xm, xn) > ε. On the other hand, from (16),
there exists n0 ∈ N such that

d(xn, xn+1) < ε for all n > n0. (20)

Consider two partial subsequences xnk
and xmk

of xn such that

n0 ≤ nk < mk < mk+1 and d(xmk
, xnk

) > ε for all k. (21)

Notice that
d(xmk−1

, xnk
) ≤ ε for all k, (22)

where mk is chosen as a least number m ∈ {nk, nk+1, nk+2, . . .} such that (21)
is satisfied. We also mention that nk + 1 ≤ mk for all k.. In fact, the case
nk + 1 ≤ mk is impossible due to (20),(21). Thus, nk + 2 ≤ mk for all k. It
yields that

nk + 1 < mk < mk + 1 for all k.

On account of (21),(22) and the triangle inequality, we derive that

ε < d(xmk
, xnk

) ≤ d(xmk
, xmk−1) + d(xmk−1, xnk

)
≤ d(xmk

, xmk−1) + ε for all k.
(23)

Due to (16), we deduce that

lim
k→∞

d(xmk
, xnk

) = ε. (24)

Again by the triangle inequality, we derive that

d(xmk
, xnk

) ≤ d(xmk
, xmk+1) + d(xmk+1, xnk+1) + d(xnk+1, xnk

) for all k.

Analogously, we have

d(xmk+1, xnk+1) ≤ d(xmk+1, xmk
) + d(xmk

, xnk
) + d(xnk

, xnk+1) for all k.
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Combining the two inequalities above together with (16) and (23), we find
that

lim
k→∞

d(xmk+1, xnk+1) = ε. (25)

Particularly, there exists n1 ∈ N such that for all k ≥ n1 we have

d(xmk
, xnk

) >
ε

2
> 0 and d(xmk+1, xnk+1) >

ε

2
> 0. (26)

Moreover, since T is triangular α-orbital admissible, we have

α(xmk
, xnk

) ≥ 1. (27)

Regarding the fact T is an α-admissible Z-contraction with respect to ζ,
together with (26) and (27) we get that

0 ≤ ζ(α(xmk
, xnk

)d(Txmk
, Txnk

), ψ(R(xmk
, xnk

)))
= ζ(α(xmk

, xnk
)d(xmk+1, xnk+1), ψ(R(xmk

, xnk
)))

< ψ(R(xmk
, xnk

))− α(xmk
, xnk

)d(xmk+1, xnk+1),
(28)

for all k ≥ n1, where

R(xmk
, xnk

) = [d (xmk
, xnk

)]
β · [d (xmk

, Txmk
)]
γ · [d (xnk

, Txnk
)]
1−γ−β

.

= [d (xmk
, xnk

)]
β · [d (xmk

, xmk+1)]
γ · [d (xnk

, xnk+1)]
1−γ−β

.
(29)

Consequently, we have

0 < d(xmk+1, xnk+1) < α(xmk
, xnk

)d(xmk+1, xnk+1) < ψ(R(xmk
, xnk

)) < R(xmk
, xnk

),

for all k ≥ n1. Letting n,m → ∞ in the inequality above, and keeping in
mind the observations in (16), (30), (25), (28) and (29), we find that

lim
k→∞

d(xmk+1, xnk+1) = 0, (30)

which is a contradiction. Hence, {xn} is a Cauchy sequence. Owing to the
fact that (X, d) is a complete metric space, there exists u ∈ X such that

lim
n→∞

d(xn, u) = 0. (31)

Since T is continuous, we derive from (31) that

lim
n→∞

d(xn+1, Tu) = lim
n→∞

d(Txn, Tu) = 0. (32)

From (31), (32) and the uniqueness of the limit, we conclude that u is a fixed
point of T , that is, Tu = u.
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Theorem 2.2. Let (X, d) be a complete metric space and let T : X → X be
an α-admissible Z-contraction with respect to ζ. Suppose that

(i) T is triangular α-orbital admissible;

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and
xn → x ∈ X as n→∞, then there exists a subsequence {xn(k)} of {xn}
such that α(xn(k), x) ≥ 1 for all k.

Then there exists u ∈ X such that Tu = u.

Proof. Following the proof of Theorem 2.1, we know that the sequence {xn}
defined by xn+1 = Txn for all n ≥ 0, converges for some u ∈ X. From
(11) and condition (iii), there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), u) ≥ 1 for all k. Applying (8), for all k, we get that

0 ≤ ζ(α(xn(k), u)d(Txn(k), Tu), ψ(R(xn(k), u)))
= ζ(α(xn(k), u)d(xn(k)+1, Tu), ψ(R(xn(k), u)))
< ψ(R(xn(k), u))− α(xn(k), u)d(xn(k)+1, Tu),

(33)

which is equivalent to

d(xn(k)+1, Tu) = d(Txn(k), Tu) ≤ α(xn(k), u)d(Txn(k), Tu) ≤ ψ(R(xn(k), u)).
(34)

Letting k → ∞ in the above equality, we have d(u, Tu) = 0, that is, u =
Tu.

3 Consequences

In this section, we shall illustrate that several existing fixed point results in
the literature can be derived from our main results by regarding Example 1.1.

If ψ ∈ Ψ and we define

ζE(t, s) = ψ(s)− t for all s, t ∈ [0,∞),

then ζE is a simulation function (cf. Example 1.1 (v)).

Corollary 3.1. Let (X, d) be a complete metric space, ζ ∈ Z. Let a self-
mapping T : X → X satisfy

α(x, y)d(Tx, Ty) ≤ ψ(R(x, y)), for all x, y ∈ X \ Fix(T ).

Suppose also that
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(i) T is triangular α−orbital admissible;

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) T is continuous.

Then there exists u ∈ X such that Tu = u.

Proof. Taking ζE(t, s) = ψ(s) − t for all s, t ∈ [0,∞) in Theorem 2.1, we get
that

α(x, y)d(Tx, Ty) ≤ ψ(R(x, y)), for all

We skip the details.

Corollary 3.2. Let (X, d) be a complete metric space, ζ ∈ Z. If a self-mapping
T : X → X satisfies

d(Tx, Ty) ≤ ψ(R(x, y)), for all x, y ∈ X \ Fix(T ),

then there exists u ∈ X such that Tu = u.

Proof. Take α(x, y) = 1 for all x, y ∈ X in Corollary 3.1.

Definition 3.1. Let (X, d) be a metric space. We say that the self-mapping
T : X → X is an interpolative Rus-Reich-Ćirić type contraction, if there exist
a constant λ ∈ [0, 1) and γ, β ∈ (0, 1) such that

d (Tx, Ty) ≤ λR(x, y) (35)

for all distinct x, y ∈ X \ FT (X), where

R(x, y) := [d (x, y)]
β · [d (x, Tx)]

γ · [d (y, Ty)]
1−γ−β

Corollary 3.3. Let (X, d) be a complete metric space and T be an interpolative
Rus-Reich-Ćirić type contraction. Then T has a fixed point in X.

Proof. For λ ∈ (0, 1), take ψ(t) = λ for all x, y ∈ X in Corollary 3.2.

Example 3.1. Let X = {1, 3, 4, 7} be a set endowed with a standard metric
d(x, y) = |x− y|.

d(x,y) 1 3 4 7
1 0 2 3 6
3 2 0 1 4
4 3 1 0 3
7 6 4 3 0
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We define a self-mapping T on X by T :

(
1 3 4 7
4 7 4 3

)
. It is clear that

T is not Rus-Reich-Ćirić contraction. Indeed, there is no λ ∈ [0, 13 ) such that
the following inequality is fulfilled:

d(T1, T3) = d(4, 7) = 3 ≤ λ(d(1, 3) + d(T1, 1) + d(3, T3))
= λ(d(1, 3) + d(4, 1) + d(3, 7))
= λ(2 + 3 + 4) = 9λ.

On the other hand, for γ = β = 1
16 and λ = 4

5 , the self-mapping T forms

an interpolative Rus-Reich-Ćirić type contraction and 4 is the desired unique
fixed point of T . Note that in the setting of interpolative Rus-Reich-Ćirić type
contraction, the constant lies between 0 and 1 although in the classical version
it is restricted with 1/3. Notice also that this constructive example can be
imbedded in several known examples.

Conclusion and Discussion

It is clear that we can list several consequences of our main results by defining
the mapping ζ in a proper way like in the Example 1.1. In particular, inspired
from the results in [24] , we are able to get several existing fixed point theorems
in the various settings (in the context of partially ordered set endowed with a
metric, in the setting of cyclic contraction etc.) regarding Theorem 2.1 ( and
hence Theorem 2.2 ). We omit the details since they can be easily obtained
by verbatim of [24].
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