
Package ‘CFtime’
January 20, 2025

Title Using CF-Compliant Calendars with Climate Projection Data

Version 1.5.0

Description Support for all calendars as specified in the Climate and Forecast
(CF) Metadata Conventions for climate and forecasting data. The CF Metadata
Conventions is widely used for distributing files with climate observations
or projections, including the Coupled Model Intercomparison Project (CMIP)
data used by climate change scientists and the Intergovernmental Panel on
Climate Change (IPCC). This package specifically allows the user to work
with any of the CF-compliant calendars (many of which are not compliant with
POSIXt). The CF time coordinate is formally defined in the CF Metadata
Conventions document available at <https://cfconventions.org/Data/cf-conventions/
cf-conventions-1.12/cf-conventions.html#time-coordinate>.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Imports R6

Suggests knitr, rmarkdown, ncdf4, ncdfCF, RNetCDF, testthat (>=
3.0.0), stringr

URL https://github.com/pvanlaake/CFtime

BugReports https://github.com/pvanlaake/CFtime/issues

VignetteBuilder knitr

Config/testthat/edition 3

Collate 'api.R' 'CFCalendar.R' 'CFCalendar360.R' 'CFCalendar365.R'
'CFCalendar366.R' 'CFCalendarJulian.R' 'CFCalendarProleptic.R'
'CFCalendarStandard.R' 'CFCalendarTAI.R' 'CFCalendarUTC.R'
'CFtime-package.R' 'CFtime.R' 'deprecated.R' 'helpers.R'
'zzz.R'

NeedsCompilation no

Author Patrick Van Laake [aut, cre, cph]

Maintainer Patrick Van Laake <patrick@vanlaake.net>

Repository CRAN

Date/Publication 2025-01-15 22:30:02 UTC

1

https://cfconventions.org/Data/cf-conventions/cf-conventions-1.12/cf-conventions.html#time-coordinate
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.12/cf-conventions.html#time-coordinate
https://github.com/pvanlaake/CFtime
https://github.com/pvanlaake/CFtime/issues

2 +.CFTime

Contents
+.CFTime . 2
==.CFTime . 3
as.character.CFTime . 4
as_timestamp . 5
bounds . 6
CFCalendar . 7
CFCalendar360 . 10
CFCalendar365 . 12
CFCalendar366 . 14
CFCalendarJulian . 16
CFCalendarProleptic . 18
CFCalendarStandard . 20
CFCalendarTAI . 23
CFCalendarUTC . 24
CFfactor . 25
CFfactor_coverage . 27
CFfactor_units . 28
CFTime . 29
CFtime-function . 37
cut.CFTime . 37
definition . 39
deprecated_functions . 40
indexOf . 41
is_complete . 42
length.CFTime . 43
month_days . 43
parse_timestamps . 44
range.CFTime . 46
slab . 46
slice . 47

Index 49

+.CFTime Extend a CFTime object

Description

A CFTime instance can be extended with this operator, using values from another CFTime instance,
or a vector of numeric offsets or character timestamps. If the values come from another CFTime
instance, the calendars of the two instances must be compatible If the calendars of the CFTime
instances are not compatible, an error is thrown.

Usage

S3 method for class 'CFTime'
e1 + e2

==.CFTime 3

Arguments

e1 Instance of the CFTime class.

e2 Instance of the CFTime class with a calendar compatible with that of argument
e1, or a numeric vector with offsets from the origin of argument e1, or a vector
of character timestamps in ISO8601 or UDUNITS format.

Details

The resulting CFTime instance will have the offsets of the original CFTime instance, appended with
offsets from argument e2 in the order that they are specified. If the new sequence of offsets is
not monotonically increasing a warning is generated (the COARDS metadata convention requires
offsets to be monotonically increasing).

There is no reordering or removal of duplicates. This is because the time series are usually associ-
ated with a data set and the correspondence between the data in the files and the CFTime instance is
thus preserved. When merging the data sets described by this time series, the order must be identical
to the merging here.

Note that when adding multiple vectors of offsets to a CFTime instance, it is more efficient to first
concatenate the vectors and then do a final addition to the CFTime instance. So avoid CFtime(definition,
calendar, e1) + CFtime(definition, calendar, e2) + CFtime(definition, calendar, e3) +
... but rather do CFtime(definition, calendar) + c(e1, e2, e3, ...). It is the responsibility
of the operator to ensure that the offsets of the different data sets are in reference to the same
calendar.

Note also that RNetCDF and ncdf4 packages both return the values of the "time" dimension as a 1-
dimensional array. You have to dim(time_values) <- NULL to de-class the array to a vector before
adding offsets to an existing CFtime instance.

Any bounds that were set will be removed. Use bounds() to retrieve the bounds of the individual
CFTime instances and then set them again after merging the two instances.

Value

A CFTime object with the offsets of argument e1 extended by the values from argument e2.

Examples

e1 <- CFtime("days since 1850-01-01", "gregorian", 0:364)
e2 <- CFtime("days since 1850-01-01 00:00:00", "standard", 365:729)
e1 + e2

==.CFTime Equivalence of CFTime objects

Description

This operator can be used to test if two CFTime objects represent the same CF-convention time
coordinates. Two CFTime objects are considered equivalent if they have an equivalent calendar and
the same offsets.

4 as.character.CFTime

Usage

S3 method for class 'CFTime'
e1 == e2

Arguments

e1, e2 Instances of the CFTime class.

Value

TRUE if the CFTime objects are equivalent, FALSE otherwise.

Examples

e1 <- CFtime("days since 1850-01-01", "gregorian", 0:364)
e2 <- CFtime("days since 1850-01-01 00:00:00", "standard", 0:364)
e1 == e2

as.character.CFTime Return the timestamps contained in the CFTime instance.

Description

Return the timestamps contained in the CFTime instance.

Usage

S3 method for class 'CFTime'
as.character(x, ...)

Arguments

x The CFTime instance whose timestamps will be returned.

... Ignored.

Value

The timestamps in the specified CFTime instance.

Examples

t <- CFtime("days since 1850-01-01", "julian", 0:364)
as.character(t)

as_timestamp 5

as_timestamp Create a vector that represents CF timestamps

Description

This function generates a vector of character strings or POSIXcts that represent the date and time in
a selectable combination for each offset.

Usage

as_timestamp(t, format = NULL, asPOSIX = FALSE)

Arguments

t The CFTime instance that contains the offsets to use.

format character. A character string with either of the values "date" or "timestamp".
If the argument is not specified, the format used is "timestamp" if there is time
information, "date" otherwise.

asPOSIX logical. If TRUE, for "standard", "gregorian" and "proleptic_gregorian" calendars
the output is a vector of POSIXct - for other calendars an error will be thrown.
Default value is FALSE.

Details

The character strings use the format YYYY-MM-DDThh:mm:ss±hhmm, depending on the format spec-
ifier. The date in the string is not necessarily compatible with POSIXt - in the 360_day calendar
2017-02-30 is valid and 2017-03-31 is not.

For the "proleptic_gregorian" calendar the output can also be generated as a vector of POSIXct
values by specifying asPOSIX = TRUE. The same is possible for the "standard" and "gregorian" cal-
endars but only if all timestamps fall on or after 1582-10-15.

Value

A character vector where each element represents a moment in time according to the format spec-
ifier.

See Also

The CFTime format() method gives greater flexibility through the use of strptime-like format
specifiers.

6 bounds

Examples

t <- CFtime("hours since 2020-01-01", "standard", seq(0, 24, by = 0.25))
as_timestamp(t, "timestamp")

t2 <- CFtime("days since 2002-01-21", "standard", 0:20)
tail(as_timestamp(t2, asPOSIX = TRUE))

tail(as_timestamp(t2))

tail(as_timestamp(t2 + 1.5))

bounds Bounds of the time offsets

Description

CF-compliant netCDF files store time information as a single offset value for each step along the
dimension, typically centered on the valid interval of the data (e.g. 12-noon for day data). Option-
ally, the lower and upper values of the valid interval are stored in a so-called "bounds" variable,
as an array with two rows (lower and higher value) and a column for each offset. With function
bounds()<- those bounds can be set for a CFTime instance. The bounds can be retrieved with the
bounds() function.

Usage

bounds(x, format)

bounds(x) <- value

Arguments

x A CFTime instance.

format Optional. A single string with format specifiers, see format() for details.

value A matrix (or array) with dimensions (2, length(offsets)) giving the lower (first
row) and higher (second row) bounds of each offset (this is the format that the
CF Metadata Conventions uses for storage in netCDF files). Use FALSE to unset
any previously set bounds, TRUE to set regular bounds at mid-points between the
offsets (which must be regular as well).

Value

If bounds have been set, an array of bounds values with dimensions (2, length(offsets)). The first
row gives the lower bound, the second row the upper bound, with each column representing an
offset of x. If the format argument is specified, the bounds values are returned as strings according
to the format. NULL when no bounds have been set.

CFCalendar 7

Examples

t <- CFtime("days since 2024-01-01", "standard", seq(0.5, by = 1, length.out = 366))
as_timestamp(t)[1:3]
bounds(t) <- rbind(0:365, 1:366)
bounds(t)[, 1:3]
bounds(t, "%d-%b-%Y")[, 1:3]

CFCalendar Basic CF calendar

Description

This class represents a basic CF calendar. It should not be instantiated directly; instead, use one of
the descendant classes.

This internal class stores the information to represent date and time values using the CF conventions.
An instance is created by the exported CFTime class, which also exposes the relevant properties of
this class.

The following calendars are supported:

• gregorian\standard, the international standard calendar for civil use.

• proleptic_gregorian, the standard calendar but extending before 1582-10-15 when the Gre-
gorian calendar was adopted.

• tai, International Atomic Time clock with dates expressed using the Gregorian calendar.

• utc, Coordinated Universal Time clock with dates expressed using the Gregorian calendar.

• julian, every fourth year is a leap year (so including the years 1700, 1800, 1900, 2100, etc).

• noleap\365_day, all years have 365 days.

• all_leap\366_day, all years have 366 days.

• 360_day, all years have 360 days, divided over 12 months of 30 days.

Public fields

name Descriptive name of the calendar, as per the CF Metadata Conventions.

definition The string that defines the units and the origin, as per the CF Metadata Conventions.

unit The numeric id of the unit of the calendar.

origin data.frame with fields for the origin of the calendar.

Active bindings

origin_date (read-only) Character string with the date of the calendar.

origin_time (read-only) Character string with the time of the calendar.

timezone (read-only) Character string with the time zone of the origin of the calendar.

8 CFCalendar

Methods

Public methods:
• CFCalendar$new()

• CFCalendar$print()

• CFCalendar$valid_days()

• CFCalendar$POSIX_compatible()

• CFCalendar$is_compatible()

• CFCalendar$is_equivalent()

• CFCalendar$parse()

• CFCalendar$offsets2time()

• CFCalendar$clone()

Method new(): Create a new CF calendar.

Usage:
CFCalendar$new(nm, definition)

Arguments:

nm The name of the calendar. This must follow the CF Metadata Conventions.
definition The string that defines the units and the origin, as per the CF Metadata Conven-

tions.

Method print(): Print information about the calendar to the console.

Usage:
CFCalendar$print(...)

Arguments:

... Ignored.

Returns: self, invisibly.

Method valid_days(): Indicate which of the supplied dates are valid.

Usage:
CFCalendar$valid_days(ymd)

Arguments:

ymd data.frame with dates parsed into their parts in columns year, month and day. Any other
columns are disregarded.

Returns: NULL. A warning will be generated to the effect that a descendant class should be used
for this method.

Method POSIX_compatible(): Indicate if the time series described using this calendar can be
safely converted to a standard date-time type (POSIXct, POSIXlt, Date).
Only the ’standard’ calendar and the ’proleptic_gregorian’ calendar when all dates in the time
series are more recent than 1582-10-15 (inclusive) can be safely converted, so this method returns
FALSE by default to cover the majority of cases.

Usage:

CFCalendar 9

CFCalendar$POSIX_compatible(offsets)

Arguments:
offsets The offsets from the CFtime instance.

Returns: FALSE by default.

Method is_compatible(): This method tests if the CFCalendar instance in argument cal is
compatible with self, meaning that they are of the same class and have the same unit. Calendars
"standard", and "gregorian" are compatible, as are the pairs of "365_day" and "no_leap", and
"366_day" and "all_leap".

Usage:
CFCalendar$is_compatible(cal)

Arguments:
cal Instance of a descendant of the CFCalendar class.

Returns: TRUE if the instance in argument cal is compatible with self, FALSE otherwise.

Method is_equivalent(): This method tests if the CFCalendar instance in argument cal is
equivalent to self, meaning that they are of the same class, have the same unit, and equivalent
origins. Calendars "standard", and "gregorian" are equivalent, as are the pairs of "365_day" and
"no_leap", and "366_day" and "all_leap".
Note that the origins need not be identical, but their parsed values have to be. "2000-01" is parsed
the same as "2000-01-01 00:00:00", for instance.

Usage:
CFCalendar$is_equivalent(cal)

Arguments:
cal Instance of a descendant of the CFCalendar class.

Returns: TRUE if the instance in argument cal is equivalent to self, FALSE otherwise.

Method parse(): Parsing a vector of date-time character strings into parts.

Usage:
CFCalendar$parse(d)

Arguments:
d character. A character vector of date-times.

Returns: A data.frame with columns year, month, day, hour, minute, second, time zone, and
offset. Invalid input data will appear as NA.

Method offsets2time(): Decompose a vector of offsets, in units of the calendar, to their
timestamp values. This adds a specified amount of time to the origin of a CFTime object.
This method may introduce inaccuracies where the calendar unit is "months" or "years", due to
the ambiguous definition of these units.

Usage:
CFCalendar$offsets2time(offsets)

Arguments:
offsets Vector of numeric offsets to add to the origin of the calendar.

10 CFCalendar360

Returns: A data.frame with columns for the timestamp elements and as many rows as there
are offsets.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFCalendar$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

https://cfconventions.org/Data/cf-conventions/cf-conventions-1.12/cf-conventions.html#calendar

CFCalendar360 360-day CF calendar

Description

This class represents a CF calendar of 360 days per year, evenly divided over 12 months of 30 days.
This calendar is obviously not compatible with the standard POSIXt calendar.

This calendar supports dates before year 1 and includes the year 0.

Super class

CFtime::CFCalendar -> CFCalendar360

Methods

Public methods:
• CFCalendar360$new()

• CFCalendar360$valid_days()

• CFCalendar360$month_days()

• CFCalendar360$leap_year()

• CFCalendar360$date2offset()

• CFCalendar360$offset2date()

• CFCalendar360$clone()

Method new(): Create a new CF calendar.

Usage:
CFCalendar360$new(nm, definition)

Arguments:

nm The name of the calendar. This must be "360_day". This argument is superfluous but main-
tained to be consistent with the initialization methods of the parent and sibling classes.

CFCalendar360 11

definition The string that defines the units and the origin, as per the CF Metadata Conven-
tions.

Returns: A new instance of this class.

Method valid_days(): Indicate which of the supplied dates are valid.

Usage:
CFCalendar360$valid_days(ymd)

Arguments:

ymd data.frame with dates parsed into their parts in columns year, month and day. Any other
columns are disregarded.

Returns: Logical vector with the same length as argument ymd has rows with TRUE for valid
days and FALSE for invalid days, or NA where the row in argument ymd has NA values.

Method month_days(): Determine the number of days in the month of the calendar.

Usage:
CFCalendar360$month_days(ymd = NULL)

Arguments:

ymd data.frame with dates parsed into their parts in columns year, month and day. Any other
columns are disregarded.

Returns: A vector indicating the number of days in each month for the dates supplied as
argument ymd. If no dates are supplied, the number of days per month for the calendar as a
vector of length 12.

Method leap_year(): Indicate which years are leap years.

Usage:
CFCalendar360$leap_year(yr)

Arguments:

yr Integer vector of years to test.

Returns: Logical vector with the same length as argument yr. Since this calendar does not use
leap days, all values will be FALSE, or NA where argument yr is NA.

Method date2offset(): Calculate difference in days between a data.frame of time parts and
the origin.

Usage:
CFCalendar360$date2offset(x)

Arguments:

x data.frame. Dates to calculate the difference for.

Returns: Integer vector of a length equal to the number of rows in argument x indicating the
number of days between x and the origin, or NA for rows in x with NA values.

Method offset2date(): Calculate date parts from day differences from the origin. This only
deals with days as these are impacted by the calendar. Hour-minute-second timestamp parts are
handled in CFCalendar.

12 CFCalendar365

Usage:
CFCalendar360$offset2date(x)

Arguments:

x Integer vector of days to add to the origin.

Returns: A data.frame with columns ’year’, ’month’ and ’day’ and as many rows as the length
of vector x.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFCalendar360$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

CFCalendar365 365-day CF calendar

Description

This class represents a CF calendar of 365 days per year, having no leap days in any year. This
calendar is not compatible with the standard POSIXt calendar.

This calendar supports dates before year 1 and includes the year 0.

Super class

CFtime::CFCalendar -> CFCalendar365

Methods

Public methods:
• CFCalendar365$new()

• CFCalendar365$valid_days()

• CFCalendar365$month_days()

• CFCalendar365$leap_year()

• CFCalendar365$date2offset()

• CFCalendar365$offset2date()

• CFCalendar365$clone()

Method new(): Create a new CF calendar of 365 days per year.

Usage:
CFCalendar365$new(nm, definition)

Arguments:

nm The name of the calendar. This must be "365_day" or "noleap".

CFCalendar365 13

definition The string that defines the units and the origin, as per the CF Metadata Conven-
tions.

Returns: A new instance of this class.

Method valid_days(): Indicate which of the supplied dates are valid.

Usage:
CFCalendar365$valid_days(ymd)

Arguments:
ymd data.frame with dates parsed into their parts in columns year, month and day. Any other

columns are disregarded.

Returns: Logical vector with the same length as argument ymd has rows with TRUE for valid
days and FALSE for invalid days, or NA where the row in argument ymd has NA values.

Method month_days(): Determine the number of days in the month of the calendar.

Usage:
CFCalendar365$month_days(ymd = NULL)

Arguments:
ymd data.frame, optional, with dates parsed into their parts.

Returns: A vector indicating the number of days in each month for the dates supplied as
argument ymd. If no dates are supplied, the number of days per month for the calendar as a
vector of length 12.

Method leap_year(): Indicate which years are leap years.

Usage:
CFCalendar365$leap_year(yr)

Arguments:
yr Integer vector of years to test.

Returns: Logical vector with the same length as argument yr. Since this calendar does not use
leap days, all values will be FALSE, or NA where argument yr is NA.

Method date2offset(): Calculate difference in days between a data.frame of time parts and
the origin.

Usage:
CFCalendar365$date2offset(x)

Arguments:
x data.frame. Dates to calculate the difference for.

Returns: Integer vector of a length equal to the number of rows in argument x indicating the
number of days between x and the origin, or NA for rows in x with NA values.

Method offset2date(): Calculate date parts from day differences from the origin. This only
deals with days as these are impacted by the calendar. Hour-minute-second timestamp parts are
handled in CFCalendar.

Usage:

14 CFCalendar366

CFCalendar365$offset2date(x)

Arguments:
x Integer vector of days to add to the origin.

Returns: A data.frame with columns ’year’, ’month’ and ’day’ and as many rows as the length
of vector x.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFCalendar365$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

CFCalendar366 366-day CF calendar

Description

This class represents a CF calendar of 366 days per year, having leap days in every year. This
calendar is not compatible with the standard POSIXt calendar.

This calendar supports dates before year 1 and includes the year 0.

Super class

CFtime::CFCalendar -> CFCalendar366

Methods

Public methods:
• CFCalendar366$new()

• CFCalendar366$valid_days()

• CFCalendar366$month_days()

• CFCalendar366$leap_year()

• CFCalendar366$date2offset()

• CFCalendar366$offset2date()

• CFCalendar366$clone()

Method new(): Create a new CF calendar of 366 days per year.

Usage:
CFCalendar366$new(nm, definition)

Arguments:
nm The name of the calendar. This must be "366_day" or "all_leap".
definition The string that defines the units and the origin, as per the CF Metadata Conven-

tions.

CFCalendar366 15

Returns: A new instance of this class.

Method valid_days(): Indicate which of the supplied dates are valid.

Usage:
CFCalendar366$valid_days(ymd)

Arguments:
ymd data.frame with dates parsed into their parts in columns year, month and day. Any other

columns are disregarded.

Returns: Logical vector with the same length as argument ymd has rows with TRUE for valid
days and FALSE for invalid days, or NA where the row in argument ymd has NA values.

Method month_days(): Determine the number of days in the month of the calendar.

Usage:
CFCalendar366$month_days(ymd = NULL)

Arguments:
ymd data.frame, optional, with dates parsed into their parts.

Returns: A vector indicating the number of days in each month for the dates supplied as
argument ymd. If no dates are supplied, the number of days per month for the calendar as a
vector of length 12.

Method leap_year(): Indicate which years are leap years.

Usage:
CFCalendar366$leap_year(yr)

Arguments:
yr Integer vector of years to test.

Returns: Logical vector with the same length as argument yr. Since in this calendar all years
have a leap day, all values will be TRUE, or NA where argument yr is NA.

Method date2offset(): Calculate difference in days between a data.frame of time parts and
the origin.

Usage:
CFCalendar366$date2offset(x)

Arguments:
x data.frame. Dates to calculate the difference for.

Returns: Integer vector of a length equal to the number of rows in argument x indicating the
number of days between x and the origin, or NA for rows in x with NA values.

Method offset2date(): Calculate date parts from day differences from the origin. This only
deals with days as these are impacted by the calendar. Hour-minute-second timestamp parts are
handled in CFCalendar.

Usage:
CFCalendar366$offset2date(x)

Arguments:

16 CFCalendarJulian

x Integer vector of days to add to the origin.

Returns: A data.frame with columns ’year’, ’month’ and ’day’ and as many rows as the length
of vector x.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFCalendar366$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

CFCalendarJulian Julian CF calendar

Description

This class represents a Julian calendar of 365 days per year, with every fourth year being a leap
year of 366 days. The months and the year align with the standard calendar. This calendar is not
compatible with the standard POSIXt calendar.

This calendar starts on 1 January of year 1: 0001-01-01 00:00:00. Any dates before this will
generate an error.

Super class

CFtime::CFCalendar -> CFCalendarJulian

Methods

Public methods:
• CFCalendarJulian$new()

• CFCalendarJulian$valid_days()

• CFCalendarJulian$month_days()

• CFCalendarJulian$leap_year()

• CFCalendarJulian$date2offset()

• CFCalendarJulian$offset2date()

• CFCalendarJulian$clone()

Method new(): Create a new CF calendar.

Usage:
CFCalendarJulian$new(nm, definition)

Arguments:
nm The name of the calendar. This must be "julian". This argument is superfluous but main-

tained to be consistent with the initialization methods of the parent and sibling classes.
definition The string that defines the units and the origin, as per the CF Metadata Conven-

tions.

CFCalendarJulian 17

Returns: A new instance of this class.

Method valid_days(): Indicate which of the supplied dates are valid.

Usage:
CFCalendarJulian$valid_days(ymd)

Arguments:
ymd data.frame with dates parsed into their parts in columns year, month and day. Any other

columns are disregarded.

Returns: Logical vector with the same length as argument ymd has rows with TRUE for valid
days and FALSE for invalid days, or NA where the row in argument ymd has NA values.

Method month_days(): Determine the number of days in the month of the calendar.

Usage:
CFCalendarJulian$month_days(ymd = NULL)

Arguments:
ymd data.frame, optional, with dates parsed into their parts.

Returns: A vector indicating the number of days in each month for the dates supplied as
argument ymd. If no dates are supplied, the number of days per month for the calendar as a
vector of length 12, for a regular year without a leap day.

Method leap_year(): Indicate which years are leap years.

Usage:
CFCalendarJulian$leap_year(yr)

Arguments:
yr Integer vector of years to test.

Returns: Logical vector with the same length as argument yr. NA is returned where elements
in argument yr are NA.

Method date2offset(): Calculate difference in days between a data.frame of time parts and
the origin.

Usage:
CFCalendarJulian$date2offset(x)

Arguments:
x data.frame. Dates to calculate the difference for.

Returns: Integer vector of a length equal to the number of rows in argument x indicating the
number of days between x and the origin of the calendar, or NA for rows in x with NA values.

Method offset2date(): Calculate date parts from day differences from the origin. This only
deals with days as these are impacted by the calendar. Hour-minute-second timestamp parts are
handled in CFCalendar.

Usage:
CFCalendarJulian$offset2date(x)

Arguments:

18 CFCalendarProleptic

x Integer vector of days to add to the origin.

Returns: A data.frame with columns ’year’, ’month’ and ’day’ and as many rows as the length
of vector x.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFCalendarJulian$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

CFCalendarProleptic Proleptic Gregorian CF calendar

Description

This class represents a standard CF calendar, but with the Gregorian calendar extended backwards
to before the introduction of the Gregorian calendar. This calendar is compatible with the standard
POSIXt calendar, but note that daylight savings time is not considered.

This calendar includes dates 1582-10-14 to 1582-10-05 (the gap between the Gregorian and Julian
calendars, which is observed by the standard calendar), and extends to years before the year 1,
including year 0.

Super class

CFtime::CFCalendar -> CFCalendarProleptic

Methods

Public methods:

• CFCalendarProleptic$new()

• CFCalendarProleptic$valid_days()

• CFCalendarProleptic$month_days()

• CFCalendarProleptic$leap_year()

• CFCalendarProleptic$POSIX_compatible()

• CFCalendarProleptic$date2offset()

• CFCalendarProleptic$offset2date()

• CFCalendarProleptic$clone()

Method new(): Create a new CF calendar.

Usage:
CFCalendarProleptic$new(nm, definition)

Arguments:

CFCalendarProleptic 19

nm The name of the calendar. This must be "proleptic_gregorian". This argument is superfluous
but maintained to be consistent with the initialization methods of the parent and sibling
classes.

definition The string that defines the units and the origin, as per the CF Metadata Conven-
tions.

Returns: A new instance of this class.

Method valid_days(): Indicate which of the supplied dates are valid.

Usage:
CFCalendarProleptic$valid_days(ymd)

Arguments:
ymd data.frame with dates parsed into their parts in columns year, month and day. Any other

columns are disregarded.

Returns: Logical vector with the same length as argument ymd has rows with TRUE for valid
days and FALSE for invalid days, or NA where the row in argument ymd has NA values.

Method month_days(): Determine the number of days in the month of the calendar.

Usage:
CFCalendarProleptic$month_days(ymd = NULL)

Arguments:
ymd data.frame, optional, with dates parsed into their parts.

Returns: Integer vector indicating the number of days in each month for the dates supplied
as argument ymd. If no dates are supplied, the number of days per month for the calendar as a
vector of length 12, for a regular year without a leap day.

Method leap_year(): Indicate which years are leap years.

Usage:
CFCalendarProleptic$leap_year(yr)

Arguments:
yr Integer vector of years to test.

Returns: Logical vector with the same length as argument yr. NA is returned where elements
in argument yr are NA.

Method POSIX_compatible(): Indicate if the time series described using this calendar can be
safely converted to a standard date-time type (POSIXct, POSIXlt, Date).

Usage:
CFCalendarProleptic$POSIX_compatible(offsets)

Arguments:
offsets The offsets from the CFtime instance.

Returns: TRUE.

Method date2offset(): Calculate difference in days between a data.frame of time parts and
the origin.

20 CFCalendarStandard

Usage:
CFCalendarProleptic$date2offset(x)

Arguments:

x data.frame. Dates to calculate the difference for.

Returns: Integer vector of a length equal to the number of rows in argument x indicating the
number of days between x and the origin, or NA for rows in x with NA values.

Method offset2date(): Calculate date parts from day differences from the origin. This only
deals with days as these are impacted by the calendar. Hour-minute-second timestamp parts are
handled in CFCalendar.

Usage:
CFCalendarProleptic$offset2date(x)

Arguments:

x Integer vector of days to add to the origin.

Returns: A data.frame with columns ’year’, ’month’ and ’day’ and as many rows as the length
of vector x.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFCalendarProleptic$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

CFCalendarStandard Standard CF calendar

Description

This class represents a standard calendar of 365 or 366 days per year. This calendar is compatible
with the standard POSIXt calendar for periods after the introduction of the Gregorian calendar,
1582-10-15 00:00:00. The calendar starts at 0001-01-01 00:00:00, e.g. the start of the Common
Era.

Note that this calendar, despite its name, is not the same as that used in ISO8601 or many com-
puter systems for periods prior to the introduction of the Gregorian calendar. Use of the "prolep-
tic_gregorian" calendar is recommended for periods before or straddling the introduction date, as
that calendar is compatible with POSIXt on most OSes.

Super class

CFtime::CFCalendar -> CFCalendarStandard

CFCalendarStandard 21

Methods

Public methods:

• CFCalendarStandard$new()

• CFCalendarStandard$valid_days()

• CFCalendarStandard$is_gregorian_date()

• CFCalendarStandard$POSIX_compatible()

• CFCalendarStandard$month_days()

• CFCalendarStandard$leap_year()

• CFCalendarStandard$date2offset()

• CFCalendarStandard$offset2date()

• CFCalendarStandard$clone()

Method new(): Create a new CF calendar.

Usage:
CFCalendarStandard$new(nm, definition)

Arguments:

nm The name of the calendar. This must be "standard" or "gregorian" (deprecated).
definition The string that defines the units and the origin, as per the CF Metadata Conven-

tions.

Returns: A new instance of this class.

Method valid_days(): Indicate which of the supplied dates are valid.

Usage:
CFCalendarStandard$valid_days(ymd)

Arguments:

ymd data.frame with dates parsed into their parts in columns year, month and day. Any other
columns are disregarded.

Returns: Logical vector with the same length as argument ymd has rows with TRUE for valid
days and FALSE for invalid days, or NA where the row in argument ymd has NA values.

Method is_gregorian_date(): Indicate which of the supplied dates are in the Gregorian part
of the calendar, e.g. 1582-10-15 or after.

Usage:
CFCalendarStandard$is_gregorian_date(ymd)

Arguments:

ymd data.frame with dates parsed into their parts in columns year, month and day. Any other
columns are disregarded.

Returns: Logical vector with the same length as argument ymd has rows with TRUE for days in
the Gregorian part of the calendar and FALSE otherwise, or NA where the row in argument ymd
has NA values.

22 CFCalendarStandard

Method POSIX_compatible(): Indicate if the time series described using this calendar can be
safely converted to a standard date-time type (POSIXct, POSIXlt, Date). This is only the case
if all offsets are for timestamps fall on or after the start of the Gregorian calendar, 1582-10-15
00:00:00.

Usage:
CFCalendarStandard$POSIX_compatible(offsets)

Arguments:

offsets The offsets from the CFtime instance.

Returns: TRUE.

Method month_days(): Determine the number of days in the month of the calendar.

Usage:
CFCalendarStandard$month_days(ymd = NULL)

Arguments:

ymd data.frame, optional, with dates parsed into their parts.

Returns: A vector indicating the number of days in each month for the dates supplied as
argument ymd. If no dates are supplied, the number of days per month for the calendar as a
vector of length 12, for a regular year without a leap day.

Method leap_year(): Indicate which years are leap years.

Usage:
CFCalendarStandard$leap_year(yr)

Arguments:

yr Integer vector of years to test.

Returns: Logical vector with the same length as argument yr. NA is returned where elements
in argument yr are NA.

Method date2offset(): Calculate difference in days between a data.frame of time parts and
the origin.

Usage:
CFCalendarStandard$date2offset(x)

Arguments:

x data.frame. Dates to calculate the difference for.

Returns: Integer vector of a length equal to the number of rows in argument x indicating the
number of days between x and the origin of the calendar, or NA for rows in x with NA values.

Method offset2date(): Calculate date parts from day differences from the origin. This only
deals with days as these are impacted by the calendar. Hour-minute-second timestamp parts are
handled in CFCalendar.

Usage:
CFCalendarStandard$offset2date(x)

Arguments:

CFCalendarTAI 23

x Integer vector of days to add to the origin.

Returns: A data.frame with columns ’year’, ’month’ and ’day’ and as many rows as the length
of vector x.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFCalendarStandard$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

CFCalendarTAI International Atomic Time CF calendar

Description

This class represents a calendar based on the International Atomic Time. Validity is from 1958
onwards, with dates represented using the Gregorian calendar. Given that this "calendar" is based
on a universal clock, the concepts of leap second, time zone and daylight savings time do not apply.

Super classes

CFtime::CFCalendar -> CFtime::CFCalendarProleptic -> CFCalendarTAI

Methods

Public methods:
• CFCalendarTAI$valid_days()

• CFCalendarTAI$clone()

Method valid_days(): Indicate which of the supplied dates are valid.

Usage:
CFCalendarTAI$valid_days(ymd)

Arguments:
ymd data.frame with dates parsed into their parts in columns year, month and day. If present,

the tz column is checked for illegal time zone offsets. Any other columns are disregarded.

Returns: Logical vector with the same length as argument ymd has rows with TRUE for valid
days and FALSE for invalid days, or NA where the row in argument ymd has NA values.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFCalendarTAI$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

24 CFCalendarUTC

CFCalendarUTC Coordinated Universal Time CF calendar

Description

This class represents a calendar based on the Coordinated Universal Time. Validity is from 1972 on-
wards, with dates represented using the Gregorian calendar, up to the present (so future timestamps
are not allowed). Leap seconds are considered in all calculations. Also, time zone information is
irrelevant and may not be given.

In general, the calendar should use a unit of time of a second. Minute, hour and day are allowed but
discouraged. Month and year as time unit are not allowed as there is no practical way to maintain
leap second accuracy.

Super classes

CFtime::CFCalendar -> CFtime::CFCalendarProleptic -> CFCalendarUTC

Methods

Public methods:

• CFCalendarUTC$new()

• CFCalendarUTC$valid_days()

• CFCalendarUTC$parse()

• CFCalendarUTC$offsets2time()

• CFCalendarUTC$clone()

Method new(): Create a new CF UTC calendar.

Usage:
CFCalendarUTC$new(nm, definition)

Arguments:

nm The name of the calendar. This must be "utc".
definition The string that defines the units and the origin, as per the CF Metadata Conven-

tions.

Method valid_days(): Indicate which of the supplied dates are valid.

Usage:
CFCalendarUTC$valid_days(ymd)

Arguments:

ymd data.frame with dates parsed into their parts in columns year, month and day. Any other
columns are disregarded.

Returns: Logical vector with the same length as argument ymd has rows with TRUE for valid
days and FALSE for invalid days, or NA where the row in argument ymd has NA values.

CFfactor 25

Method parse(): Parsing a vector of date-time character strings into parts. This includes any
leap seconds. Time zone indications are not allowed.

Usage:
CFCalendarUTC$parse(d)

Arguments:

d character. A character vector of date-times.

Returns: A data.frame with columns year, month, day, hour, minute, second, time zone, and
offset. Invalid input data will appear as NA. Note that the time zone is always "+0000" and is
included to maintain compatibility with results from other calendars.

Method offsets2time(): Decompose a vector of offsets, in units of the calendar, to their
timestamp values. This adds a specified amount of time to the origin of a CFTime object.

Usage:
CFCalendarUTC$offsets2time(offsets)

Arguments:

offsets Vector of numeric offsets to add to the origin of the calendar.

Returns: A data.frame with columns for the timestamp elements and as many rows as there
are offsets.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFCalendarUTC$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

CFfactor Create a factor from the offsets in a CFTime instance

Description

With this function a factor can be generated for the time series, or a part thereof, contained in the
CFTime instance. This is specifically interesting for creating factors from the date part of the time
series that aggregate the time series into longer time periods (such as month) that can then be used
to process daily CF data sets using, for instance, tapply().

Usage

CFfactor(t, period = "month", era = NULL)

26 CFfactor

Arguments

t An instance of the CFTime class whose offsets will be used to construct the
factor.

period character. A character string with one of the values "year", "season", "quarter",
"month" (the default), "dekad" or "day".

era numeric or list, optional. Vector of years for which to construct the factor, or a
list whose elements are each a vector of years. If era is not specified, the factor
will use the entire time series for the factor.

Details

The factor will respect the calendar that the time series is built on. For periods longer than a day
this will result in a factor where the calendar is no longer relevant (because calendars impacts days,
not dekads, months, quarters, seasons or years).

The factor will be generated in the order of the offsets of the CFTime instance. While typical CF-
compliant data sources use ordered time series there is, however, no guarantee that the factor is
ordered as multiple CFTime objects may have been merged out of order. For most processing with
a factor the ordering is of no concern.

If the era parameter is specified, either as a vector of years to include in the factor, or as a list of
such vectors, the factor will only consider those values in the time series that fall within the list of
years, inclusive of boundary values. Other values in the factor will be set to NA. The years need not
be contiguous, within a single vector or among the list items, or in order.

The following periods are supported by this function:

• year, the year of each offset is returned as "YYYY".

• season, the meteorological season of each offset is returned as "Sx", with x being 1-4, pre-
ceeded by "YYYY" if no era is specified. Note that December dates are labeled as belonging
to the subsequent year, so the date "2020-12-01" yields "2021S1". This implies that for stan-
dard CMIP files having one or more full years of data the first season will have data for the
first two months (January and February), while the final season will have only a single month
of data (December).

• quarter, the calendar quarter of each offset is returned as "Qx", with x being 1-4, preceeded
by "YYYY" if no era is specified.

• month, the month of each offset is returned as "01" to "12", preceeded by "YYYY-" if no era
is specified. This is the default period.

• dekad, ten-day periods are returned as "Dxx", where xx runs from "01" to "36", preceeded by
"YYYY" if no era is specified. Each month is subdivided in dekads as follows: 1- days 01 -
10; 2- days 11 - 20; 3- remainder of the month.

• day, the month and day of each offset are returned as "MM-DD", preceeded by "YYYY-" if
no era is specified.

It is not possible to create a factor for a period that is shorter than the temporal resolution of the
source data set from which the t argument derives. As an example, if the source data set has
monthly data, a dekad or day factor cannot be created.

CFfactor_coverage 27

Creating factors for other periods is not supported by this function. Factors based on the timestamp
information and not dependent on the calendar can trivially be constructed from the output of the
as_timestamp() function.

For non-era factors the attribute ’CFTime’ of the result contains a CFTime instance that is valid for
the result of applying the factor to a data set that the t argument is associated with. In other words, if
CFTime instance ’At’ describes the temporal dimension of data set ’A’ and a factor ’Af’ is generated
like Af <- CFfactor(At), then Bt <- attr(Af, "CFTime") describes the temporal dimension of
the result of, say, B <- apply(A, 1:2, tapply, Af, FUN). The ’CFTime’ attribute is NULL for era
factors.

Value

If era is a single vector or not specified, a factor with a length equal to the number of offsets in t.
If era is a list, a list with the same number of elements and names as era, each containing a factor.
Elements in the factor will be set to NA for time series values outside of the range of specified years.

The factor, or factors in the list, have attributes ’period’, ’era’ and ’CFTime’. Attribute ’period’
holds the value of the period argument. Attribute ’era’ indicates the number of years that are
included in the era, or -1 if no era is provided. Attribute ’CFTime’ holds an instance of CFTime
that has the same definition as t, but with offsets corresponding to the mid-point of non-era factor
levels; if the era argument is specified, attribute ’CFTime’ is NULL.

See Also

cut() creates a non-era factor for arbitrary cut points.

Examples

t <- CFtime("days since 1949-12-01", "360_day", 19830:54029)

Create a dekad factor for the whole time series
f <- CFfactor(t, "dekad")

Create three monthly factors for early, mid and late 21st century eras
ep <- CFfactor(t, era = list(early = 2021:2040, mid = 2041:2060, late = 2061:2080))

CFfactor_coverage Coverage of time elements for each factor level

Description

This function calculates the number of time elements, or the relative coverage, in each level of a
factor generated by CFfactor().

Usage

CFfactor_coverage(t, f, coverage = "absolute")

28 CFfactor_units

Arguments

t An instance of CFTime.

f factor or list. A factor or a list of factors derived from the parameter t. The
factor or list thereof should generally be generated by the function CFfactor().

coverage "absolute" or "relative".

Value

If f is a factor, a numeric vector with a length equal to the number of levels in the factor, indicating
the number of units from the time series in t contained in each level of the factor when coverage =
"absolute" or the proportion of units present relative to the maximum number when coverage =
"relative". If f is a list of factors, a list with each element a numeric vector as above.

Examples

t <- CFtime("days since 2001-01-01", "365_day", 0:364)
f <- CFfactor(t, "dekad")
CFfactor_coverage(t, f, "absolute")

CFfactor_units Number of base time units in each factor level

Description

Given a factor as returned by CFfactor() and the CFTime instance from which the factor was
derived, this function will return a numeric vector with the number of time units in each level of the
factor.

Usage

CFfactor_units(t, f)

Arguments

t An instance of CFTime.

f A factor or a list of factors derived from the parameter t. The factor or list
thereof should generally be generated by the function CFfactor().

Details

The result of this function is useful to convert between absolute and relative values. Climate change
anomalies, for instance, are usually computed by differencing average values between a future
period and a baseline period. Going from average values back to absolute values for an aggregate
period (which is typical for temperature and precipitation, among other variables) is easily done
with the result of this function, without having to consider the specifics of the calendar of the data
set.

CFTime 29

If the factor f is for an era (e.g. spanning multiple years and the levels do not indicate the specific
year), then the result will indicate the number of time units of the period in a regular single year. In
other words, for an era of 2041-2060 and a monthly factor on a standard calendar with a days unit,
the result will be c(31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31). Leap days are thus only
considered for the 366_day and all_leap calendars.

Note that this function gives the number of time units in each level of the factor - the actual number
of data points in the cf instance per factor level may be different. Use CFfactor_coverage() to
determine the actual number of data points or the coverage of data points relative to the factor level.

Value

If f is a factor, a numeric vector with a length equal to the number of levels in the factor, indicating
the number of time units in each level of the factor. If f is a list of factors, a list with each element
a numeric vector as above.

Examples

t <- CFtime("days since 2001-01-01", "365_day", 0:364)
f <- CFfactor(t, "dekad")
CFfactor_units(t, f)

CFTime CFTime class

Description

This class manages the "time" dimension of netCDF files that follow the CF Metadata Conventions,
and its productive use in R.

The class has a field cal which holds a specific calendar from the allowed types (9 named calendars
are currently supported). The calendar is also implemented as a (hidden) class which converts
netCDF file encodings to timestamps as character strings, and vice-versa. Bounds information (the
period of time over which a timestamp is valid) is used when defined in the netCDF file.

Additionally, this class has functions to ease use of the netCDF "time" information when processing
data from netCDF files. Filtering and indexing of time values is supported, as is the generation of
factors.

Public fields

cal The calendar of this CFTime instance, a descendant of the CFCalendar class.

offsets A numeric vector of offsets from the origin of the calendar.

resolution The average number of time units between offsets.

bounds Optional, the bounds for the offsets. If not set, it is the logical value FALSE. If set, it is the
logical value TRUE if the bounds are regular with respect to the regularly spaced offsets (e.g.
successive bounds are contiguous and at mid-points between the offsets); otherwise a matrix
with columns for offsets and low values in the first row, high values in the second row.

30 CFTime

Active bindings

unit (read-only) The unit string of the calendar and time series.

Methods

Public methods:
• CFTime$new()

• CFTime$print()

• CFTime$range()

• CFTime$as_timestamp()

• CFTime$format()

• CFTime$indexOf()

• CFTime$get_bounds()

• CFTime$set_bounds()

• CFTime$equidistant()

• CFTime$slice()

• CFTime$POSIX_compatible()

• CFTime$cut()

• CFTime$factor()

• CFTime$factor_units()

• CFTime$factor_coverage()

• CFTime$clone()

Method new(): Create a new instance of this class.

Usage:
CFTime$new(definition, calendar, offsets)

Arguments:

definition Character string of the units and origin of the calendar.
calendar Character string of the calendar to use. Must be one of the values permitted by the

CF Metadata Conventions. If NULL, the "standard" calendar will be used.
offsets Numeric or character vector, optional. When numeric, a vector of offsets from the ori-

gin in the time series. When a character vector of length 2 or more, timestamps in ISO8601
or UDUNITS format. When a character string, a timestamp in ISO8601 or UDUNITS for-
mat and then a time series will be generated with a separation between steps equal to the
unit of measure in the definition, inclusive of the definition timestamp. The unit of measure
of the offsets is defined by the definition argument.

Method print(): Print a summary of the CFTime object to the console.

Usage:
CFTime$print(...)

Arguments:

... Ignored.

Returns: self invisibly.

CFTime 31

Method range(): This method returns the first and last timestamp of the time series as a vector.
Note that the offsets do not have to be sorted.

Usage:
CFTime$range(format = "", bounds = FALSE)

Arguments:

format Value of "date" or "timestamp". Optionally, a character string that specifies an alternate
format.

bounds Logical to indicate if the extremes from the bounds should be used, if set. Defaults to
FALSE.

Returns: Vector of two character strings that represent the starting and ending timestamps in the
time series. If a format is supplied, that format will be used. Otherwise, if all of the timestamps
in the time series have a time component of 00:00:00 the date of the timestamp is returned,
otherwise the full timestamp (without any time zone information).

Method as_timestamp(): This method generates a vector of character strings or POSIXcts that
represent the date and time in a selectable combination for each offset.
The character strings use the format YYYY-MM-DDThh:mm:ss±hhmm, depending on the format
specifier. The date in the string is not necessarily compatible with POSIXt - in the 360_day
calendar 2017-02-30 is valid and 2017-03-31 is not.
For the "proleptic_gregorian" calendar the output can also be generated as a vector of POSIXct
values by specifying asPOSIX = TRUE. The same is possible for the "standard" and "gregorian"
calendars but only if all timestamps fall on or after 1582-10-15. If asPOSIX = TRUE is specified
while the calendar does not support it, an error will be generated.

Usage:
CFTime$as_timestamp(format = NULL, asPOSIX = FALSE)

Arguments:

format character. A character string with either of the values "date" or "timestamp". If the
argument is not specified, the format used is "timestamp" if there is time information, "date"
otherwise.

asPOSIX logical. If TRUE, for "standard", "gregorian" and "proleptic_gregorian" calendars the
output is a vector of POSIXct - for other calendars an error will be thrown. Default value is
FALSE.

Returns: A character vector where each element represents a moment in time according to the
format specifier.

Method format(): Format timestamps using a specific format string, using the specifiers de-
fined for the base::strptime() function, with limitations. The only supported specifiers are
bBdeFhHImMpRSTYz%. Modifiers E and O are silently ignored. Other specifiers, including their
percent sign, are copied to the output as if they were adorning text.
The formatting is largely oblivious to locale. The reason for this is that certain dates in certain
calendars are not POSIX-compliant and the system functions necessary for locale information
thus do not work consistently. The main exception to this is the (abbreviated) names of months
(bB), which could be useful for pretty printing in the local language. For separators and other
locale-specific adornments, use local knowledge instead of depending on system locale settings;
e.g. specify %m/%d/%Y instead of %D.

32 CFTime

Week information, including weekday names, is not supported at all as a "week" is not defined for
non-standard CF calendars and not generally useful for climate projection data. If you are working
with observed data and want to get pretty week formats, use the as_timestamp() method to
generate POSIXct timestamps (observed data generally uses a "standard" calendar) and then use
the base::format() function which supports the full set of specifiers.

Usage:
CFTime$format(format)

Arguments:
format A character string with strptime format specifiers. If omitted, the most economical

format will be used: a full timestamp when time information is available, a date otherwise.
Returns: A vector of character strings with a properly formatted timestamp. Any format
specifiers not recognized or supported will be returned verbatim.

Method indexOf(): Find the index in the time series for each timestamp given in argument x.
Values of x that are before the earliest value in the time series will be returned as 0; values of
x that are after the latest values in the time series will be returned as .Machine$integer.max.
Alternatively, when x is a numeric vector of index values, return the valid indices of the same
vector, with the side effect being the attribute "CFTime" associated with the result.
Matching also returns index values for timestamps that fall between two elements of the time se-
ries - this can lead to surprising results when time series elements are positioned in the middle of
an interval (as the CF Metadata Conventions instruct us to "reasonably assume"): a time series of
days in January would be encoded in a netCDF file as c("2024-01-01 12:00:00", "2024-01-02
12:00:00", "2024-01-03 12:00:00", ...) so x <- c("2024-01-01", "2024-01-02", "2024-01-03")
would result in (NA, 1, 2) (or (NA, 1.5, 2.5) with method = "linear") because the date val-
ues in x are at midnight. This situation is easily avoided by ensuring that this CFTime instance
has bounds set (use bounds(y) <- TRUE as a proximate solution if bounds are not stored in the
netCDF file). See the Examples.
If bounds are set, the indices are taken from those bounds. Returned indices may fall in between
bounds if the latter are not contiguous, with the exception of the extreme values in x.
Values of x that are not valid timestamps according to the calendar of this CFTime instance will
be returned as NA.
x can also be a numeric vector of index values, in which case the valid values in x are returned.
If negative values are passed, the positive counterparts will be excluded and then the remainder
returned. Positive and negative values may not be mixed. Using a numeric vector has the side
effect that the result has the attribute "CFTime" describing the temporal dimension of the slice. If
index values outside of the range of self are provided, an error will be thrown.

Usage:
CFTime$indexOf(x, method = "constant")

Arguments:
x Vector of character, POSIXt or Date values to find indices for, or a numeric vector.
method Single value of "constant" or "linear". If "constant" or when bounds are set on self,

return the index value for each match. If "linear", return the index value with any frac-
tional value.

Returns: A numeric vector giving indices into the "time" dimension of the dataset associated
with self for the values of x. If there is at least 1 valid index, then attribute "CFTime" contains
an instance of CFTime that describes the dimension of filtering the dataset associated with self
with the result of this function, excluding any NA, 0 and .Machine$integer.max values.

CFTime 33

Method get_bounds(): Return bounds.
Usage:
CFTime$get_bounds(format)

Arguments:
format A string specifying a format for output, optional.

Returns: An array with dims(2, length(offsets)) with values for the bounds. NULL if the bounds
have not been set.

Method set_bounds(): Set the bounds of the CFTime instance.
Usage:
CFTime$set_bounds(value)

Arguments:
value The bounds to set, in units of the offsets. Either a matrix (2, length(self$offsets))

or a logical.

Returns: self invisibly. This method returns TRUE if the time series has uniformly distributed
time steps between the extreme values, FALSE otherwise. First test without sorting; this should
work for most data sets. If not, only then offsets are sorted. For most data sets that will work but
for implied resolutions of month, season, year, etc based on a "days" or finer calendar unit this
will fail due to the fact that those coarser units have a variable number of days per time step, in
all calendars except for 360_day. For now, an approximate solution is used that should work in
all but the most non-conformal exotic arrangements.

Method equidistant():
Usage:
CFTime$equidistant()

Returns: TRUE if all time steps are equidistant, FALSE otherwise, or NA if no offsets have been
set.

Method slice(): Given two extreme character timestamps, return a logical vector of a length
equal to the number of time steps in the time series with values TRUE for those time steps that fall
between the two extreme values, FALSE otherwise.
NOTE Giving crap as the earlier timestamp will set that value to 0. So invalid input will still
generate a result. To be addressed. Crap in later timestamp is not tolerated.

Usage:
CFTime$slice(extremes, closed = FALSE)

Arguments:
extremes Character vector of two timestamps that represent the extremes of the time period of

interest.
closed Is the right side closed, i.e. included in the result? Default is FALSE.

Returns: A logical vector with a length equal to the number of time steps in self with values
TRUE for those time steps that fall between the two extreme values, FALSE otherwise. The earlier
timestamp is included, the later timestamp is excluded. A specification of c("2022-01-01", "2023-01-01)
will thus include all time steps that fall in the year 2022.
An attribute ’CFTime’ will have the same definition as self but with offsets corresponding to
the time steps falling between the two extremes. If there are no values between the extremes,
the attribute is NULL.

34 CFTime

Method POSIX_compatible(): Can the time series be converted to POSIXt?

Usage:
CFTime$POSIX_compatible()

Returns: TRUE if the calendar support coversion to POSIXt, FALSE otherwise.

Method cut(): Create a factor for a CFTime instance.
When argument breaks is one of "year", "season", "quarter", "month", "dekad", "day",
a factor is generated like by CFfactor(). When breaks is a vector of character timestamps a fac-
tor is produced with a level for every interval between timestamps. The last timestamp, therefore,
is only used to close the interval started by the pen-ultimate timestamp - use a distant timestamp
(e.g. range(x)[2]) to ensure that all offsets to the end of the CFTime time series are included,
if so desired. The last timestamp will become the upper bound in the CFTime instance that is
returned as an attribute to this function so a sensible value for the last timestamp is advisable.
This method works similar to base::cut.POSIXt() but there are some differences in the argu-
ments: for breaks the set of options is different and no preceding integer is allowed, labels are
always assigned using values of breaks, and the interval is always left-closed.

Usage:
CFTime$cut(breaks)

Arguments:
breaks A character string of a factor period (see CFfactor() for a description), or a char-

acter vector of timestamps that conform to the calendar of x, with a length of at least 2.
Timestamps must be given in ISO8601 format, e.g. "2024-04-10 21:31:43".

Returns: A factor with levels according to the breaks argument, with attributes ’period’, ’era’
and ’CFTime’. When breaks is a factor period, attribute ’period’ has that value, otherwise
it is ’"day"’. When breaks is a character vector of timestamps, attribute ’CFTime’ holds an
instance of CFTime that has the same definition as x, but with (ordered) offsets generated from
the breaks. Attribute ’era’ is always -1.

Method factor(): Generate a factor for the offsets, or a part thereof. This is specifically
interesting for creating factors from the date part of the time series that aggregate the time series
into longer time periods (such as month) that can then be used to process daily CF data sets using,
for instance, tapply().
The factor will respect the calendar that the time series is built on.
The factor will be generated in the order of the offsets. While typical CF-compliant data sources
use ordered time series there is, however, no guarantee that the factor is ordered. For most pro-
cessing with a factor the ordering is of no concern.
If the era parameter is specified, either as a vector of years to include in the factor, or as a list of
such vectors, the factor will only consider those values in the time series that fall within the list
of years, inclusive of boundary values. Other values in the factor will be set to NA. The years need
not be contiguous, within a single vector or among the list items, or in order.
The following periods are supported by this method:

• year, the year of each offset is returned as "YYYY".
• season, the meteorological season of each offset is returned as "Sx", with x being 1-4, pre-

ceeded by "YYYY" if no era is specified. Note that December dates are labeled as belonging
to the subsequent year, so the date "2020-12-01" yields "2021S1". This implies that for stan-
dard CMIP files having one or more full years of data the first season will have data for the

CFTime 35

first two months (January and February), while the final season will have only a single month
of data (December).

• quarter, the calendar quarter of each offset is returned as "Qx", with x being 1-4, preceeded
by "YYYY" if no era is specified.

• month, the month of each offset is returned as "01" to "12", preceeded by "YYYY-" if no era
is specified. This is the default period.

• dekad, ten-day periods are returned as "Dxx", where xx runs from "01" to "36", preceeded
by "YYYY" if no era is specified. Each month is subdivided in dekads as follows: 1- days
01 - 10; 2- days 11 - 20; 3- remainder of the month.

• day, the month and day of each offset are returned as "MM-DD", preceeded by "YYYY-" if
no era is specified.

It is not possible to create a factor for a period that is shorter than the temporal resolution of the
calendar. As an example, if the calendar has a monthly unit, a dekad or day factor cannot be
created.
Creating factors for other periods is not supported by this method. Factors based on the timestamp
information and not dependent on the calendar can trivially be constructed from the output of the
as_timestamp() function.
For non-era factors the attribute ’CFTime’ of the result contains a CFTime instance that is valid
for the result of applying the factor to a resource that this instance is associated with. In other
words, if CFTime instance ’At’ describes the temporal dimension of resource ’A’ and a factor ’Af’
is generated from Af <- At$factor(), then Bt <- attr(Af, "CFTime") describes the temporal
dimension of the result of, say, B <- apply(A, 1:2, tapply, Af, FUN). The ’CFTime’ attribute
is NULL for era factors.

Usage:
CFTime$factor(period = "month", era = NULL)

Arguments:
period character. A character string with one of the values "year", "season", "quarter", "month"

(the default), "dekad" or "day".
era numeric or list, optional. Vector of years for which to construct the factor, or a list whose

elements are each a vector of years. If era is not specified, the factor will use the entire time
series for the factor.

Returns: If era is a single vector or not specified, a factor with a length equal to the number
of offsets in this instance. If era is a list, a list with the same number of elements and names
as era, each containing a factor. Elements in the factor will be set to NA for time series values
outside of the range of specified years.
The factor, or factors in the list, have attributes ’period’, ’era’ and ’CFTime’. Attribute ’period’
holds the value of the period argument. Attribute ’era’ indicates the number of years that are
included in the era, or -1 if no era is provided. Attribute ’CFTime’ holds an instance of CFTime
that has the same definition as this instance, but with offsets corresponding to the mid-point of
non-era factor levels; if the era argument is specified, attribute ’CFTime’ is NULL.

Method factor_units(): Given a factor as produced by CFTime$factor(), this method will
return a numeric vector with the number of time units in each level of the factor.
The result of this method is useful to convert between absolute and relative values. Climate
change anomalies, for instance, are usually computed by differencing average values between a
future period and a baseline period. Going from average values back to absolute values for an

36 CFTime

aggregate period (which is typical for temperature and precipitation, among other variables) is
easily done with the result of this method, without having to consider the specifics of the calendar
of the data set.
If the factor f is for an era (e.g. spanning multiple years and the levels do not indicate the specific
year), then the result will indicate the number of time units of the period in a regular single year.
In other words, for an era of 2041-2060 and a monthly factor on a standard calendar with a days
unit, the result will be c(31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31). Leap days are thus
only considered for the 366_day and all_leap calendars.
Note that this function gives the number of time units in each level of the factor - the actual number
of data points in the time series per factor level may be different. Use CFfactor_coverage() to
determine the actual number of data points or the coverage of data points relative to the factor
level.

Usage:
CFTime$factor_units(f)

Arguments:

f A factor or a list of factors derived from the method CFTime$factor().

Returns: If f is a factor, a numeric vector with a length equal to the number of levels in the
factor, indicating the number of time units in each level of the factor. If f is a list of factors, a
list with each element a numeric vector as above.

Method factor_coverage(): Calculate the number of time elements, or the relative coverage,
in each level of a factor generated by CFTime$factor().

Usage:
CFTime$factor_coverage(f, coverage = "absolute")

Arguments:

f A factor or a list of factors derived from the method CFTime$factor().
coverage "absolute" or "relative".

Returns: If f is a factor, a numeric vector with a length equal to the number of levels in the
factor, indicating the number of units from the time series contained in each level of the factor
when coverage = "absolute" or the proportion of units present relative to the maximum num-
ber when coverage = "relative". If f is a list of factors, a list with each element a numeric
vector as above.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFTime$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

https://cfconventions.org/Data/cf-conventions/cf-conventions-1.12/cf-conventions.html#time-coordinate

CFtime-function 37

CFtime-function Create a CFTime object

Description

This function creates an instance of the CFTime class. The arguments to the call are typically read
from a CF-compliant data file with climatological observations or climate projections. Specification
of arguments can also be made manually in a variety of combinations.

Usage

CFtime(definition, calendar = "standard", offsets = NULL)

Arguments

definition A character string describing the time coordinate.

calendar A character string describing the calendar to use with the time dimension defi-
nition string. Default value is "standard".

offsets Numeric or character vector, optional. When numeric, a vector of offsets from
the origin in the time series. When a character vector of length 2 or more, times-
tamps in ISO8601 or UDUNITS format. When a character string, a timestamp
in ISO8601 or UDUNITS format and then a time series will be generated with a
separation between steps equal to the unit of measure in the definition, inclusive
of the definition timestamp. The unit of measure of the offsets is defined by the
time series definition.

Value

An instance of the CFTime class.

Examples

CFtime("days since 1850-01-01", "julian", 0:364)

CFtime("hours since 2023-01-01", "360_day", "2023-01-30T23:00")

cut.CFTime Create a factor for a CFTime instance

Description

Method for base::cut() applied to CFTime objects.

38 cut.CFTime

Usage

S3 method for class 'CFTime'
cut(x, breaks, ...)

Arguments

x An instance of CFTime.

breaks A character string of a factor period (see CFfactor() for a description), or a
character vector of timestamps that conform to the calendar of x, with a length
of at least 2. Timestamps must be given in ISO8601 format, e.g. "2024-04-10
21:31:43".

... Ignored.

Details

When breaks is one of "year", "season", "quarter", "month", "dekad", "day" a factor is
generated like by CFfactor().

When breaks is a vector of character timestamps a factor is produced with a level for every interval
between timestamps. The last timestamp, therefore, is only used to close the interval started by the
pen-ultimate timestamp - use a distant timestamp (e.g. range(x)[2]) to ensure that all offsets to
the end of the CFTime time series are included, if so desired. The last timestamp will become the
upper bound in the CFTime instance that is returned as an attribute to this function so a sensible
value for the last timestamp is advisable.

This method works similar to base::cut.POSIXt() but there are some differences in the argu-
ments: for breaks the set of options is different and no preceding integer is allowed, labels are
always assigned using values of breaks, and the interval is always left-closed.

Value

A factor with levels according to the breaks argument, with attributes ’period’, ’era’ and ’CFTime’.
When breaks is a factor period, attribute ’period’ has that value, otherwise it is ’"day"’. When
breaks is a character vector of timestamps, attribute ’CFTime’ holds an instance of CFTime that
has the same definition as x, but with (ordered) offsets generated from the breaks. Attribute ’era’
is always -1.

See Also

CFfactor() produces a factor for several fixed periods, including for eras.

Examples

x <- CFtime("days since 2021-01-01", "365_day", 0:729)
breaks <- c("2022-02-01", "2021-12-01", "2023-01-01")
cut(x, breaks)

definition 39

definition Properties of a CFTime object

Description

These functions return the properties of an instance of the CFTime class. The properties are all
read-only, but offsets can be added using the + operator.

Usage

definition(t)

calendar(t)

unit(t)

origin(t)

timezone(t)

offsets(t)

resolution(t)

Arguments

t An instance of CFTime.

Value

calendar() and unit() return a character string. origin() returns a data frame of timestamp
elements with a single row of data. timezone() returns the calendar time zone as a character
string. offsets() returns a vector of offsets or NULL if no offsets have been set.

Functions

• definition(): The definition string of the CFTime instance.

• calendar(): The calendar of the CFTime instance.

• unit(): The unit of the CFTime instance.

• origin(): The origin of the CFTime instance in timestamp elements.

• timezone(): The time zone of the calendar of the CFTime instance as a character string.

• offsets(): The offsets of the CFTime instance as a numeric vector.

• resolution(): The average separation between the offsets in the CFTime instance.

40 deprecated_functions

Examples

t <- CFtime("days since 1850-01-01", "julian", 0:364)
definition(t)
calendar(t)
unit(t)
timezone(t)
origin(t)
offsets(t)
resolution(t)

deprecated_functions Deprecated functions

Description

These functions are deprecated and should no longer be used in new code. The below table gives
the replacement function to use instead. The function arguments of the replacement function are
the same as those of the deprecated function if no arguments are given in the table.

Deprecated function Replacement function
CFcomplete() is_complete()
CFmonth_days() month_days()
CFparse() parse_timestamps()
CFrange() range()
CFsubset() slab()
CFtimestamp() as_timestamp()

Usage

CFtimestamp(t, format = NULL, asPOSIX = FALSE)

CFmonth_days(t, x = NULL)

CFcomplete(x)

CFsubset(x, extremes)

CFparse(t, x)

Arguments

t, x, format, asPOSIX, extremes
See replacement functions.

Value

See replacement functions.

indexOf 41

indexOf Find the index of timestamps in the time series

Description

Find the index in the time series for each timestamp given in argument x. Values of x that are
before the earliest value in y will be returned as 0; values of x that are after the latest values in y
will be returned as .Machine$integer.max. Alternatively, when x is a numeric vector of index
values, return the valid indices of the same vector, with the side effect being the attribute "CFTime"
associated with the result.

Usage

indexOf(x, y, method = "constant")

Arguments

x Vector of character, POSIXt or Date values to find indices for, or a numeric
vector.

y CFTime instance.

method Single value of "constant" or "linear". If "constant" or when bounds are set
on argument y, return the index value for each match. If "linear", return the
index value with any fractional value.

Details

Timestamps can be provided as vectors of character strings, POSIXct or Date.

Matching also returns index values for timestamps that fall between two elements of the time se-
ries - this can lead to surprising results when time series elements are positioned in the middle of
an interval (as the CF Metadata Conventions instruct us to "reasonably assume"): a time series of
days in January would be encoded in a netCDF file as c("2024-01-01 12:00:00", "2024-01-02
12:00:00", "2024-01-03 12:00:00", ...) so x <- c("2024-01-01", "2024-01-02", "2024-01-03")
would result in (NA, 1, 2) (or (NA, 1.5, 2.5) with method = "linear") because the date val-
ues in x are at midnight. This situation is easily avoided by ensuring that y has bounds set (use
bounds(y) <- TRUE as a proximate solution if bounds are not stored in the netCDF file). See the
Examples.

If bounds are set, the indices are taken from those bounds. Returned indices may fall in between
bounds if the latter are not contiguous, with the exception of the extreme values in x.

Values of x that are not valid timestamps according to the calendar of y will be returned as NA.

x can also be a numeric vector of index values, in which case the valid values in x are returned.
If negative values are passed, the positive counterparts will be excluded and then the remainder
returned. Positive and negative values may not be mixed. Using a numeric vector has the side effect
that the result has the attribute "CFTime" describing the temporal dimension of the slice. If index
values outside of the range of y (1:length(y)) are provided, an error will be thrown.

42 is_complete

Value

A numeric vector giving indices into the "time" dimension of the data set associated with y for
the values of x. If there is at least 1 valid index, then attribute "CFTime" contains an instance of
CFTime that describes the dimension of filtering the data set associated with y with the result of this
function, excluding any NA, 0 and .Machine$integer.max values.

Examples

cf <- CFtime("days since 2020-01-01", "360_day", 1440:1799 + 0.5)
as_timestamp(cf)[1:3]
x <- c("2024-01-01", "2024-01-02", "2024-01-03")
indexOf(x, cf)
indexOf(x, cf, method = "linear")

bounds(cf) <- TRUE
indexOf(x, cf)

Non-existent calendar day in a `360_day` calendar
x <- c("2024-03-30", "2024-03-31", "2024-04-01")
indexOf(x, cf)

Numeric x
indexOf(c(29, 30, 31), cf)

is_complete Indicates if the time series is complete

Description

This function indicates if the time series is complete, meaning that the time steps are equally spaced
and there are thus no gaps in the time series.

Usage

is_complete(x)

Arguments

x An instance of the CFTime class.

Details

This function gives exact results for time series where the nominal unit of separation between
observations in the time series is exact in terms of the calendar unit. As an example, for a calendar
unit of "days" where the observations are spaced a fixed number of days apart the result is exact, but
if the same calendar unit is used for data that is on a monthly basis, the assessment is approximate
because the number of days per month is variable and dependent on the calendar (the exception
being the 360_day calendar, where the assessment is exact). The result is still correct in most cases
(including all CF-compliant data sets that the developers have seen) although there may be esoteric
constructions of CFTime and offsets that trip up this implementation.

length.CFTime 43

Value

logical. TRUE if the time series is complete, with no gaps; FALSE otherwise. If no offsets have been
added to the CFTime instance, NA is returned.

Examples

t <- CFtime("days since 1850-01-01", "julian", 0:364)
is_complete(t)

length.CFTime The length of the offsets contained in the CFTime instance.

Description

The length of the offsets contained in the CFTime instance.

Usage

S3 method for class 'CFTime'
length(x)

Arguments

x The CFTime instance whose length will be returned

Value

The number of offsets in the specified CFTime instance.

Examples

t <- CFtime("days since 1850-01-01", "julian", 0:364)
length(t)

month_days Return the number of days in a month given a certain CF calendar

Description

Given a vector of dates as strings in ISO 8601 or UDUNITS format and a CFTime object, this
function will return a vector of the same length as the dates, indicating the number of days in
the month according to the calendar specification. If no vector of days is supplied, the function
will return an integer vector of length 12 with the number of days for each month of the calendar
(disregarding the leap day for standard and julian calendars).

44 parse_timestamps

Usage

month_days(t, x = NULL)

Arguments

t The CFtime instance to use.
x character. An optional vector of dates as strings with format YYYY-MM-DD. Any

time part will be silently ingested.

Value

A vector indicating the number of days in each month for the vector of dates supplied as argument
x. Invalidly specified dates will result in an NA‘ value. If no dates are supplied, the
number of days per month for the calendar as a vector of length 12.

See Also

When working with factors generated by CFfactor(), it is usually better to use CFfactor_units()
as that will consider leap days for non-era factors. CFfactor_units() can also work with other
time periods and calendar units, such as "hours per month", or "days per season".

Examples

dates <- c("2021-11-27", "2021-12-10", "2022-01-14", "2022-02-18")
t <- CFtime("days since 1850-01-01", "standard")
month_days(t, dates)

t <- CFtime("days since 1850-01-01", "360_day")
month_days(t, dates)

t <- CFtime("days since 1850-01-01", "all_leap")
month_days(t, dates)

month_days(t)

parse_timestamps Parse series of timestamps in CF format to date-time elements

Description

This function will parse a vector of timestamps in ISO8601 or UDUNITS format into a data frame
with columns for the elements of the timestamp: year, month, day, hour, minute, second, time
zone. Those timestamps that could not be parsed or which represent an invalid date in the indi-
cated CFtime instance will have NA values for the elements of the offending timestamp (which will
generate a warning).

Usage

parse_timestamps(t, x)

parse_timestamps 45

Arguments

t An instance of CFTime to use when parsing the date.

x Vector of character strings representing timestamps in ISO8601 extended or
UDUNITS broken format.

Details

The supported formats are the broken timestamp format from the UDUNITS library and ISO8601
extended, both with minor changes, as suggested by the CF Metadata Conventions. In general, the
format is YYYY-MM-DD hh:mm:ss.sss hh:mm. The year can be from 1 to 4 digits and is interpreted
literally, so 79-10-24 is the day Mount Vesuvius erupted and destroyed Pompeii, not 1979-10-24.
The year and month are mandatory, all other fields are optional. There are defaults for all missing
values, following the UDUNITS and CF Metadata Conventions. Leading zeros can be omitted in
the UDUNITS format, but not in the ISO8601 format. The optional fractional part can have as
many digits as the precision calls for and will be applied to the smallest specified time unit. In the
result of this function, if the fraction is associated with the minute or the hour, it is converted into
a regular hh:mm:ss.sss format, i.e. any fraction in the result is always associated with the second,
rounded down to milli-second accuracy. The separator between the date and the time can be a single
whitespace character or a T.

The time zone is optional and should have at least the hour or Z if present, the minute is optional.
The time zone hour can have an optional sign. In the UDUNITS format the separator between the
time and the time zone must be a single whitespace character, in ISO8601 there is no separation
between the time and the timezone. Time zone names are not supported (as neither UDUNITS
nor ISO8601 support them) and will cause parsing to fail when supplied, with one exception: the
designator "UTC" is silently dropped (i.e. interpreted as "00:00").

Currently only the extended formats (with separators between the elements) are supported. The
vector of timestamps may have any combination of ISO8601 and UDUNITS formats.

Value

A data.frame with constituent elements of the parsed timestamps in numeric format. The columns
are year, month, day, hour, minute, second (with an optional fraction), time zone (character string),
and the corresponding offset value from the origin. Invalid input data will appear as NA - if this is
the case, a warning message will be displayed - other missing information on input will use default
values.

Examples

t <- CFtime("days since 0001-01-01", "proleptic_gregorian")

This will have `NA`s on output and generate a warning
timestamps <- c("2012-01-01T12:21:34Z", "12-1-23", "today",

"2022-08-16T11:07:34.45-10", "2022-08-16 10.5+04")
parse_timestamps(t, timestamps)

46 slab

range.CFTime Extreme time series values

Description

Character representation of the extreme values in the time series.

Usage

S3 method for class 'CFTime'
range(x, format = "", bounds = FALSE, ..., na.rm = FALSE)

Arguments

x An instance of the CFTime class.

format A character string with format specifiers, optional. If it is missing or an empty
string, the most economical ISO8601 format is chosen: "date" when no time
information is present in x, "timestamp" otherwise. Otherwise a suitable format
specifier can be provided.

bounds Logical to indicate if the extremes from the bounds should be used, if set. De-
faults to FALSE.

... Ignored.

na.rm Ignored.

Value

Vector of two character representations of the extremes of the time series.

Examples

cf <- CFtime("days since 1850-01-01", "julian", 0:364)
range(cf)
range(cf, "%Y-%b-%e")

slab Which time steps fall within two extreme values

Description

Avoid using this function, use slice() instead. This function will be deprecated in the near future.

Usage

slab(x, extremes, rightmost.closed = FALSE)

slice 47

Arguments

x, extremes, rightmost.closed
See slice().

Value

See slice().

Examples

t <- CFtime("hours since 2023-01-01 00:00:00", "standard", 0:23)
slab(t, c("2022-12-01", "2023-01-01 03:00"))

slice Which time steps fall within two extreme values

Description

Given two extreme character timestamps, return a logical vector of a length equal to the number of
time steps in the CFTime instance with values TRUE for those time steps that fall between the two
extreme values, FALSE otherwise. This can be used to select slices from the time series in reading
or analysing data.

Usage

slice(x, extremes, rightmost.closed = FALSE)

Arguments

x The CFTime instance to operate on.

extremes Character vector of two timestamps that represent the extremes of the time pe-
riod of interest. The timestamps must be in increasing order. The timestamps
need not fall in the range of the time steps in argument ‘x.

rightmost.closed

Is the larger extreme value included in the result? Default is FALSE.

Details

If bounds were set these will be preserved.

Value

A logical vector with a length equal to the number of time steps in x with values TRUE for those time
steps that fall between the two extreme values, FALSE otherwise. The earlier timestamp is included,
the later timestamp is excluded. A specification of c("2022-01-01", "2023-01-01") will thus
include all time steps that fall in the year 2022.

48 slice

Examples

t <- CFtime("hours since 2023-01-01 00:00:00", "standard", 0:23)
slice(t, c("2022-12-01", "2023-01-01 03:00"))

Index

+.CFTime, 2
==.CFTime, 3
360_day, 7

all_leap\366_day, 7
as.character.CFTime, 4
as_timestamp, 5
as_timestamp(), 27, 32, 35, 40

base::cut(), 37
base::cut.POSIXt(), 34, 38
base::format(), 32
base::strptime(), 31
bounds, 6
bounds(), 3
bounds<- (bounds), 6

calendar (definition), 39
CFCalendar, 7, 11, 13, 15, 17, 20, 22, 29
CFCalendar360, 10
CFCalendar365, 12
CFCalendar366, 14
CFCalendarJulian, 16
CFCalendarProleptic, 18
CFCalendarStandard, 20
CFCalendarTAI, 23
CFCalendarUTC, 24
CFcomplete (deprecated_functions), 40
CFfactor, 25
CFfactor(), 27, 28, 34, 38, 44
CFfactor_coverage, 27
CFfactor_coverage(), 29, 36
CFfactor_units, 28
CFfactor_units(), 44
CFmonth_days (deprecated_functions), 40
CFparse (deprecated_functions), 40
CFsubset (deprecated_functions), 40
CFTime, 2, 3, 5, 7, 25, 28, 29, 37, 39, 41–43,

46, 47
CFtime (CFtime-function), 37

CFtime-equivalent (==.CFTime), 3
CFtime-function, 37
CFtime-merge (+.CFTime), 2
CFtime::CFCalendar, 10, 12, 14, 16, 18, 20,

23, 24
CFtime::CFCalendarProleptic, 23, 24
CFtimestamp (deprecated_functions), 40
cut (cut.CFTime), 37
cut(), 27
cut.CFTime, 37

definition, 39
deprecated_functions, 40

format(), 6

gregorian\standard, 7

indexOf, 41
is_complete, 42
is_complete(), 40

julian, 7

length.CFTime, 43

month_days, 43
month_days(), 40

noleap\365_day, 7

offsets (definition), 39
origin (definition), 39

parse_timestamps, 44
parse_timestamps(), 40
proleptic_gregorian, 7
properties (definition), 39

range(), 40
range.CFTime, 46
resolution (definition), 39

49

50 INDEX

slab, 46
slab(), 40
slice, 47
slice(), 46

tai, 7
timezone (definition), 39

unit (definition), 39
utc, 7

	+.CFTime
	==.CFTime
	as.character.CFTime
	as_timestamp
	bounds
	CFCalendar
	CFCalendar360
	CFCalendar365
	CFCalendar366
	CFCalendarJulian
	CFCalendarProleptic
	CFCalendarStandard
	CFCalendarTAI
	CFCalendarUTC
	CFfactor
	CFfactor_coverage
	CFfactor_units
	CFTime
	CFtime-function
	cut.CFTime
	definition
	deprecated_functions
	indexOf
	is_complete
	length.CFTime
	month_days
	parse_timestamps
	range.CFTime
	slab
	slice
	Index

