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AFDP AFDP data

Description

The data contains the 11 sensor measures aggregated over one hour (by means of average or sum)
from a gas turbine located in Turkey’s north western region for the purpose of studying flue gas
emissions.
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Usage

AFDP

Format

A data frame containing 7411 observations.

complh Complete Likelihood Frequency Method for Label Switching

Description

‘complh’ is used to address the label switching problem by maximizing the complete likelihood
(Yao, 2015). This method leverages information from the latent component label, which is the
label the user used to generate the sample. The function supports both one-dimensional (with equal
variances or unequal variances) and multi-dimensional data (with equal variances).

Usage

complh(est, lat)

Arguments

est a list with four elements representing the estimated mixture model, which can
be obtained using the mixnorm function. When specified, it has the form of
list(mu, sigma, pi, p), where mu is a C by p matrix of estimated component
means where p is the dimension of data and C is the number of mixture compo-
nents, sigma is a p by p matrix of estimated common standard deviation for all
components (when the data is multi-dimensional) or a C-dimensional vector of
estimated component standard deviations (when the data is one-dimensional),
pi is a C-dimensional vector of mixing proportions, and p is a C by n matrix
of the classification probabilities, where the (i, j)th element corresponds to the
probability of the jth observation belonging to the ith component.

lat a C by n zero-one matrix representing the latent component labels for all ob-
servations, where C is the number of components in the mixture model and n
is the number of observations. If the (i, j)th cell is 1, it indicates that the jth
observation belongs to the ith component.

Value

The estimation results adjusted to account for potential label switching problems are returned, as a
list containing the following elements:

mu C by p matrix of estimated component means.
sigma C-dimensional vector of estimated component standard deviations (for univari-

ate data) or p by p matrix of estimated component variance (for multivariate
data).

pi C-dimensional vector of estimated mixing proportions.
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References

Yao, W. (2015). Label switching and its solutions for frequentist mixture models. Journal of Statis-
tical Computation and Simulation, 85(5), 1000-1012.

See Also

distlat, mixnorm

Examples

#-----------------------------------------------------------------------------------------#
# Example 1: Two-component Univariate Normal Mixture
#-----------------------------------------------------------------------------------------#
# Simulate the data
set.seed(827)
n = 200
prop = 0.3
n1 = rbinom(1, n, prop)
mudif = 1.5
x1 = rnorm(n1, 0, 1)
x2 = rnorm(n - n1, mudif, 1)
x = c(x1, x2)
pm = c(2, 1, 3, 5, 4)

# Use the `mixnorm' function to get the MLE and the estimated classification probabilities
out = mixnorm(x, 2)

# Prepare latent component label
lat = rbind(rep(c(1, 0), times = c(n1, n - n1)),

rep(c(0, 1), times = c(n1, n - n1)))

# Fit the complh/distlat function
clhest = complh(out, lat)
clhest
# Result:
# mean of the first component: -0.1037359,
# mean of the second component: 1.6622397,
# sigma is 0.8137515 for both components, and
# the proportions for the two components are
# 0.3945660 and 0.6054340, respectively.
ditlatest = distlat(out, lat)

#-----------------------------------------------------------------------------------------#
# Example 2: Two-component Multivariate Normal Mixture
#-----------------------------------------------------------------------------------------#
# Simulate the data
n = 400
prop = 0.3
n1 = rbinom(1, n, prop)
pi = c(prop, 1 - prop)
mu1 = 0.5
mu2 = 0.5
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mu = matrix(c(0, mu1, 0, mu2), ncol = 2)
pm = c(2, 1, 4, 3, 6, 5)
sigma = diag(c(1, 1))
ini = list(sigma = sigma, mu = mu, pi = pi)
x1 = mvtnorm::rmvnorm(n1, c(0, 0), ini$sigma)
x2 = mvtnorm::rmvnorm(n - n1, c(mu1, mu2), ini$sigma)
x = rbind(x1, x2)

# Use the `mixnorm' function to get the MLE and the estimated classification probabilities
out = mixnorm(x, 2)

# Prepare latent component label
lat = rbind(rep(c(1, 0), times = c(n1, n - n1)),

rep(c(0, 1), times = c(n1, n - n1)))

# Fit the complh/distlat function
clhest = complh(out, lat)
distlatest = distlat(out, lat)

#-----------------------------------------------------------------------------------------#
# Example 3: Three-component Multivariate Normal Mixture
#-----------------------------------------------------------------------------------------#
# Simulate the data
n = 100
pi = c(0.2, 0.3, 0.5)
ns = stats::rmultinom(1, n, pi)
n1 = ns[1]; n2 = ns[2]; n3 = ns[3]
mu1 = 1
mu2 = 1
mu = matrix(c(0, mu1, 2 * mu1, 0, mu2, 2 * mu2), ncol = 2)
sigma = diag(c(1, 1))
ini = list(sigma = sigma, mu = mu, pi = pi)
x1 = mvtnorm::rmvnorm(n1, c(0, 0), ini$sigma)
x2 = mvtnorm::rmvnorm(n2, c(mu1, mu2), ini$sigma)
x3 = mvtnorm::rmvnorm(n3, c(2 * mu1, 2 * mu2), ini$sigma)
x = rbind(x1, x2, x3)

# Use the `mixnorm' function to get the MLE and the estimated classification probabilities
out = mixnorm(x, 3)

# Prepare latent component label
lat = rbind(rep(c(1, 0), times = c(n1, n - n1)),

rep(c(0, 1, 0), times = c(n1, n2, n3)),
rep(c(0, 1), times = c(n - n3, n3)))

# Fit the complh/distlat function
clhest = complh(out, lat)
distlatest = distlat(out, lat)

distlat Euclidean Distance Based Labeling Method for Label Switching
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Description

‘distlat’ is used to address the label switching problem by minimizing the distance between the
classification probabilities and the latent component label, which is the label used by the user to
generate the sample (Yao, 2015). The function supports both one-dimensional (with equal variances
or unequal variances) and multi-dimensional data (with equal variances).

Usage

distlat(est, lat)

Arguments

est a list with four elements representing the estimated mixture model, which can
be obtained using the mixnorm function. When specified, it has the form of
list(mu, sigma, pi, p), where mu is a C by p matrix of estimated component
means where p is the dimension of data and C is the number of mixture compo-
nents, sigma is a p by p matrix of estimated common standard deviation for all
components (when the data is multi-dimensional) or a C-dimensional vector of
estimated component standard deviations (when the data is one-dimensional),
pi is a C-dimensional vector of mixing proportions, and p is a C by n matrix
of the classification probabilities, where the (i, j)th element corresponds to the
probability of the jth observation belonging to the ith component.

lat a C by n zero-one matrix representing the latent component labels for all ob-
servations, where C is the number of components in the mixture model and n
is the number of observations. If the (i, j)th cell is 1, it indicates that the jth
observation belongs to the ith component.

Value

The estimation results adjusted to account for potential label switching problems are returned, as a
list containing the following elements:

mu C by p matrix of estimated component means.

sigma C-dimensional vector of estimated component standard deviations (for univari-
ate data) or p by p matrix of estimated component variance (for multivariate
data).

pi C-dimensional vector of estimated mixing proportions.

References

Yao, W. (2015). Label switching and its solutions for frequentist mixture models. Journal of Statis-
tical Computation and Simulation, 85(5), 1000-1012.

See Also

complh, mixnorm
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Examples

# See examples for the `complh' function.

elbow Elbow data

Description

The data contains elbow dimension measurements on 507 individuals (247 men and 260 women),
primarily in their twenties and thirties, all of whom exercise several hours a week.

Usage

elbow

Format

A data frame containing 507 observations (elbow diameter, sum of two elbows).

References

Heinz, G., Peterson, L. J., Johnson, R. W., and Kerk, C. J. (2003). Exploring relationships in body
dimensions. Journal of Statistics Education, 11(2)

EMnormal Parameter Estimation of Normal Mixture Using EM Algorithm

Description

‘EMnormal’ is used to estimate the parameters of a univariate or multivariate normal mixture model
using the expectation-maximization (EM) algorithm. The result can be used as the initial value for
the mixLogconc and mixLogconcHD function.

Usage

EMnormal(x, C = 2, nstart = 20, tol = 1e-05)

Arguments

x an n by p data matrix where n is the number of observations and p is the dimen-
sion of the data.

C number of mixture components. Default is 2.

nstart number of initializations to try. Default is 20.

tol stopping criteria (threshold value) for the EM algorithm. Default is 1e-05.
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Value

A list containing the following elements:

loglik final log-likelihood.

pi estimated mixing proportions.

mu estimated component means.

sigma estimated component standard deviation or covariance matrix.

See Also

mixLogconc, mixLogconcHD

Examples

#-----------------------------------------------------------------------------------------#
# Univariate Case
#-----------------------------------------------------------------------------------------#
x = matrix(rnorm(100, 2, sqrt(2)), nrow = 100)
x[1:60] = x[1:60] + 5
ini = EMnormal(x)

ethanol Ethanol data

Description

The data contains 88 sets of measurements of peak nitrogen oxide emission levels from an exper-
iment in which ethanol was burned in a single-cylinder engine. The emission levels of nitrogen
oxides were recorded under different settings of the compression ratio and equivalence ratio of the
engine.

Usage

ethanol

Format

A data frame containing 88 observations and the following 3 variables.

NO: concentration of nitric oxide (NO) and nitrogen dioxide (NO2) in engine exhaust.

Compression: compression ratio of engine.

Equivalence: equivalence ratio. This is a measure of the richness of the air and ethanol fuel mix-
ture.
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Source

Original source:

Brinkman, N. D. (1981). Ethanol fuel—single—cylinder engine study of efficiency and exhaust
emissions. SAE transactions, 1410-1424.

R source:

Wand M (2018). SemiPar: Semiparametic Regression. R package version 1.0-4.2, https://CRAN.
R-project.org/package=SemiPar.

Sarkar D (2008). Lattice: Multivariate Data Visualization with R. Springer, New York. ISBN
978-0-387-75968-5, http://lmdvr.r-forge.r-project.org.

References

Ruppert, D., Wand, M. P., and Carroll, R. J. (2003). Semiparametric regression (No. 12). Cam-
bridge university press.

Hurn, M., Justel, A., and Robert, C. P. (2003). Estimating mixtures of regressions. Journal of
computational and graphical statistics, 12(1), 55-79.

kdeem Kernel Density-based EM-type algorithm for Semiparametric Mixture
Regression with Unspecified Error Distributions

Description

‘kdeem’ is used for semiparametric mixture regression using a kernel density-based expectation-
maximization (EM)-type algorithm with unspecified homogeneous or heterogenous error distribu-
tions (Ma et al., 2012).

Usage

kdeem(x, y, C = 2, ini = NULL, maxiter = 200)

Arguments

x an n by p data matrix where n is the number of observations and p is the number
of explanatory variables (including the intercept).

y an n-dimensional vector of response variable.
C number of mixture components. Default is 2.
ini initial values for the parameters. Default is NULL, which obtains the initial val-

ues using the kdeem.lse function. If specified, it can be a list with the form
of list(beta, prop, tau, pi, h), where beta is a p by C matrix for regres-
sion coefficients of C components, prop is an n by C matrix for probabilities
of each observation belonging to each component, caculated based on the initial
beta and h, tau is a vector of C precision parameters (inverse of standard devi-
ation), pi is a vector of C mixing proportions, and h is the bandwidth for kernel
estimation.

maxiter maximum number of iterations for the algorithm. Default is 200.

https://CRAN.R-project.org/package=SemiPar
https://CRAN.R-project.org/package=SemiPar
http://lmdvr.r-forge.r-project.org
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Details

It can be used for a semiparametric mixture of linear regression models with unspecified component
error distributions. The errors can be either homogeneous or heterogenous. The model is as follows:

fY |X(y,x,θ, g) =

C∑
j=1

πjτjg{(y − x⊤βj)τj}.

Here, θ = (π1, ..., πC−1,β
⊤
1 , ..,β

⊤
C , τ1, ..., τC)

⊤, g(·) is an unspecified density function with mean
0 and variance 1, and τj is a precision parameter. For the calculation of β in the M-step, this function
employs the universal optimizer function ucminf from the ‘ucminf’ package.

Value

A list containing the following elements:

posterior posterior probabilities of each observation belonging to each component.

beta estimated regression coefficients.

tau estimated precision parameters, the inverse of standard deviation.

pi estimated mixing proportions.

h bandwidth used for the kernel estimation.

References

Ma, Y., Wang, S., Xu, L., & Yao, W. (2021). Semiparametric mixture regression with unspecified
error distributions. Test, 30, 429-444.

See Also

kdeem.h, kdeem.lse, and ucminf for beta calculation.

Examples

n = 300
C = 2
Dimen = 2
Beta.true.matrix = matrix(c(-3, 3, 3, -3), Dimen, C)
PI.true = c(0.5, 0.5)
x = runif(n)
X = cbind(1, x)
Group.ID = Rlab::rbern(n, prob = 0.5)
Error = rnorm(n, 0, 1)
n1 = sum(Group.ID)
n2 = n - n1
y = rep(0, n)
err = rep(0, n)

for(i in 1:n){
if(Group.ID[i] == 1){
err[i] = Error[i]
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y[i] = X[i, ] %*% Beta.true.matrix[, 1] + err[i]
} else {

err[i] = 0.5 * Error[i]
y[i] = X[i, ] %*% Beta.true.matrix[, 2] + err[i]

}
}
Result.kdeem.lse = kdeem.lse(x, y)
Result.kdeem.h = kdeem.h(x, y, 2, Result.kdeem.lse, maxiter = 200)
Result.kdeem = kdeem(x, y, 2, Result.kdeem.lse, maxiter = 200)

kdeem.h Kernel Density-based EM-type algorithm for Semiparametric Mixture
Regression with Unspecified Homogenous Error Distributions

Description

‘kdeem.h’ is used for semiparametric mixture regression using a kernel density-based expectation-
maximization (EM)-type algorithm with unspecified homogeneous error distributions (Hunter and
Young, 2012).

Usage

kdeem.h(x, y, C = 2, ini = NULL, maxiter = 200)

Arguments

x an n by p data matrix where n is the number of observations and p is the number
of explanatory variables (including the intercept).

y an n-dimensional vector of response variable.

C number of mixture components. Default is 2.

ini initial values for the parameters. Default is NULL, which obtains the initial val-
ues using the kdeem.lse function. If specified, it can be a list with the form
of list(beta, prop, tau, pi, h), where beta is a p by C matrix for regres-
sion coefficients of C components, prop is an n by C matrix for probabilities of
each observation belonging to each component, calculated based on the initial
beta and h, tau is a vector of C precision parameters (inverse of standard devi-
ation), pi is a vector of C mixing proportions, and h is the bandwidth for kernel
estimation.

maxiter maximum number of iterations for the algorithm. Default is 200.

Details

’kdeem.h’ can be used to estimate parameters in a mixture-of-regressions model with independent
identically distributed errors. The model is defined as follows:

fY |X(y,x,θ, g) =

C∑
j=1

πjg(y − x⊤βj).
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Here, θ = (π1, ..., πC−1,β
⊤
1 , · · · ,β

⊤
C), and g(·) represents identical unspecified density functions.

The bandwidth of the kernel density estimation is calculated adaptively using the bw.SJ function
from the ‘stats’ package, which implements the method of Sheather & Jones (1991) for bandwidth
selection based on pilot estimation of derivatives.

For the calculation of β in the M-step, this function employs the universal optimizer ucminf from
the ‘ucminf’ package.

Value

A list containing the following elements:

posterior posterior probabilities of each observation belonging to each component.

beta estimated regression coefficients.

pi estimated mixing proportions.

h bandwidth used for the kernel estimation.

References

Hunter, D. R., & Young, D. S. (2012). Semiparametric mixtures of regressions. Journal of Non-
parametric Statistics, 24(1), 19-38.

Ma, Y., Wang, S., Xu, L., & Yao, W. (2021). Semiparametric mixture regression with unspecified
error distributions. Test, 30, 429-444.

See Also

kdeem, kdeem.lse, bw.SJ for bandwidth calculation, and ucminf for beta calculation.

Examples

# See examples for the `kdeem' function.

kdeem.lse Kernel Density-based EM-type algorithm with Least Square Estima-
tion for Semiparametric Mixture Regression with Unspecified Ho-
mogenous Error Distributions

Description

‘kdeem.lse’ is used for semiparametric mixture regression based on least squares estimation (Hunter
and Young, 2012) using a kernel density-based expectation-maximization (EM)-type algorithm with
unspecified homogeneous error distributions.

Usage

kdeem.lse(x, y, C = 2, ini = NULL)
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Arguments

x an n by p data matrix where n is the number of observations and p is the number
of explanatory variables (including the intercept).

y an n-dimensional vector of response variable.

C number of mixture components. As of version 1.1.0, C must be set to 2.

ini initial values for the parameters. Default is NULL, which obtains the initial val-
ues using the regmixEM function from the ‘mixtools’ package. If specified, it
can be a list with the form of list(beta, prop, tau, pi, h), where beta is a
p by C matrix for regression coefficients of C components, prop is an n by C
matrix for probabilities of each observation belonging to each component, cac-
ulated based on the initial beta and h, tau is a vector of C precision parameters
(inverse of standard deviation), pi is a vector of C mixing proportions, and h is
the bandwidth for kernel estimation.

Details

As of version 1.1.0, this function can only be used for a two-component mixture-of-regressions
model with independent identically distributed errors. Assuming C = 2, the model is defined as
follows:

fY |X(y,x,θ, g) =

C∑
j=1

πjg(y − x⊤βj).

Here, θ = (π1, ..., πC−1,β
⊤
1 , · · · ,β

⊤
C), and g(·) represents identical unspecified density functions.

The bandwidth of the kernel density estimation is calculated adaptively using the bw.SJ function
from the ‘stats’ package, which implements the method of Sheather & Jones (1991) for bandwidth
selection based on pilot estimation of derivatives. This function employs weighted least square esti-
mation for β in the M-step (Hunter and Young, 2012), where the weight is the posterior probability
of an observation belonging to each component.

Value

A list containing the following elements:

posterior posterior probabilities of each observation belonging to each component.

beta estimated regression coefficients.

tau estimated precision parameter, the inverse of standard deviation.

pi estimated mixing proportions.

h bandwidth used for the kernel estimation.

References

Hunter, D. R., and Young, D. S. (2012). Semiparametric mixtures of regressions. Journal of Non-
parametric Statistics, 24(1), 19-38.

Ma, Y., Wang, S., Xu, L., and Yao, W. (2021). Semiparametric mixture regression with unspecified
error distributions. Test, 30, 429-444.
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See Also

kdeem, kdeem.h, bw.SJ for bandwidth calculation, and regmixEM for initial value calculation.

Examples

# See examples for the `kdeem' function.

mixLogconc Clustering with Mixtures of Log-concave Distributions using EM Al-
gorithm (Univariate)

Description

‘mixLogconc’ is used to estimate the parameters of a mixture of univariate log-concave distribu-
tions.

Usage

mixLogconc(x, C = 2, ini = NULL, nstart = 20, tol = 1e-05)

Arguments

x an n by 1 data matrix where n is the number of observations.

C number of mixture components. Default is 2.

ini initial value for the EM algorithm. Default value is NULL, which obtains the
initial value using the EMnormal function. It can be a list with the form of
list(pi, mu, sigma), where pi is a 1 by C matrix of mixing proportions, mu
is a C by 1 matrix of component means, and sigma is a p by p by 1 array of
standard deviations or covariance matrices of C mixture components.

nstart number of initializations to try. Default is 20.

tol stopping criteria (threshold value) for the EM algorithm. Default is 1e-05.

Value

A list containing the following elements:

loglik final log-likelihood.

pi estimated mixing proportions.

f component densities at x.

References

Chang, G. T., and Walther, G. (2007). Clustering with mixtures of log-concave distributions. Com-
putational Statistics & Data Analysis, 51(12), 6242-6251.

Hu, H., Wu, Y., and Yao, W. (2016). Maximum likelihood estimation of the mixture of log-concave
densities. Computational Statistics & Data Analysis, 101, 137-147.
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See Also

EMnormal, mixLogconcHD

Examples

set.seed(4)
x = matrix(rnorm(100, 2, sqrt(2)), nrow = 100)
x[1:60] = x[1:60] + 5
EMlogc = mixLogconc(x, C = 2)

mixLogconcHD Clustering with Mixtures of Log-concave Distributions using EM Al-
gorithm (Multivariate)

Description

‘mixLogconcHD’ is used to estimate the parameters of a mixture of multivariate log-concave dis-
tributions. The correlation structure among components is calculated by the normal copula.

Usage

mixLogconcHD(x, C, ini = NULL, nstart = 20, tol = 1e-05, maxiter = 100)

Arguments

x an n by p data matrix where n is the number of observations and p is the dimen-
sion of the data.

C number of mixture components.

ini initial value for the EM algorithm. Default value is NULL, which obtains the
initial value using the EMnormal function. It can be a list with the form of
list(pi, mu, sigma), where pi is a 1 by C matrix of mixing proportions, mu
is a C by p matrix of component means, and sigma is a p by p by C array of
standard deviations or covariance matrices of C mixture components.

nstart number of initializations to try. Default is 20.

tol stopping criteria (threshold value) for the EM algorithm. Default is 1e-05.

maxiter maximum number of iterations for the EM algorithm. Default is 100.

Value

A list containing the following elements:

loglik final log-likelihood.

pi estimated mixing proportions.

f component densities at x.

sigma estimated standard deviation or covariance matrix.
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References

Chang, G. T., and Walther, G. (2007). Clustering with mixtures of log-concave distributions. Com-
putational Statistics & Data Analysis, 51(12), 6242-6251.

Hu, H., Wu, Y., and Yao, W. (2016). Maximum likelihood estimation of the mixture of log-concave
densities. Computational Statistics & Data Analysis, 101, 137-147.

See Also

mixLogconc

Examples

x = mvtnorm::rmvnorm(100, c(0, 0), matrix(c(2, 1, 1, 2), nrow = 2))
x = matrix(x, nrow = 100)
x[1:60, ] = x[1:60, ] + 5
EMlogc = mixLogconcHD(x, C = 2)

mixMPHD Semiparametric Mixture Model by Minimizing Profile Hellinger Dis-
tance

Description

‘mixMPHD’ provides an efficient and robust estimation of a mixture of unknown location-shifted
symmetric distributions using a semiparamatric method (Wu et al., 2017). As of version 1.1.0,
’mixMPHD’ supports a two-component model, which is defined as

h(x;θ, f) = πf(x− µ1) + (1− π)f(x− µ2),

where θ = (π, µ1, µ2)
⊤ is the parameter to estimate, f is an unknown density function that is

symmetric at zero. The parameters are estimated by minimizing the profile Hellinger distance
(MPHD) between the parametric model and a non-parametric density estimate.

Usage

mixMPHD(x, sigma.known = NULL, ini = NULL)

Arguments

x a vector of observations.

sigma.known standard deviation of one component (if known). Default is NULL.

ini initial values for the parameters. Default is NULL, which obtains the initial val-
ues using the mixOnekn function. It can be a list with the form of list(mu, pi,
sigma), where mu is a vector of component means, pi is a vector of component
mixing proportions, sigma is a vector of component standard deviations.
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Value

A list containing the following elements:

lik final likelihood.

pi estimated mixing proportion.

sigma estimated component standard deviation. Only returned when sigma.known is
not provided.

mu estimated component mean.

run total number of iterations after convergence.

References

Wu, J., Yao, W., and Xiang, S. (2017). Computation of an efficient and robust estimator in a
semiparametric mixture model. Journal of Statistical Computation and Simulation, 87(11), 2128-
2137.

See Also

mixOnekn for initial value calculation.

Examples

# Model: X ~ 0.3*N(0, 1) + 0.7*N(3, 1)
set.seed(4)
n = 100
p = 0.3
n1 = rbinom(1, n, p)
sigma1 = 1
sigma2 = 1
x1 = rnorm(n1, mean = 0, sd = sigma1)
x2 = rnorm(n - n1, mean = 3, sd = sigma2)
x = c(x1, x2)
ini = mixOnekn(x, sigma1)
mixMPHDest = mixMPHD(x, sigma1, ini = ini)

mixnorm Parameter Estimation for Uni- or Multivariate Normal Mixture Mod-
els

Description

‘mixnorm’ is used to estimate parameters of a normal mixture model with equal variance. The
function supports both one-dimensional and multi-dimensional data.

Usage

mixnorm(x, C = 2, sigma.known = NULL, ini = NULL, tol = 1e-05)
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Arguments

x an n by p matrix of observations where n is the number of observations and s is
the dimension of data.

C number of mixture components. Default is 2.

sigma.known a vector or matrix of component standard deviations. Default is NULL, which
means the standard deviations are unknown.

ini initial values for the parameters. Default is NULL, which randomly sets the ini-
tial values using the given observations. If specified, it can be a list with the form
of list(mu, pi, sigma), where mu is a vector of C component means, pi is a
vector of C mixing proportions, and sigma is a vector of C component standard
deviations (this element is only needed when sigma.known is not given).

tol stopping criteria for the algorithm. Default is 1e-05.

Value

A list containing the following elements:

mu estimated component means.

sigma estimated component standard deviations. Only returned when sigma.known is
not specified.

pi estimated mixing proportions.

p matrix containing estimated classification probabilities where the (i, j)th element
is the probability of the jth observation belonging to the ith component.

lik final likelihood.

See Also

complh, distlat

Examples

# See examples for the `complh' function.

mixOnekn Two-component Normal Mixture Estimation with One Known Compo-
nent

Description

‘mixOnekn’ is used for the estimation of the following two-component mixture model:

h(x;θ, f) = πf(x− µ1) + (1− π)f(x− µ2),

where θ = (π, µ1, µ2)
⊤ is the parameter to estimate, f is an unknown density function that is

symmetric at zero. The parameters are estimated by assuming f is the normal density and the first
component has a mean of 0. This function can be used to obtain initial values for the mixMPHD
function.
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Usage

mixOnekn(x, sigma.known = NULL)

Arguments

x a vector of observations.

sigma.known standard deviation of the first component (if known). Default is NULL, which
calculates the component standard deviations using the given observations x.

Value

A list containing the following elements:

mu estimated 2 component means, where the first mean is 0.

sigma estimated 2 component standard deviations.

pi estimated 2 mixing proportions.

lik final likelihood.

See Also

mixMPHD

Examples

# see examples for the `mixMPHD' function.

mixpf Profile Likelihood Method for Normal Mixture with Unequal Variance

Description

‘mixpf’ is used to estimate the following C-component univariate normal mixture model, using the
profile likelihood method (Yao, 2010), with the assumption that the ratio of the smallest variance to
the largest variance is k:

f(x;θ) =

C∑
j=1

πjϕ(x;µj , σ
2
j ),

where θ = (π1, µ1, σ1, .., πC , µC , σC)
⊤ is the parameter to estimate, ϕ(·;µ, σ2) is the normal

density with a mean of µ and a standard deviation of σ, and π’s are mixing proportions that sum up
to 1. Once the results are obtained, one can also find the maximum likelihood estimate (MLE) of k
by plotting the likelihood vs. k for different k values and finding the maximum interior mode in the
likelihood. See examples below.

Usage

mixpf(x, k = 0.5, C = 2, nstart = 20)
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Arguments

x a vector of observations.

k ratio of the smallest variance to the largest variance. Default is 0.5.

C number of mixture components. Default is 2.

nstart number of initializations to try. Default is 20.

Value

A list containing the following elements:

mu vector of estimated component means.

sigma vector of estimated component standard deviations.

pi vector of estimated mixing proportions.

lik final likelihood.

References

Yao, W. (2010). A profile likelihood method for normal mixture with unequal variance. Journal of
Statistical Planning and Inference, 140(7), 2089-2098.

Examples

set.seed(4)
n = 100
u = runif(n, 0, 1)
x2 = (u <= 0.3) * rnorm(n, 0, 0.5) + (u > 0.3) * rnorm(n, 1.5, 1)

# please set ngrid to 200 to get a smooth likelihood curve
ngrid = 5
grid = seq(from = 0.01, to = 1, length = ngrid)
likelihood = numeric()
for(i in 1:ngrid){

k = grid[i]
est = mixpf(x2, k)
lh = est$lik
likelihood[i] = lh

}

# visualize likelihood to find the best k
plot(grid, likelihood, type = "l", lty = 2, xlab = "k", ylab = "profile log-likelihood")
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mixreg MLE of Mixture Regression with Normal Errors

Description

‘mixreg’ provides the MLE estimates of a mixture of regression models with normal errors. The
result from this function can be used as initial values of the mixregRM2 function.

Usage

mixreg(x, y, C = 2, nstart = 20, tol = 1e-05)

Arguments

x an n by p data matrix where n is the number of observations and p is the number
of explanatory variables. The intercept term will automatically be added to the
data.

y an n-dimensional vector of response variable.

C number of mixture components. Default is 2.

nstart number of initializations to try. Default is 20.

tol stopping criteria (threshold value) for the EM algorithm. Default is 1e-05.

Value

A list containing the following elements:

pi C-dimensional vector of estimated mixing proportions.

beta C by (p + 1) matrix of estimated regression coefficients.

sigma C-dimensional vector of estimated standard deviations.

lik final likelihood.

run total number of iterations after convergence.

See Also

mixregRM2

Examples

data(tone)
y = tone$tuned
x = tone$stretchratio
k = 160
x[151:k] = 0
y[151:k] = 5
est = mixreg(x, y, 2, nstart = 1)



22 mixregBisq

mixregBisq Robust EM Algorithm For Mixture of Linear Regression Based on
Bisquare Function

Description

‘mixregBisq’ is used to robustly estimate the parameters of a mixture regression model using the
bisquare function based on multiple initial values (Bai et al., 2012). The solution is the mode of the
solutions obtained from all initial values.

Usage

mixregBisq(x, y, C = 2, nstart = 20)

Arguments

x an n by p data matrix where n is the number of observations and p is the number
of explanatory variables. The intercept term will automatically be added to the
data.

y an n-dimensional vector of response variable.

C number of mixture components. Default is 2.

nstart number of initializations to try. Default is 20.

Value

A list containing the following element:

pi C-dimensional vector of estimated mixing proportions.

beta C by (p + 1) matrix of estimated regression coefficients.

sigma C-dimensional vector of estimated standard deviations.

References

Bai, X., Yao, W., and Boyer, J. E. (2012). Robust fitting of mixture regression models. Computa-
tional Statistics & Data Analysis, 56(7), 2347-2359.

Examples

data(tone)
y = tone$tuned
x = tone$stretchratio
k = 160
x[151:k] = 0
y[151:k] = 5
est_bi = mixregBisq(x, y, 2, nstart = 20)



mixregLap 23

mixregLap Robust Mixture Regression with Laplace Distribution

Description

‘mixregLap’ provides robust estimation for a mixture of linear regression models by assuming that
the error terms follow the Laplace distribution (Song et al., 2014).

Usage

mixregLap(x, y, C = 2, nstart = 20, tol = 1e-05)

Arguments

x an n by p matrix of observations (one observation per row). The intercept will
be automatically added to x.

y an n-dimensional vector of response variable.

C number of mixture components. Default is 2.

nstart number of initializations to try. Default is 20.

tol stopping criteria (threshold value) for the EM algorithm. Default is 1e-05.

Value

A list containing the following elements:

beta C by (p + 1) matrix of estimated regression coefficients.

sigma C-dimensional vector of estimated component standard deviations.

pi C-dimensional vector of estimated mixing proportions.

lik final likelihood.

run total number of iterations after convergence.

References

Song, W., Yao, W., and Xing, Y. (2014). Robust mixture regression model fitting by Laplace distri-
bution. Computational Statistics & Data Analysis, 71, 128-137.

See Also

mixregT for robust estimation with t-distribution.
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Examples

data(tone)
y = tone$tuned # length(y) = 160
x = tone$stretchratio # length(x) = 160
k = 160
x[151:k] = 0
y[151:k] = 5
est_lap = mixregLap(x, y, 2)

mixregPvary Mixture of Regression Models with Varying Mixing Proportions

Description

‘mixregPvary’ is used to estimate a mixture of regression models with varying proportions:

Y |x,Z=z ∼
C∑

c=1

πc(z)N(x⊤βc, σ
2
c ).

The varying proportions are estimated using a local constant regression method (kernel regression).

Usage

mixregPvary(x, y, C = 2, z = NULL, u = NULL, h = NULL,
kernel = c("Gaussian", "Epanechnikov"), ini = NULL)

Arguments

x an n by p matrix of explanatory variables. The intercept will be automatically
added to x.

y an n-dimensional vector of response variable.

C number of mixture components. Default is 2.

z a vector of a variable with varying-proportions. It can be any of the variables in
x. Default is NULL, and the first variable in x will be used.

u a vector of grid points for the local constant regression method to estimate the
proportions. If NULL (default), 100 equally spaced grid points are automatically
generated between the minimum and maximum values of z.

h bandwidth for kernel density estimation. If NULL (default), the bandwidth is
calculated based on the method of Botev et al. (2010).

kernel character, determining the kernel function used in local constant method: Gaussian
or Epanechnikov. Default is Gaussian.

ini initial values for the parameters. Default is NULL, which obtains the initial
values using the regmixEM function of the ‘mixtools’ package. If specified, it
can be a list with the form of list(pi, beta, var), where pi is a vector of
length C of mixing proportions, beta is a (p + 1) by C matrix for component
regression coefficients, and var is a vector of length C of component variances.
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Value

A list containing the following elements:

pi_u length(u) by C matrix of estimated mixing proportions at grid points.

pi_z n by C matrix of estimated mixing proportions at z.

beta (p + 1) by C matrix of estimated component regression coefficients.

var C-dimensional vector of estimated component variances.

loglik final log-likelihood.

References

Huang, M. and Yao, W. (2012). Mixture of regression models with varying mixing proportions: a
semiparametric approach. Journal of the American Statistical Association, 107(498), 711-724.

Botev, Z. I., Grotowski, J. F., and Kroese, D. P. (2010). Kernel density estimation via diffusion. The
Annals of Statistics, 38(5), 2916-2957.

See Also

mixregPvaryGen

Examples

n = 100
C = 2
u = seq(from = 0, to = 1, length = 100)
true_beta = cbind(c(4, - 2), c(0, 3))
true_var = c(0.09, 0.16)
data = mixregPvaryGen(n, C)
x = data$x
y = data$y
est = mixregPvary(x, y, C, z = x, u, h = 0.08)

mixregPvaryGen Varying Proportion Mixture Data Generator

Description

‘mixregPvaryGen’ is used to generate a mixture of normal distributions with varying proportions:

Y |x,Z=z ∼
C∑

c=1

πc(z)N(x⊤βc, σ
2
c ).

See mixregPvary for details.

Usage

mixregPvaryGen(n, C = 2)
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Arguments

n number of observations.

C number of mixture components. Default is 2.

Value

A list containing the following elements:

x vector of length n.

y vector of length n.

true_p n by C matrix of probabilities of an observations belonging to each component.

See Also

mixregPvary

Examples

mixregPvaryGen(n = 100, C = 2)

mixregRM2 Robust Mixture Regression with Thresholding-Embedded EM Algo-
rithm for Penalized Estimation

Description

A robust mixture regression model that simultaneously conducts outlier detection and robust pa-
rameter estimation. It uses a sparse, case-specific, and scale-dependent mean-shift mixture model
parameterization (Yu et al., 2017):

f(yi|xi,θ,γi) =

C∑
j=1

πjϕ(yi;x
⊤βj + γijσj , σ

2
j ),

i = 1, · · · , n, where C is the number of components in the model, θ = (π1,β1, σ1, .., πC ,βC , σC)
⊤

is the parameter to estimate, and γi = (γi1, ..., γiC)
⊤ is a vector of mean-shift parameter for the ith

observation.

Usage

mixregRM2(x, y, C = 2, ini = NULL, nstart = 20, tol = 1e-02, maxiter = 50,
method = c("HARD", "SOFT"), sigma.const = 0.001, lambda = 0.001)
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Arguments

x an n by p data matrix where n is the number of observations and p is the number
of explanatory variables. The intercept term will automatically be added to the
data.

y an n-dimensional vector of response variable.

C number of mixture components. Default is 2.

ini initial values for the parameters. Default is NULL, which obtains the initial
values using the mixreg function. It can be a list with the form of list(pi,
beta, sigma, gamma), where pi is a vector of C mixing proportions, beta is
a C by (p + 1) matrix for regression coefficients of C components, sigma is a
vector of C standard deviations, and gamma is a vector of C mean shift values.

nstart number of initializations to try. Default is 20.

tol stopping criteria (threshold value) for the EM algorithm. Default is 1e-02.

maxiter maximum number of iterations for the EM algorithm. Default is 50.

method character, determining which threshold method to use: HARD or SOFT. Default is
HARD. See details.

sigma.const constraint on the ratio of minimum and maximum values of sigma. Default is
0.001.

lambda tuning parameter in the penalty term. It can be found based on BIC. See Yu et
al. (2017) for more details.

Details

The parameters are estimated by maximizing the corresponding penalized log-likelihood function
using an EM algorithm. The thresholding rule involes the estimation of γij corresponding to differ-
ent penalty:

• Soft threshold: γ̂ij = sgn(ϵij)(|ϵij | − λ∗
ij)+), corresponding to the l1 penalty.

• Hard threshold: γ̂ij = ϵijI(|ϵij | > λ∗
ij)), corresponding to the l0 penalty.

Here, ϵij = (yi−x⊤
i βj)/σj and (·)+ = max(·, 0). Also, λ∗

ij is taken as λ/p(k+1)
ij for soft threshold

and λ/
√

p
(k+1)
ij for hard threshold.

Value

A list containing the following elements:

pi C-dimensional vector of estimated mixing proportions.

beta C by (p + 1) matrix of estimated regression coefficients.

sigma C-dimensional vector of estimated standard deviations.

gamma n-dimensional vector of estimated mean shift values.

posterior n by C matrix of posterior probabilities of each observation belonging to each
component.

run total number of iterations after convergence.
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References

Yu, C., Yao, W., and Chen, K. (2017). A new method for robust mixture regression. Canadian
Journal of Statistics, 45(1), 77-94.

See Also

mixreg for initial value calculation.

Examples

data(tone)
y = tone$tuned
x = tone$stretchratio
k = 160
x[151:k] = 0
y[151:k] = 5
est_RM2 = mixregRM2(x, y, lambda = 1)

mixregT Robust Mixture Regression with T-distribution

Description

‘mixregT’ provides a robust estimation for a mixture of linear regression models by assuming that
the error terms follow the t-distribution (Yao et al., 2014). The degrees of freedom is adaptively
estimated.

Usage

mixregT(x, y, C = 2, maxdf = 30, nstart = 20, tol = 1e-05)

Arguments

x an n by p data matrix where n is the number of observations and p is the number
of explanatory variables. The intercept term will automatically be added to the
data.

y an n-dimensional vector of response variable.

C number of mixture components. Default is 2.

maxdf maximum degrees of freedom for the t-distribution. Default is 30.

nstart number of initializations to try. Default is 20.

tol threshold value (stopping criteria) for the EM algorithm. Default is 1e-05.
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Value

A list containing the following elements:

pi C-dimensional vector of estimated mixing proportions.

beta C by (p + 1) matrix of estimated regression coefficients.

sigma C-dimensional vector of estimated standard deviations.

lik final likelihood.

df estimated degrees of freedom of the t-distribution.

run total number of iterations after convergence.

References

Yao, W., Wei, Y., and Yu, C. (2014). Robust mixture regression using the t-distribution. Computa-
tional Statistics & Data Analysis, 71, 116-127.

See Also

mixregLap for robust estimation with Laplace distribution.

Examples

data(tone)
y = tone$tuned
x = tone$stretchratio
k = 160
x[151:k] = 0
y[151:k] = 5
est_t = mixregT(x, y, 2, nstart = 20, tol = 0.1)

mixregTrim Robust Regression Estimator Using Trimmed Likelihood

Description

‘mixregTrim’ is used for robust regression estimation of a mixture model using the trimmed like-
lihood estimator (Neykov et al., 2007). It trims the data to reduce the impact of outliers on the
model.

Usage

mixregTrim(x, y, C = 2, keep = 0.95, nstart = 20)
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Arguments

x an n by p data matrix where n is the number of observations and p is the number
of explanatory variables. The intercept term will automatically be added to the
data.

y an n-dimensional vector of response variable.

C number of mixture components. Default is 2.

keep proportion of data to be kept after trimming, ranging from 0 to 1. Default is
0.95.

nstart number of initializations to try. Default is 20.

Value

A list containing the following elements:

pi C-dimensional vector of estimated mixing proportions.

beta C by (p + 1) matrix of estimated regression coefficients.

sigma C-dimensional vector of estimated standard deviations.

lik final likelihood.

References

Neykov, N., Filzmoser, P., Dimova, R., and Neytchev, P. (2007). Robust fitting of mixtures using
the trimmed likelihood estimator. Computational Statistics & Data Analysis, 52(1), 299-308.

Examples

data(tone)
y = tone$tuned
x = tone$stretchratio
k = 160
x[151:k] = 0
y[151:k] = 5
est_TLE = mixregTrim(x, y, 2, 0.95, nstart = 1)

mixScale Continuous Scale Mixture Approach for Normal Scale Mixture Model

Description

‘mixScale’ is used to estimate a two-component continuous normal scale mixture model, based on
a backfitting method (Xiang et al., 2016):

p(x;θ, f) = πf1(x− µ1) + (1− π)f2(x− µ2),

where θ = (π, µ1, µ2). Here, f is assumed to be a member of F =
{
f(x)

∣∣ ∫ 1
σϕ(x/σ)dQ(σ)

}
,

where ϕ(x) is the standard normal density and Q is an unspecified probability measure on positive
real numbers.
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Usage

mixScale(x, ini = NULL, maxiter = 100)

Arguments

x a vector of observations.

ini initial values for the parameters. Default is NULL, which obtains the initial
values using the mixnorm function. If specified, it can be a list with the form
of list(pi, mu, sigma), where pi is a vector of 2 mixing proportions, mu is a
vector of 2 component means, and sigma is a vector of 2 component (common)
standard deviations.

maxiter maximum number of iterations for the EM algorithm. Default is 100.

Value

A list containing the following elements:

mu estimated component means.

pi estimated mixing proportions.

suppQ support of Q.

weightQ weight of Q corresponding to initial standard deviations.

loglik final log-likelihood.

run number of iterations after convergence.

References

Xiang, S., Yao, W., and Seo, B. (2016). Semiparametric mixture: Continuous scale mixture ap-
proach. Computational Statistics & Data Analysis, 103, 413-425.

See Also

mixnorm for initial value calculation.

Examples

require(quadprog)

#-----------------------------------------------------------------------------------------#
# Example 1: simulation
#-----------------------------------------------------------------------------------------#
n = 10
mu = c(-2.5, 0)
sd = c(0.8, 0.6)
pi = c(0.3, 0.7)
set.seed(2023)
n1 = rbinom(n, 1, pi[1])
x = c(rnorm(sum(n1), mu[1], sd[1]), rnorm(n - sum(n1), mu[2], sd[2]))
ini = list(pi = pi, mu = mu, sigma = sd)
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out = mixScale(x, ini)

#-----------------------------------------------------------------------------------------#
# Example 2: elbow data
#-----------------------------------------------------------------------------------------#
ini = mixnorm(elbow)
res = mixScale(elbow, ini)

mixTest Goodness of Fit Test for Finite Mixture Models

Description

‘mixTest’ is used to perform a goodness-of-fit test for finite mixture models (Wichitchan et al.,
2019). It returns five types of goodness-of-fit statistics and determines the number of components
in the mixture model based on the Kolmogorov-Smirnov (KS) statistic. The test is performed using
bootstrapping.

Usage

mixTest(x, alpha = 0.10, C.max = 10, nboot = 500, nstart = 5)

Arguments

x a vector of observations.

alpha significance level of the test.

C.max maximum number of mixture components considered in the test. The test is
performed for 2 to C.max components.

nboot number of bootstrap resampling. Default is 500.

nstart number of initializations to try. Default if 5.

Value

A list containing the following elements:

GOFstats vector of test statistics calculated from data, in the order of c(ks, cvm, kui,
wat, ad).

ks vector of the Kolmogorov-Smirnov (KS) statistic for each bootstrap sample.

cvm vector of the Cramer-Von Mises statistic for each bootstrap sample.

kui vector of the Kuiper’s statistic for each bootstrap sample.

wat vector of the Watson statistic for each bootstrap sample.

ad vector of the Anderson Darling statistic for each bootstrap sample.

result vector of test results based on the KS statistic. If the kth element in the vector
is 1, k-component mixture model is significant based on the KS statistic; If 0,
otherwise. See examples for details.
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References

Wichitchan, S., Yao, W., and Yang, G. (2019). Hypothesis testing for finite mixture models. Com-
putational Statistics & Data Analysis, 132, 180-189.

Examples

n = 100
mu = c(-2.5, 0)
sd = c(0.8, 0.6)
n1 = rbinom(n, 1, 0.3)
x = c(rnorm(sum(n1), mu[1], sd[1]), rnorm(n - sum(n1), mu[2], sd[2]))

# The result shows that two-component mixture model is statistically significant based on the KS.
out = mixTest(x, alpha = 0.10, C.max = 10, nboot = 500, nstart = 5)

NBA NBA data

Description

The data contains four descriptive statistics for all 95 guards for the 1992-1993 season. There are
many ways to measure the (statistical) performance of guards in the NBA. Of interest is how the the
player’s height (Height), minutes per game (MPG), and free throw percentage (FTP) affect points
per game (PPM).

Usage

NBA

Format

A data frame containing 95 observations and the following 4 variables.

Height: height of the player.

MPG: minutes per game.

FTP: free throw percentage.

PPM: points per game.

References

Chatterjee, S., Handcock, M. S., and Simonoff, J. S. (1995). A casebook for a first course in
statistics and data analysis (No. 04; QA276. 12, C4.). New York: Wiley.

Xiang, S. and Yao, W. (2020). Semiparametric mixtures of regressions with single-index for model
based clustering. Advances in Data Analysis and Classification, 14(2), 261-292.



34 semimrBin

ROE ROE data

Description

The data contains a total of 2110 Chinese listed companies on their Return on Equity (ROE), which
represents the amount of net income returned as a percentage of shareholders’ equity. ROE is
an important index used to measure a corporation’s profitability and is also a useful indicator for
fundamental analysts to assess the value of stocks.

Usage

ROE

Format

A data frame containing 2110 observations.

References

Huang, M., Wang, S., Wang, H., and Jin, T. (2018). Maximum smoothed likelihood estimation for
a class of semiparametric Pareto mixture densities. Statistics and Its Interface, 11(1), 31-40.

semimrBin Semiparametric Mixture of Binomial Regression with a Degenerate
Component with Time-Varying Proportion and Time-Varying Success
Probability

Description

‘semimrBin’ is used for semiparametric estimation of a mixture of binomial distributions with one
degenerate component, with time-varying proportions and time-varying success probability (Cao
and Yao, 2012).

Usage

semimrBin(t, x, N, tg = NULL, tune = 1, tol = 1e-02)

Arguments

t a vector of time variable along which w(t) and p(t) vary. See details for the
explanations of those notations.

x a vector of observed number of successes. The length of t and x must be the
same.

N a scalar, specifying the number of trials for the Binomial distribution.
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tg grid points of time used in the kernel regression for the estimation of w(t) and
p(t). Default is NULL, and 100 equally spaced grid points will automatically
generated using the minimum and maximum values of t.

tune a scalar related to the bandwidth selection and local estimation. Default is 1. If
greater than 0.2, the bandwidth is found based on the method in Cao and Yao
(2012). If smaller than or equal to 0.2, this value is used as the percentage of
data included in local estimation.

tol stopping criteria for the algorithm.

Details

The semiparametric mixture of binomial regression model is as follows:

w(t)×B(N, p(t)) + (1− w(t))×B(N, 0),

where B(N, p) is the probability mass function of a binomial distribution with the number of trials
N and the success probability p. Here, the second component is a degenerate distribution with mass
1 on 0. The time-varying proportion w(t) and success probability p(t) for the binomial components
are estimated by the kernel regression with some bandwidth.

Value

A list containing the following elements:

pt estimated time-varying success probabilities for the first component.

wt estimated time-varying proportions for the first component.

h bandwidth for the kernel regression. The bandwidth calculation can be found in
Section 4 of Cao and Yao (2012).

References

Cao, J. and Yao, W. (2012). Semiparametric mixture of binomial regression with a degenerate
component. Statistica Sinica, 27-46.

See Also

semimrBinOne, semimrBinFull

Examples

n = 100
tg = seq(from = 0, to = 1, length.out = 50)
t = seq(from = 0, to = 1, length.out = n)
pt = 0.5 * (1 - cos(2 * pi * t))
b = rbinom(n, 1, 0.2)
y = apply(X = matrix(pt), 1, rbinom, n = 1, size = 7)
y = ifelse(b == 1, 0, y)
ft = semimrBin(t = t, x = y, N = 7, tg = tg)
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semimrBinFull Semiparametric Mixture of Binomial Regression with a Degener-
ate Component with Constant Proportion and Time-Varying Success
Probability (Backfitting)

Description

‘semimrBinFull’ implements the backfitting method (Cao and Yao, 2012) for semiparametric esti-
mation of a mixture of binomial distributions with one degenerate component, with constant pro-
portion and time-varying success probability p.

Usage

semimrBinFull(t, x, N, tg = NULL, tune = 1, tol = 1e-02)

Arguments

t a vector of time variable along which p(t) varies.

x a vector of observed number of successes. The length of t and x must be the
same.

N a scalar, specifying the number of trials for the Binomial distribution.

tg grid points of time used in the kernel regression for the estimation of p(t). De-
fault is NULL, and 100 equally spaced grid points will automatically generated
using the minimum and maximum values of t.

tune a scalar, specifying the percentage of data included in local estimation. related
to the bandwidth selection and local estimation. Default is 1.

tol stopping criteria for the algorithm.

Details

The semiparametric mixture of binomial regression model is as follows:

w × (N, p(t)) + (1− w)×B(N, 0),

where B(N, p) is the probability mass function of a binomial distribution with the number of trials
N and the success probability p. Here, the second component is a degenerate distribution with mass
1 on 0. The time-varying success probability p(t) for the binomial components are estimated by the
kernel regression using a full iterative backfitting procedure with some bandwidth.

Value

A list containing the following elements:

pt estimated time-varying success probabilities for the first component.

w estimated constant proportion for the first component.

h bandwidth for the kernel regression. The bandwidth calculation can be found in
Section 4 of Cao and Yao (2012).



semimrBinOne 37

References

Cao, J. and Yao, W. (2012). Semiparametric mixture of binomial regression with a degenerate
component. Statistica Sinica, 27-46.

See Also

semimrBin, semimrBinOne

Examples

nobs = 50
tobs = seq(from = 0, to = 1, length.out = nobs)
pi1Tru = 0.4
ptTru = 0.3 * (1.5 + cos(2 * pi * tobs))
nfine = nobs
tfine = seq(from = 0, to = 1, length.out = nfine)
b = rbinom(nobs, size = 1, pi1Tru)
yobs = apply(X = matrix(ptTru), 1, rbinom, n = 1, size = 7)
yobs = ifelse(b == 1, 0, yobs)
ftfull = semimrBinFull(t = tobs, x = yobs, N = 7, tg = tfine)

semimrBinOne Semiparametric Mixture of Binomial Regression with a Degener-
ate Component with Constant Proportion and Time-Varying Success
Probability (One-step Backfitting)

Description

‘semimrBinOne’ implements the one-step backfitting method (Cao and Yao, 2012) for semipara-
metric estimation of a mixture of binomial distributions with one degenerate component, with con-
stant proportion and time-varying success probability.

Usage

semimrBinOne(t, x, N, tg = NULL, tune = 1, tol = 1e-02)

Arguments

t a vector of time variable along which p(t) varies.
x a vector of observed number of successes. The length of t and x must be the

same.
N a scalar, specifying the number of trials for the Binomial distribution.
tg grid points of time used in the kernel regression for the estimation of p(t). De-

fault is NULL, and 100 equally spaced grid points will automatically generated
using the minimum and maximum values of t.

tune a scalar, specifying the percentage of data included in local estimation. related
to the bandwidth selection and local estimation. Default is 1.

tol stopping criteria for the algorithm.
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Details

The semiparametric mixture of binomial regression model is as follows:

w ×B(N, p(t)) + (1− w)×B(N, 0),

where B(N, p) is the probability mass function of a binomial distribution with the number of trials
N and the success probability p. Here, the second component is a degenerate distribution with mass
1 on 0. The time-varying success probability p(t) for the binomial components are estimated by the
kernel regression using one-step estimation for faster computation with some bandwidth.

Value

A list containing the following elements:

pt estimated time-varying success probabilities for the first component.

w estimated constant proportion for the first component.

h bandwidth for the kernel regression. The bandwidth calculation can be found in
Section 4 of Cao and Yao (2012).

References

Cao, J. and Yao, W. (2012). Semiparametric mixture of binomial regression with a degenerate
component. Statistica Sinica, 27-46.

See Also

semimrBin, semimrBinFull

Examples

nobs = 50
tobs = seq(from = 0, to = 1, length.out = nobs)
pi1Tru = 0.4
ptTru = 0.3 * (1.5 + cos(2 * pi * tobs))
nfine = nobs
tfine = seq(from = 0, to = 1, length.out = nfine)
b = rbinom(nobs, size = 1, pi1Tru)
yobs = apply(X = matrix(ptTru), 1, rbinom, n = 1, size = 7)
yobs = ifelse(b == 1, 0, yobs)
ftonestep = semimrBinOne(t = tobs, x = yobs, N = 7, tg = tfine)
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semimrFull Semiparametric Mixture Regression Models with Single-index Propor-
tion and Fully Iterative Backfitting

Description

Assume that x = (x1, · · · ,xn) is an n by p matrix and Y = (Y1, · · · , Yn) is an n-dimensional
vector of response variable. The conditional distribution of Y given x can be written as:

f(y|x,α, π,m, σ2) =

C∑
j=1

πj(α
⊤x)ϕ(y|mj(α

⊤x), σ2
j (α

⊤x)).

‘semimrFull’ is used to estimate the mixture of single-index models described above, where ϕ(y|mj(α
⊤x), σ2

j (α
⊤x))

represents the normal density with a mean of mj(α
⊤x) and a variance of σ2

j (α
⊤x), and πj(·), µj(·), σ2

j (·)
are unknown smoothing single-index functions capable of handling high-dimensional non-parametric
problem. This function employs kernel regression and a fully iterative backfitting (FIB) estimation
procedure (Xiang and Yao, 2020).

Usage

semimrFull(x, y, h = NULL, coef = NULL, ini = NULL, grid = NULL, maxiter = 100)

Arguments

x an n by p matrix of observations where n is the number of observations and p is
the number of explanatory variables.

y an n-dimensional vector of response values.

h bandwidth for the kernel regression. Default is NULL, and the bandwidth is
computed in the function by cross-validation.

coef initial value of α⊤ in the model, which plays a role of regression coefficient in
a regression model. Default is NULL, and the value is computed in the function
by sliced inverse regression (Li, 1991).

ini initial values for the parameters. Default is NULL, which obtains the initial
values, assuming a linear mixture model. If specified, it can be a list with the
form of list(pi, mu, var), where pi is a vector of mixing proportions, mu is a
vector of component means, and var is a vector of component variances.

grid grid points at which nonparametric functions are estimated. Default is NULL,
which uses the estimated mixing proportions, component means, and component
variances as the grid points after the algorithm converges.

maxiter maximum number of iterations. Default is 100.
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Value

A list containing the following elements:

pi matrix of estimated mixing proportions.

mu estimated component means.

var estimated component variances.

coef estimated regression coefficients.

run total number of iterations after convergence.

References

Xiang, S. and Yao, W. (2020). Semiparametric mixtures of regressions with single-index for model
based clustering. Advances in Data Analysis and Classification, 14(2), 261-292.

Li, K. C. (1991). Sliced inverse regression for dimension reduction. Journal of the American
Statistical Association, 86(414), 316-327.

See Also

semimrOne, sinvreg for initial value calculation of α⊤.

Examples

xx = NBA[, c(1, 2, 4)]
yy = NBA[, 3]
x = xx/t(matrix(rep(sqrt(diag(var(xx))), length(yy)), nrow = 3))
y = yy/sd(yy)
ini_bs = sinvreg(x, y)
ini_b = ini_bs$direction[, 1]
est = semimrFull(x[1:50, ], y[1:50], h = 0.3442, coef = ini_b)

semimrGen Semiparametric Mixture Data Generator

Description

‘semimrGen’ is used to generate data for a two-component semiparametric mixture of regression
models:

pm1(x) + (1− p)m2(x),

where m1(x) = 4− sin(2πx) and m2(x) = 1.5+ cos(3πx). This function is used in the examples
for the semimrLocal and semimrGlobal functions. See the examples for details.

Usage

semimrGen(n, p = 0.5, var = c(.1, .1), u)
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Arguments

n a scalar, specifying the number of observations in x.

p a scalar, specifying the probability of an observation belonging to the first com-
ponent, i.e., p in the model.

var a vector of variances of observations for the two components.

u a vector of grid points for x. If some specific explanatory variable are needed,
create a vector and assign to u.

Value

A list containing the following elements:

x vector of length n, which represents the explanatory variable that is randomly
generated from Uniform(0,1).

y vector of length n, which represent the response variable that is generated based
on the mean functions m1(x) and m2(x), with the addition of normal errors
having a mean of 0 and a standard deviation specified by the user.

true_mu n by 2 matrix containing the values of m1(x) and m2(x) at x.

true_mu_u length(u) by 2 matrix containing the values of m1(x) and m2(x) at u.

See Also

semimrLocal, semimrGlobal, semimrBinFull

Examples

n = 100
u = seq(from = 0, to = 1, length = 100)
true_p = c(0.3, 0.7)
true_var = c(0.09, 0.16)
out = semimrGen(n = n, p = true_p[1], var = true_var, u = u)

semimrGlobal Semiparametric Mixtures of Nonparametric Regressions with Global
EM-type Algorithm

Description

‘semimrGlobal’ is used to estimate a mixture of regression models, where the mixing proportions
and variances remain constant, but the component regression functions are smooth functions (m(·))
of a covariate. The model is expressed as follows:

C∑
j=1

πjϕ(y|m(xj), σ
2
j ).

This function provides the one-step backfitting estimate using the global EM-type algorithm (GEM)
(Xiang and Yao, 2018). As of version 1.1.0, this function supports a two-component model.
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Usage

semimrGlobal(x, y, u = NULL, h = NULL, ini = NULL)

Arguments

x a vector of covariate values.

y a vector of response values.

u a vector of grid points for spline method to estimate the proportions. If NULL
(default), 100 equally spaced grid points are automatically generated between
the minimum and maximum values of x.

h bandwidth for the nonparametric regression. If NULL (default), the bandwidth
is calculated based on the method of Botev et al. (2010).

ini initial values for the parameters. Default is NULL, which obtains the initial
values using regression spline approximation. If specified, it can be a list with
the form of list(pi, mu, var), where pi is a vector of length 2 of mixing
proportions, mu is a length(x) by 2 matrix of component means, and var is a
vector of length 2 of component variances.

Value

A list containing the following elements:

pi vector of length 2 of estimated mixing proportions.

mu length(x) by 2 matrix of estimated mean functions at x, m(x).

mu_u length(u) by 2 matrix of estimated mean functions at grid point u, m(u).

var vector of length 2 estimated component variances.

lik final likelihood.

References

Xiang, S. and Yao, W. (2018). Semiparametric mixtures of nonparametric regressions. Annals of
the Institute of Statistical Mathematics, 70, 131-154.

Botev, Z. I., Grotowski, J. F., and Kroese, D. P. (2010). Kernel density estimation via diffusion. The
Annals of Statistics, 38(5), 2916-2957.

See Also

semimrLocal, semimrGen

Examples

# produce data that matches the description using semimrGen function
# true_mu = (4 - sin(2 * pi * x), 1.5 + cos(3 * pi * x))
n = 100
u = seq(from = 0, to = 1, length = 100)
true_p = c(0.3, 0.7)
true_var = c(0.09, 0.16)
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out = semimrGen(n, true_p[1], true_var, u)

x = out$x
y = out$y
true_mu = out$true_mu
true = list(true_p = true_p, true_mu = true_mu, true_var = true_var)

# estimate parameters using semimrGlobal function.
est = semimrGlobal(x, y)

semimrLocal Semiparametric Mixtures of Nonparametric Regressions with Local
EM-type Algorithm

Description

‘semimrLocal’ is used to estimate a mixture of regression models, where the mixing proportions
and variances remain constant, but the component regression functions are smooth functions (m(·))
of a covariate. The model is expressed as follows:

C∑
j=1

πjϕ(y|m(xj), σ
2
j ).

This function provides the one-step backfitting estimate using the local EM-type algorithm (LEM)
(Xiang and Yao, 2018). As of version 1.1.0, this function supports a two-component model.

Usage

semimrLocal(x, y, u = NULL, h = NULL, ini = NULL)

Arguments

x a vector of covariate values.

y a vector of response values.

u a vector of grid points for spline method to estimate the proportions. If NULL
(default), 100 equally spaced grid points are automatically generated between
the minimum and maximum values of x.

h bandwidth for the nonparametric regression. If NULL (default), the bandwidth
is calculated based on the method of Botev et al. (2010).

ini initial values for the parameters. Default is NULL, which obtains the initial
values using regression spline approximation. If specified, it can be a list with
the form of list(pi, mu, var), where pi is a vector of length 2 of mixing
proportions, mu is a length(x) by 2 matrix of component means with length(x)
rows, and var is a vector of length 2 of variances.
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Value

A list containing the following elements:

pi vector of length 2 of estimated mixing proportions.

mu length(x) by 2 matrix of estimated mean functions at x, m(x).

mu_u length(u) by 2 matrix of estimated mean functions at grid point u, m(u).

var vector of length 2 estimated component variances.

lik final likelihood.

References

Xiang, S. and Yao, W. (2018). Semiparametric mixtures of nonparametric regressions. Annals of
the Institute of Statistical Mathematics, 70, 131-154.

Botev, Z. I., Grotowski, J. F., and Kroese, D. P. (2010). Kernel density estimation via diffusion. The
Annals of Statistics, 38(5), 2916-2957.

See Also

semimrGlobal, semimrGen

Examples

# produce data that matches the description using semimrGen function
# true_mu = (4 - sin(2 * pi * x), 1.5 + cos(3 * pi * x))
n = 100
u = seq(from = 0, to = 1, length = 100)
true_p = c(0.3, 0.7)
true_var = c(0.09, 0.16)
out = semimrGen(n, true_p[1], true_var, u)

x = out$x
y = out$y
true_mu = out$true_mu
true = list(true_p = true_p, true_mu = true_mu, true_var = true_var)

# estimate parameters using semimrLocal function.
est = semimrLocal(x, y)

semimrOne Semiparametric Mixture Regression Models with Single-index and
One-step Backfitting
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Description

Assume that x = (x1, · · · ,xn) is an n by p matrix and Y = (Y1, · · · , Yn) is an n-dimensional
vector of response variable. The conditional distribution of Y given x can be written as:

f(y|x,α, π,m, σ2) =

C∑
j=1

πj(α
⊤x)ϕ(y|mj(α

⊤x), σ2
j (α

⊤x)).

‘semimrFull’ is used to estimate the mixture of single-index models described above, where ϕ(y|mj(α
⊤x), σ2

j (α
⊤x))

represents the normal density with a mean of mj(α
⊤x) and a variance of σ2

j (α
⊤x), and πj(·), µj(·), σ2

j (·)
are unknown smoothing single-index functions capable of handling high-dimensional non-parametric
problem. This function employs kernel regression and a one-step estimation procedure (Xiang and
Yao, 2020).

Usage

semimrOne(x, y, h, coef = NULL, ini = NULL, grid = NULL)

Arguments

x an n by p matrix of observations where n is the number of observations and p is
the number of explanatory variables.

y a vector of response values.

h bandwidth for the kernel regression. Default is NULL, and the bandwidth is
computed in the function by cross-validation.

coef initial value of α⊤ in the model, which plays a role of regression coefficient in
a regression model. Default is NULL, and the value is computed in the function
by sliced inverse regression (Li, 1991).

ini initial values for the parameters. Default is NULL, which obtains the initial
values, assuming a linear mixture model. If specified, it can be a list with the
form of list(pi, mu, var), where pi is a vector of mixing proportions, mu is a
vector of component means, and var is a vector of component variances.

grid grid points at which nonparametric functions are estimated. Default is NULL,
which uses the estimated mixing proportions, component means, and component
variances as the grid points after the algorithm converges.

Value

A list containing the following elements:

pi estimated mixing proportions.

mu estimated component means.

var estimated component variances.

coef estimated regression coefficients.
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References

Xiang, S. and Yao, W. (2020). Semiparametric mixtures of regressions with single-index for model
based clustering. Advances in Data Analysis and Classification, 14(2), 261-292.

Li, K. C. (1991). Sliced inverse regression for dimension reduction. Journal of the American
Statistical Association, 86(414), 316-327.

See Also

semimrFull, sinvreg for initial value calculation of α⊤.

Examples

xx = NBA[, c(1, 2, 4)]
yy = NBA[, 3]
x = xx/t(matrix(rep(sqrt(diag(var(xx))), length(yy)), nrow = 3))
y = yy/sd(yy)
ini_bs = sinvreg(x, y)
ini_b = ini_bs$direction[, 1]

# used a smaller sample for a quicker demonstration of the function
set.seed(123)
est_onestep = semimrOne(x[1:50, ], y[1:50], h = 0.3442, coef = ini_b)

sinvreg Dimension Reduction Based on Sliced Inverse Regression

Description

‘sinvreg’ is used in the examples for the semimrFull and semimrOne functions to obtain initial
values based on sliced inverse regression (Li, 1991).

Usage

sinvreg(x, y, nslice = NULL)

Arguments

x an n by p matrix of observations where n is the number of observations and p is
the number of explanatory variables.

y an n-dimentionsl vector of response values.

nslice number of slices. Default is 10.
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Value

A list containing the following elements:

direction direction vector.

reducedx reduced x.

eigenvalue eigenvalues for reduced x.

nobs number of observations within each slice.

References

Li, K. C. (1991). Sliced inverse regression for dimension reduction. Journal of the American
Statistical Association, 86(414), 316-327.

See Also

semimrFull, semimrOne

Examples

# See examples for the 'semimrFull' function.

tone Tone perception data

Description

The data originates from an experiment of Cohen (1980) and has been analyzed in de Veaux (1989)
and Viele and Tong (2002). In this experiment, a pure fundamental tone was played to a trained mu-
sician. To create different auditory conditions, electronically generated overtones were introduced,
which were determined by a stretching ratio. When stretchratio = 2.0, it aligns with the har-
monic pattern usually heard in traditional definite pitched instruments. The musician was asked to
tune an adjustable tone to the octave above the fundamental tone. The variable tuned gives the ratio
of the adjusted tone to the fundamental tone. For example, tuned = 2.0, would be the correct tuning
for all stretchratio values. This dataset comprises data collected from 150 trials conducted with
the same musician. In the original study, data were gathered from an additional four musicians as
well. The dataset and the description have been sourced from the tonedata of the ‘fpc’ package.

Usage

tone

Format

A data frame containing 150 observations and the following 2 variables.

stretchratio: electronically generated overtones added to a pure fundamental tone.

tuned: ratio of the adjusted tone to the fundamental tone.
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Source

Original source:

Cohen, E. (1980). Inharmonic tone perception. Unpublished Ph. D. Dissertation, Stanford Univer-
sity.

R source:

Hennig C (2023). fpc: Flexible Procedures for Clustering. R package version 2.2-10, https:
//CRAN.R-project.org/package=fpc

Benaglia, T., Chauveau, D., Hunter, D. R., and Young, D. S. (2010). mixtools: an R package for
analyzing mixture models. Journal of statistical software, 32, 1-29.

References

De Veaux, R. D. (1989). Mixtures of linear regressions. Computational Statistics & Data Analysis,
8(3), 227-245.

Viele, K. and Tong, B. (2002). Modeling with mixtures of linear regressions. Statistics and Com-
puting, 12, 315-330.

https://CRAN.R-project.org/package=fpc
https://CRAN.R-project.org/package=fpc
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