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Abstract

Let py, /gy be the n-th convergent of a real irrational number «, and let £, = ag, —pp.
In this paper we investigate various sums of the type > e, Y. [em|, and Y ena™.
The main subject of the paper is bounds for these sums. In particular, we investigate
the behaviour of such sums when « is a quadratic surd. The most significant properties
of the error sums depend essentially on Fibonacci numbers or on related numbers.

1 Statement of results for arbitrary irrationals
Given a real irrational number « and its regular continued fraction expansion

a = (ag;ay,as,...) (ap €Z,a, eNforv>1),

the convergents p,/q, of a form a sequence of best approximating rationals in the following
sense: for any rational p/q satisfying 1 < ¢ < ¢, we have
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The convergents p,/q, of o are defined by finite continued fractions

Pn

. = (ap;ay,...,a,).
n
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The integers p,, and ¢, can be computed recursively using the initial values p_1 = 1, pg = ao,
g-1 =0, qo = 1, and the recurrence formulae

Pn = ApPn—1+ DPn—2, On = GnpQn-1+ Qn-2 (1)
with n > 1. Then p,/q, is a rational number in lowest terms satisfying the inequalities

1 < | < 1
qnQ — Pn
Gn + qn+1 Gn+1

(n>0). 2)
The error terms ¢,« — p,, alternate, i.e., sgn (¢, —p,) = (—1)". For basic facts on continued
fractions and convergents see [4, 5, 8.

Throughout this paper let

p:

The Fibonacci numbers F,, are defined recursively by F'.y =1, Fy =0, and F,, = F,, 1+ F, _»
for n > 1. In this paper we shall often apply Binet’s formula,

n

1 1
Fn:—<p"—(——>> n>0). 3
7 p (n > 0) (3)
While preparing a talk on the subject of so-called leaping convergents relying on the papers
2, 6, 7], the author applied results for convergents to the number o = e = exp(1). He found
two identities which are based on formulas given by Cohn [1]:

o)

1
> (gne = pn) = 2/ exp(t?) dt — 2e +3 = 0.4887398...

n=0 0

0 1
> e = pal = 26/ exp(—t?) dt —e = 1.3418751 ... .
n=0 0

These identities are the starting points of more generalized questions concerning error series

of real numbers «.

1.) What is the maximum size M of the series Y °_|gna — pm| 7 One easily concludes

that M > (14 v/5)/2, because > °_, | (1 + V5)/2 —pm| = (1+ V5)/2.

2.) Is there a method to compute Y ~_ |gma — pm| explicitly for arbitrary real quadratic
irrationals 7

The series >~ |gm—pp| € [0, M] measures the approximation properties of « on average.
The smaller this series is, the better rational approximations o has. Nevertheless, o can be
a Liouville number and Y °_, [gna — pm| takes a value close to M. For example, let us
consider the numbers
a, = (1; 1,0, apeq, Gpaa,y -0 )
——

n



for even positive integers n, where the elements a,, 11, a,o, ... are defined recursively in the
following way. Let pr/qx = (1;1,...,1) for k=0,1,...,n and set
k

e R B qZ(clzn + qn-1)
ant2 = QZI% ) On+2 = On42Qn+1 Tt Gn = q:;j-l (QZH + qnfl) )
apy3 = qﬁig ) Gn+3 = Qn+3Qn+2 T Qny1 =
and so on. In the general case we define aj. by agy; = ¢F for k =n,n+1,.... Then we
have with (1) and (2) that
1 1 1
O<’an—@ < < 5 = s (k>n).
Ak Akqk+1 Ak+19j dy,

Hence «, is a Liouville number. Now it follows from (9) in Theorem 2 below with 2k = n
and ng = (n/2) — 1 that

00 n—1
n 1
g ’qman_pm’ > § ‘Qman_pm‘ = (anl_l)(p_an)—i_p_pl 2 P pn—l ’

We shall show by Theorem 2 that M = p, such that the error sums of the Liouville numbers
o, tend to this maximum value p for increasing n.

We first treat infinite sums of the form ) |g,a — p,| for arbitrary real irrational numbers
a = (1;a;,as,...), when we may assume without loss of generality that 1 < a < 2.

Proposition 1. Let a = (1;aq,as,...) be a real irrational number. Then for every integer
m > 0, the following two inequalities hold: Firstly,

|G2m@ — Pom| + [@2m+10 = Pama| < % a (4)
provided that either
Ao Gomi1 > 1 or (agm = Qomy1 = 1 and ayag- - agpy_q > 1). (5)
Secondly,
|G2m = Pom| + |@2mi10 — Pt | = pgim +Enlp—a)  (0<m<Ek), (6)
provided that
a, = Gy = ...= Qo1 = 1. (7)

In the second term on the right-hand side of (6), p — « takes positive or negative values
according to the parity of the smallest subscript » > 1 with a,, > 1: For odd r we have p > «,
otherwise, p < a.

Next, we introduce a set M of irrational numbers, namely

M = {QER\Q ‘ dke N : a:<1;1,...,1,a2k+1,a2k+2,...) /\(12k+1>1} .

Note that p > a for « € M. Our main result for real irrational numbers is given by the
subsequent theorem.



Theorem 2. Let 1 < o < 2 be a real irrational number and let g,n > 0 be integers with

n > 2g. Set ng := |n/2]. Then the following inequalities hold.
1.) For a ¢ M we have

g —p| < ptT = pTt
v=2g
with equality for a = p and every odd n > 0.
2.) Forae M, say o= (1;1,...,1,a0p11, Gokr2, - - .) With asgyq > 1, we have

n

Z e —pu| < (Farr — Fag1)(p— @) + p' 72 — p72m0t,

v=2g
with equality for n = 2k — 1.
3.) We have
Z ‘qya _pu’ S p172g7
v=2g

with equality for o = p.
In particular, for any positive € and any even integer n satisfying

n > log(p/e) 7

log p

Z’qua_pv| <e.

it follows that

(8)

(10)

For v > 1 we know by ¢ > 2 and by (2) that |g,a — p,| < 1/q41 < 1/¢2 < 1/2, which
implies |g, o — p,| = ||q ||, where ||3|| denotes the distance of a real number 3 to the nearest
integer. For a = (ag; a1, as,...), |[goa — po| = a — ag = {a} is the fractional part of a.

Therefore, we conclude from Theorem 2 that

D el < p—{a}.
v=1

In particular, we have for o = p that

> lavpll = 1.
v=1

The following theorem gives a simple bound for ) (gno — pp).

Theorem 3. Let a be a real irrational number. Then the series Y > (gm0 — pm)x

verges absolutely at least for |z| < p, and

0 < Z(Qma_pm) < 1.
m=0

Both the upper bound 1 and the lower bound 0 are best possible.

con-

The proof of this theorem is given in Section 3. We shall prove Proposition 1 and

Theorem 2 in Section 4, using essentially the properties of Fibonacci numbers.
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2 Statement of Results for Quadratic Irrationals

In this section we state some results for error sums involving real quadratic irrational numbers
«. Any quadratic irrational « has a periodic continued fraction expansion,

a = (ap;ay,...,a,, Ty, ..., T T1,.... T, ...) = (ap;a1,...,a,,T1,....,T.),

say. Then there is a linear three-term recurrence formula for z, = py,.s and 2z, = ¢rnis
(s=0,1,...,7—1), [3, Corollary 1]. This recurrence formula has the form

Znao = Gzpy1 £ 2, (rn > w).

Here, G denotes a positive integer, which depends on a and r, but not on n and s. The
number GG can be computed explicitly from the numbers 77, ..., 7, of the continued fraction
expansion of . This is the basic idea on which the following theorem relies.

Theorem 4. Let o be a real quadratic irrational number. Then

S (e — pu)a™ € Qlal(a)

m=0

It is not necessary to explain further technical details of the proof. Thus, the generat-
ing function of the sequence (¢, — pm),,> is a rational function with coefficients from Q|a/].

Example 5. Let o = /7 = (2;1,1,1,4). Then

o w_ B = 2+ VD) 4 B+ VT)z— (5+2V7)
2 (4nVT = p)a™ = vt — (8+3V7) ' )

m=0
In particular, for x = 1 and x = —1 we obtain

- 21 — 57

> (GuVT=pm) = T\/— = 0.555088817... ,
m=0

= T+5V7

> lamVT = pml = +T\/_ — 1.444911182... .
m=0

Next, we consider the particular quadratic surds

n -+ v4 + n?

a = 5 = (n;n,m,n,...)

and compute the generating function of the error terms g,,a — p,,.



Corollary 6. Let n > 1 and o = (n + V4 +n?)/2. Then

= 1
n;]‘]ma pm :I—FOé’

particularly

Z qmQ _pm -
m=0

S 1 OOQma_pm 1
@ — Dm| = , I = Pm_ (1 —).
Zlqa ol = — 2 T og (14—

For the number p = (1 + v/5)/2 we have p,, = Fj42 and ¢, = F,,1. Hence, using
/(p+1)=3B-vV5)/2=1+p,1/(p—1)=p,and 1 +1/p = p, we get from Corollary 6

o0 o0 o

Z(Fm+lp_Fm+2) = 1+p7 Z‘Fm+lp_Fm+2| =P, Z

Foi1p — Fyo
m+1

= logp.

(12)
Similarly, we obtain for the number o = /7 from (11):

Z VT~ P _ / il Chs f)x TEHVDE - (B+2VD) ) seessaonos.

m+ 1 — (8+3V7)

3 Proof of Theorem 3

Throughout this paper we shall use the abbreviations ¢,,(«) = &, := ¢ — p, and e(a) =
Yo _olem(a)]. The sequence (|e,|),,~, converges strictly decreasing to zero. Since g9 > 0
and €,,,,41 < 0, we have

coter < Zsm < &o-

m=0
Put ay = |a], 0 := ey = a — ap, so that 0 < § < 1. Moreover,

1
got+er =0+aa—(apay +1) =04+a0—1 =0+ {gJQ—l.

Choosing an integer k > 1 satisfying

L <0<
k+1 k’
we get
1 1 k
- 1> — 4 —-1 =
9%9“ T 0,

which proves the lower bound for ) &,,.
In order to estimate the radius of convergence for the series ) e,,2™ we first prove the
inequality

qm = Fii (m >0), (13)



which follows inductively. We have ¢qo =1 = F}, ¢ = a; > 1 = F5, and
dm = Am{dm-—1 + dm—2 Z dm—1 + dm—2 Z Fm + Fm—l - Fm+1 (m Z 2) ;

provided that (13) is already proven for ¢,,_1 and ¢,,_. With Binet’s formula (3) and (13)
we conclude that

<pm+2 _ ( _ %)m”) > %pm (m >0). (14)

Sl

Qm—i-l Z

Hence, we have

™ z\"
lem|z™ = |gma — pla™ < < \/g(—) (m >0).
qm+1 P
It follows that the series ) e,,z™ converges absolutely at least for |z| < p. In order to
prove that the upper bound 1 is best possible, we choose 0 < £ < 1 and a positive integer n

satisfying

Put

Z(Qman —Pm) = Qn— Z |Gm = D
m=0 m=1
I 1 I 1
> 1——— >1——— —
n m=1 Im+1 n m=1 m
SRR NECE S
- n n — pm—l
1 5
- 1——(1+ﬂ> >1-¢
n p—1
For the lower bound 0 we construct quadratic irrational numbers 3, := (0;7 ) and complete
the proof of the theorem by similar arguments. O]

4 Proofs of Proposition 1 and Theorem 2

Lemma 7. Let o = (ag; ay,as,...) be a real irrational number with convergents py,/qm. Let
n > 1 be a subscript satisfying a, > 1. Then

An+k > Fn+k+1 + Fk+1Fn (k > 0) . (15)



In the case n = k+ 1 =0 (mod 2) we additionally assume that n > 4, k > 3. Then

Foiipr + Frpa By > p"F. (16)

When « — p & Z, the inequality (15) with m = n + k is stronger than (13).

Proof. We prove (15) by induction on k. Using (1) and (13), we obtain for £ = 0 and k = 1,
respectively,

dn = QnQn-1+ gn-2 > 2Fn+Fn71 - (Fn_'_anl)—i_Fn - Fn+1+F1Fn7
Gn+1 = anJrIQn_'—anl > qn + Qn—1 > (Fn+1+Fn)+Fn = Fn+2+F2Fn-

Now, let £ > 0 and assume that (15) is already proven for ¢,.x and ¢, x1. Then

ntk+2 = Quik+1 T Gk
> (Foskre + FrpoFrn) + (Fogir + Fr Fy)
= Fn+k+3 + Fk+3Fn .

This corresponds to (15) with &k replaced by k + 2. In order to prove (16) we express the
Fibonacci numbers £}, by Binet’s formula (3). Hence, we have

Foikrr + Fr By
11 11 1 1 /(=)™ (=1)F
o n-+k R e N _
- <p<5+¢5>+( UG5~ 8) g 5 U+ ) |-

Case 1: Let n=k =1 (mod 2).
In particular, we have k£ > 1. Then

Froirpr + Fr By,
1 1 1

ik 1 1 1 1 1
= F P (g + E) - <ﬁ o g) 22kt - 5 (p2n—1 - p2k+1)
1 1 1
> n—+k (_ _) o — n+k )
P (P 5 + /5 507 P

Case 2: Letn=1 (mod 2), k=0 (mod 2).
In particular, we have n > 1 and k£ > 0. First, we assume that £ > 2. Then, by similar
computations as in Case 1, we obtain

Froippr + P Fy

otk 1 1 1 1 1 1 1 1 ek
= P p (g + ﬁ) - (E - g) p2n+2k+l - 5 <p2n—1 + p2k+1) =P



For k = 0 and some odd n > 1 we get

1 1 1 1\ 1 1
P Pt > (o (e L) - (L= L L) o
k1 T L1 P (P 5‘1‘\/5 N p3+5p p

Case 3: Letn=0 (mod 2), k=1 (mod 2).
By the assumption of the lemma, we have n > 4 and k > 3. Then

ln+k+1 }k+1}n
1 1 1 1 1 1 1 1
— n+k n—+k
P <P<g+ﬁ)_(ﬁ_g>m+g<_w—w))>P :

Case 4: Letn=k=0 (mod 2).
In particular, we have n > 2. Then

Foierr + Fre By

IS 11 1 1 1 1 ek

=/ p(@*ﬁ)*(ﬁ‘é)%%(‘%*%) Z
This completes the proof of Lemma 7. [

Lemma 8. Let m be an integer. Then
p2m
< 1 (m>1), (17)
Fomy2
p2m( L4 ! ) <1  (m>0) (18)
Fomts  Fomis + Fomi -

Proof. For m > 1 we estimate Binet’s formula (3) for Fy,, o using 4m + 2 > 6:

2m

_ P 2 1 P, 1 2m
Fomye = E(P _p4m+2) > %< _E> > p

Similarly, we prove (18) by

I3 _ 1 2n+1 1 p* !
M4+l = %O) +p2"+1> > 7 (n>0).
Hence,
ﬂ2m< Ly ! ><p2m<\/5 V5 )<1.
Fopys  Fomgs + Fompr p>mt3 o p2mEd o p2mAd
The lemma is proven. O



Proof of Proposition 1: Firstly, we assume the hypotheses in (5) and prove (4). Asin the
proof of Theorem 3, put ag = |a], 0 := a —ag, a3 = |1/0] with 0 <0 <1 and gg =60 < 1.
Then

1
|50‘+‘€1’ = 9+(a0a1+1)—a1a =0+1—a0 = Q_i_l_{gJ@.

We have 0 < 6 < 1/2, since otherwise for # > 1/2, we obtain a; = [1/0] = 1. With
ap = a; = 1 the conditions in (5) are unrealizable both. Hence, there is an integer k > 2
with
L 0 < l
kel 0 Tk

Obviously, it follows that [1/6] = k, and therefore

1 1 k %+1 5
_ | = _ — = < — >2).
o+1-|glo < Frl kGt S k22

Altogether, we have proven that

ot

leol +ea] < = < 1. (19)

(@)

Therefore we already know that the inequality (4) holds for m = 0. Thus, we assume m > 1
in the sequel. Noting that 5, > 0 and e5,,,1 < 0 hold for every integer m > 0, we may
rewrite (4) as follows:

(0 < ) (P2m+1 — Pam) — A(Gam+1 — Gom) < pi (m=>0). (20)

2m
We distinguish three cases according to the conditions in (5).

Case 1: Let agmi1 > 2.
Additionally, we apply the trivial inequality as,42 > 1. Then, using (2), (13), and (18),

1 1
l€am| + |€2mt1] < +
d2m+1 q2m+2
1 1
< +
2G2m + G2m—1  G2m+1 T Gom
1 1
< +
2G2m + G2m—1  3Qm + @m-1
1 1
< +
2941 + Fopy  3Fopi + Fopy
1
P

Case 2:  Let agy,y1 = 1 and ag,, > 2.
Here, we have pay, 41 — Pam = Dom + Pam—1 — D2m = Dam—1, and similarly gom4+1 — gam = @am—1-

10



Therefore, by (20), it suffices to show that 0 < po,,_1 — agom_1 < p~ 2™ for m > 1. This
follows with (2), (13), and (17) from

1
0 < pom—1—aqem-1 < —
2m
1 1
< <
2¢om—1 + Gam—2 2F5,, + Fopy
! < ! (m>1)
= —_— m .
Fopio p*m a
Case 3: Let agy, = agme1 =1 A ajag---agpm-1 > 1.
Since agm41 = 1, we again have (as in Case 2):
1
0 < |eam| + [e2ms1| = Pam—1 — aGom—1 < —. (21)
2m

By the hypothesis of Case 3, there is an integer n satisfying 1 < n < 2m — 1 and a, > 2.
We define an integer k£ > 1 by setting 2m = n + k. Then we obtain using (15) and (16),

2m

Q2m = 4n+k > Fn+k+1 +Fk+1Fn > ,On+k = p

From the identity n+ k = 2m it follows that the particular condition n = k+1 =0 (mod 2)
in Lemma 7 does not occur. Thus, by (21), we conclude that the desired inequality (4).

In order to prove (6), we now assume the hypothesis (7), i.e., ajas -+ - ag1 = land 0 < m <
k. From 2m —1 <2k —1and ayp =ay = ... = ag,_1 = 1 it is clear that ps,,_1 = Fb,, 41 and
Gom—1 = Fop,. Since agp1 =1 and 0 < m < k, we have

|g2m@ — Pom| + |Gom+10¢ — Pam1]
= Pom-1— QQem—1 = Fomy1 — aFoy = Fopiyr — pFoy + (p — @) Faoypy

From Binet’s formula (3) we conclude that

1 1 1 Com

F2m+1_pF2m = %(fﬂm“'l +p2m_1) =p )
which finally proves the desired identity (6) in Proposition 1. ]
Lemma 9. Let k > 1 be an integer, and let o := (1;1,...,1,aox11, aopso...) be a real

irrational number with partial quotients asy1 > 1 and a, > 1 for p > 2k +2. Then we have
the inequalities

1
(Fop1 — D)(p—a) < e |€2k| — [e2k+1] (22)
for asi1 > 3, and
1 1
(Foro1 — D(p—a) < e + T |ear] — lears1] — learral — le2n+a] (23)

for agpr = 2.

11



One may conjecture that (22) also holds for ag; = 2.

Example 10. Let o = (1;1,1,1,1,2,1) = (21p + 8)/(13p + 5) = (257 — +/5)/158. With
k = 2 and a5 = 2, we have on the one side

40v/5 — 89

p—a = Fp—a) = 0589 _ 0.005604 . . . ,
79

on the other side,

1 1 4/5-1

Proof of Lemma 9:

Case 1: Let n := ag11 > 3.
Then there is a real number 7 satisfying 0 <7 < 1 and

Tokt1 = (Q2kt1; Qokpo,...) = n+n=:14+0.

It is clear that n — 1 < # < n. From the theory of regular continued fractions (see [5,
formula (16)]) it follows that

_ ) _ Fopyoropy1 + Fopia
a = (L;1,...,1,a041, Q0642 ...) = I Ia
2%+172k+1 T Lox

Forpo(1 4+ 8) + Forsa _ BFopyo + Fopys
Fop1 (14 8) + Fy BFops1 + Fopyo

Similarly, we have
_ Foppop + Fop

 Fopap+ Fy

hence, by some straightforward computations,

Y

1+8—-0p - n
(pFopi1 + For ) (BFops1 + Fopyo) (pFoki1 + For)(BFoks1 + Fopgo)

p—a = (24)

Here, we have applied the identities
F22k+2_F2k+1F2k+3 = _1; F22k+1 —ngF2k+2 = 1,

and the inequality 1+ 3 —p <14+ n—p <mn. Since § > n — 1 and, by (2),

1 1
con| < = ,
2k G2k+1 nlop1 + Fy
1 1 1
leaks1] < =

< .
q2k+2 Aokr2Qokt1 + Forr = (n4+ 1) Foppq + Foy

12



(22) follows from

n(FQk,l — 1) < 1 1 1
(pForir + For) (= 1) Fopr + Fopgn) — p* nFopn + Foe (04 1) Foppn + Fo

. (25)

In order to prove (25), we need three inequalities for Fibonacci numbers, which rely on
Binet’s formula. Let 6 := 1/p*. Then, for all integers s > 1, we have

2s+1 1 5 2s+1 1—6 2s
p (1+9)p and (1-29)p

< Fhq <
\/g 2s+1 \/5 \/g

We start to prove (25) by observing that

< F,. (26)

1496 . 1 n 1 <1
PA(pP+1-06) 3p+1—0 4p+1-9§ '
Here, the left-hand side can be diminished by noting that

L n
p - (n=1)p+(1-0)p*

By n > 3 we get

- (14 0)n N 1 N 1 .
p(p2+1-8)((n—Dp+(1—-0)p2) np+1—6 (n+1l)p+1-46 ’
or, equivalently,

(1+ )5
(0 P51 [V5 -+ (L= 0)2VB) ((n = D+ V5 + (1= 0)p+2/ )
1 1 1

ﬁ - np2k+1/\/g_|_(1 _5)p2k/\/§ B (n+1)p2k+1/\/3—|— (1 —5)p2k/\/3.

From this inequality, (25) follows easily by applications of (26) with s € {2k — 1,2k, 2k +
1,2k + 2},

<

Case 2: Let agpq = 2.

Case 2.1: Let k> 2.
We first consider the function

. 1—p+p
f6) = BFopy1 + Foryo

(1<p<2).
The function f increases monotonically with (3, therefore we have

_ 3—p
18) < 1@ = 2F5 41 + Fopia

13



and consequently we conclude from the identity stated in (24) that
3—p

(PFokt1 + For) (2Fok11 + Foryo)

Hence, (23) follows from the inequality

(3= p)Fopy 1 1 1 1 1 1
+ - - + < . (27
(pFors1 + For)(2Fopq1 + Forso)  Qart1 Qoks2 G2kt Gokta p*k - pPh2 (27)

p—a <

On the left-hand side we now replace the ¢’s by certain smaller terms in Fibonacci numbers.
For gog12, Gor+s, and gopy4, we find lower bounds by (15) in Lemma 7:

Qr+1 =  A2k11Gok + Gok—1 = 2Fop1 + Fop,
QG2 = Fopis + FoFoppr = Fopis + Fopya
Qor+3 = Fopya+ F3bop1 = Foppa + 2Fop 0,
Qrra = Forys + FaFopyr = Fopys + 3Fop1

Substituting these expressions into (27), we then conclude that (23) from

(3 - IO)FQkfl + 1 1 1
(pFoi1 + For) (2Fop 41 + Fopyo)  2Fok1 + Fop Fops + Fopn

1 1 1 1
+ + < = (1 + —) . 28
Fopys +2F5 1 Fopgs +3Fp p* p? (28)

We apply the inequalities in (26) for all s > 2 when § is replaced by ¢ := 1/p%. Using this
redefined number §, we have

¢5< (3— p)(1+96) 1 1 | | )_1

+ + + -
p(PP+1-0) 20+ (1—0)p) 20+1-06 p+p (1-6)p*+20 p +3p/ p?
<1,

or, equivalently,

B—p)(L+0)p™/V5
(p . p2k;+1/\/§+ (1 _ 5>p2k/\/5) (2p2k+1/\/5_|_ (1 _ §)p2k+2/\/g)
1 1

+
2p2k+1/\/5+ (1— 5)p2k/\/g p2k+3 //5 + p2k+1/\/g
1 1

+
(1 _ 5>p2k+4/\/5 + 2p2k+1/\/5 p2k+5/\/5 + 3p2k+1/\/5

1 1

From this inequality, (28) follows by applications of (26) with s € {2k — 1,2k, 2k + 1,2k +
2,2k + 3,2k + 4,2k + 5} for k > 2 (which implies s > 3).

+

14



Case 2.2: Let k=1.
From the hypotheses we have ag, 1 = a3 = 2. To prove (23) it suffices to check the inequality
in (28) for k = 1. We have

Foyw = F = 1, Foy, = Fy, = 1, Foryn = F3 = 2,
Foryo = Fy = 3, Forys = F5 = 5,

Fopys = Fo = 8,  Fyys = Fr = 13.

Then (28) is satisfied because

2( 3-p +1+1+1+1>_1<1
P\7a+2p) "5 7T 1219) 2T

This completes the proof of Lemma 9. ]

Proof of Theorem 2: In the sequel we shall use the identity
Fog+ Fogro+ Fogpa+ ...+ Fop = Fony1 — Fag (n>g2>0), (29)

which can be proven by induction by applying the recurrence formula of Fibonacci numbers.
Note that [y = 1. Next, we prove (8).

Case 1: Let a ¢ M, a = (1;a1,a9,...) = (1;1,...,1, as, asgs1, .. .) with age > 1 for some
subscript £ > 1. This implies a > p.

Case 1.1: Let 0 <n < 2k.

Then ng = [n/2] < k—1. In order to treat |ea,,| + |€2m+1|, We apply (6) with k replaced by
k — 1 in Proposition 1. For a the condition (7) with k replaced by k — 1 is fulfilled. Note
that the term F,,(p — «) in (6) is negative. Therefore, we have

n [n/2]
S(n) = Z le] < Z (’52m| + |52m+1|)
v=2g m=g
no 2-2 —2
L p7 0 =p™™ 4y, —2no—1
) mZgPZm_ Fo1 P T
Case 1.2: Let n > 2k.
Case 1.2.1: Let k > g.
Here, we get
k—1 1o
S(n) < (leam| + leamaal) + (lean| + leansal) + Z (leam| + leameal) . (30)
m=g m=k+1

15



When ny < k, the right-hand sum is empty and becomes zero. The same holds for the
left-hand sum for k£ = g.

a) We estimate the left-hand sum as in the preceding case applying (6), p — a < 0, and the
hypothesis ajas - - - a9, = 1:

o

-1

(|52m| + \€2m+1|) <
g

e

_11

2m "
gp

3
Il
3
I

b) Since agx > 1, the left-hand condition in (5) allows us to apply (4) for m = k:

leak| + |eant1]| < ﬁ

c) We estimate the right-hand sum in (30) again by (4). To check the conditions in (5), we
use aqas - - - aop,—1 > 1, which holds by m > k + 1 and as, > 1. Hence,

no o
1
g (|€2m| + |52m+1|) < g p2_m .
m=k+1 m=k+1

Altogether, we find with (30) that
1
S(n) < Z —— = ptT  pEel (31)

Case 1.2.2: Let k <g.

In order to estimate |e9,,| + [€2my1] for ¢ < m < ng, we use k + 1 < g and the arguments
from c) in Case 1.2.1. Again, we obtain the inequality (31). The results from Case 1.1 and
Case 1.2 prove (8) for ag, > 1 with £ > 1. It remains to investigate the following case.

Case 2: Let a ¢ M, o = (1;a4,az,...) with a; > 1.

For m = 0 (provided that g = 0) the first condition in (5) is fulfilled by asmagm+1 = apa; =
a; > 1. For m > 1 we know that aas - - - as,_1 > 1 always satisfies one part of the second
condition. Therefore, we apply the inequality from (4):

no

m=g

Next, we prove (9). Let &« € M, o = (l;aq,az,...) = (1;1,...,1, agky1, a2k 49,...) with
ag+1 > 1 for some subscript £ > 1. This implies p > a.

Case 3.1: Let 0 <n < 2k.

Then ng = [n/2] < k—1. In order to treat |ea,,| + |€2m+1|, We apply (6) with k replaced by
k — 1 in Proposition 1. For a the condition (7) with k replaced by k — 1 is fulfilled. Note

16



that the term Fy,,(p — «) in (6) is positive. Therefore we have, using (29),

no

S(n) < Z (pQLm +(p— a)F2m>

m=g
no
= P (p—a) Y o
m=g
= p = p? 4 (p— @) (Fangr1 — Fag-1)
< 01_29 - P_2n0_1 + (F2k—1 - F29—1)(P — CV) .
Here we have used that 2ng + 1 < 2k — 1.
Case 3.2: Let n > 2k.

Our arguments are similar to the proof given in Case 1.2, using ajas---as_1 = 1 and
a2k41 > 1.

Case 3.2.1: Let k > g.
Applying (29) again, we obtain

k—1 no

S(n) < (‘52171’ + ’€2m+1‘) + (’52k| + ‘52k+1‘) + Z (|52m’ + |€2m+1‘)

m=g m=k+1
k—1 1 1 no 1

< Z(IOZ—m—f—(p—oz)Fzm) +ﬁ+ Z PZ_m
m=g m=k+1
no 1 k—1

= —m (=) Z Fom
m=g P m=g

= P —p P (Fyq — Fag 1) (p— ).

Case 3.2.2: Let k <g.
From g > k 4+ 1 we get

m=g

The results of Case 3.1 and Case 3.2 complete the proof of (9).
For the inequality (10) we distinguish whether a belongs to M or not.

Case 4.1: Let a & M.
Then (10) is a consequence of the inequality in (8):

o0
Z |€V| S hm (pl—zg — p_QnO_l) — pl—zg‘
v=2g no—o0

Case 4.2: Let a € M.
There is a subscript & > 1 satisfying o = (1;1,...,1, aggs1, aogro,...) and ageyq > 1. To

17



simplify arguments, we introduce the function y(k, g) defined by x(k,g) =1 (if k£ > g), and
x(k,g) =0 (if £ < g). We have

00 2k—1 00
S YRI-Y e Y kR

v=2g v=2g v=max{2k,2g}

= X(k7g) ((FQk—l - FQg—l)(p - O[) + pl_Qg - p_2k+1) + Z (|62m| + |52m+1|)
m=max{k,g}
< (Fopo1 — Fag1)(p—a) + p' 720 — p72F 4 Z (le2m| + le2m1])
m=k

< Py —1)(p—a)+p' 7% — p 2 4 Z (le2m| + leamsal) » (32)

m=k

where we have used (9) with n =2k — 1 and ng = |n/2] =k — 1.

Case 4.2.1: Let aggyq > 3.

The conditions in Lemma 9 for (22) are satisfied. Moreover, the terms |eg,,| + |€2m1| of the
series in (32) for m > k + 1 can be estimated using (4), since ajay - - - aggy1 > 1. Therefore,
we obtain

1 1 B o
§ < ﬁ Tkl +p Z (|52m| + ‘52m+1|)
m=k-+1
1 1 19 -
ﬁ_p2k71+p g+p2k+1:p ‘.

Case 4.2.2: Let agpiq = 2.
Now the conditions in Lemma 9 for (23) are satisfied. Thus, from (32) and (4) we have

1 1
S < —+

1-2
o2k T ka2 T okl T+ Z (le2m| + leamal)

m=k+2

1 1 1 Lo 1
< mtam gt . o

2k
p m=k-+2
1 1 1 1—9 1 1-9
- o2k + P2tz 2kl ot =
This completes the proof of Theorem 2. m

5 Concluding remarks

In this section we state some additional identities for error sums ¢(«). For this purpose let
a = (ag; ai,as,...) be the continued fraction expansion of a real irrational number. Then
the numbers «,, are defined by

a = (ag; 1,09, ..., GQp_1,0p) (n=0,1,2,...).

18



Proposition 11. For every real irrational number o we have

S

n=1 k=1

() =g () (e (v e) ()

n

and

Il
o

Next, let a = (agp;a1,as,...) with ay > 1 be a real number with convergents p,,/¢m
(m > 0), where p_y = 1, ¢_; = 0. Then the convergents p,,/q,, of the number 1/a =
(0; ag, ay, ag, . .. ) satisfy the equations q,, = p,,—1 and D, = ¢—1 for m > 0, since we know
that p_;, =1,p, =0 and g_, = 0, g, = 1. Therefore we obtain a relation between ¢(a)) and

e(1/a):

/o) = Yo[lop,| = 3|

m=0

1 [eS)
— ‘ = - Z |Qm—la - pm—1|
amZO

— Lo+ Xl =) = 21 +(@).

m=0

This proves
Proposition 12. For every real number o > 1 we have

1+ e(a) .

e(l/a) =
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