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Abstract

We study the sums introduced by Jacobsthal and Tverberg and show that the ex-
treme values of the sums are connected with Jacobsthal and Jacobsthal-Lucas numbers.

1 Introduction

Let a,b € Z and m € Z*. In 1957, Jacobsthal [4] introduced the sums of the form

K
Sa,b;m(K) = Z fa,b;m(k)v
k=0

T e B B Y R

m m m m

where
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In the above equation and throughout this article, unless stated otherwise, k is an integer
and K is a nonnegative integer. So we can consider fq ., and Sy ., as functions of £ and
K defined on Z and on N U {0}, respectively.

These sums are also studied by Carlitz [1, 2|, Grimson [3] and recently by Tverberg [6].
In addition, Tverberg [6] extends the definition of f, p.m(k) and S, p.m(K) to the following
form.

Definition 1. Let m and ¢ be positive integers and let C' be a multiset of ¢ integers

ai,as,...,ap ie., a; = a; is allowed for some ¢ # j. Define fc,, : Z — Z and Scyy -
NU{0} = Z by
E+>. ra;
— |7 €T
fC;m<k) Z ( 1) L —m J )
TC[1,0]

Soam(K) =Y foum(k).

We sometimes write fu, 4y, apm(k) and Sq, gy, apm(K) instead of feo.,(k) and Se.,(K),
respectively. The set [1, /] appearing in the sum defining f is {1,2,3,...,¢} and if T' = (),
then ) ., a; is defined to be zero.

For example, if C' = {a,b}, then fo.,(k) given in Definition 1 is the same as fj p:m (k)
given in (1), and if C' = {ay, as, as}, then fo., (k) is

a; +as +as+k a; +as + k a; +as+k as +as+k
fal,a2,a3;m(k) = m — o — =

) -

Jacobsthal [4] shows that for any K € NU {0}, we have

m m

0 S Sa,b;m(K) S {%J ) (2)
which is a sharp inequality, that is, the lower bound 0 is actually the minimum value and the
upper bound |2 | is the maximum value of Sg 4, (K). Tverberg [6] proves (2) in a different
way and he also gives the extreme values of Sy, 4, 44:m (&) Without proof. Nevertheless, the
extreme values of fu, 4. apm(k) (for £ > 2) and Sg, ay....apm(K) (for £ > 4) have not been
calculated.

In this article, we calculate the extreme values of fy, 4, a,:m (k) for all £ > 2 (see Theorem
8). We also introduce the function g in Definition 2, give its connection with fo, 4, apm(K),
and obtain its extreme values (see Proposition 3 and Theorem 4). Furthermore, we obtain the
minimum value of S, 4, a,:m (/) when ¢ is odd and the maximum value of Su; 4. apm(K)
when /¢ is even (see Theorem 9).



The reader will see that the extreme values of the functions g and fq, a,....a,m(k) are con-
nected with Jacobsthal numbers J,, and Jacobsthal-Lucas numbers j,, defined, respectively,
by the recurrence relations

JO = 0, Jl = 1, Jn = Jn,1 -+ 2Jn,2 for n 2 2,
and
jo = 2, ,jl = 1, jn = jn,1 —+ 2.]'”,2 for n Z 2.
The sequences (J,,)n>0 and (jn)n>0 are, respectively, A001045 and A014551 in the OEIS [5].
The function g is defined as follows:
Definition 2. Let g : R" — Z be given by

g(z1, 20,23, 2p) = Z |z ] — Z |23, + x4, ]

1<i<n 1<ii<ia<n

T Z |Ti, + Ty + x4y | — -+ (=) oy F g Fas+ 2.

1<i1 <ig<iz<n

In other words,

g(T1, 2,23, ..., Tp) = Z (- {Z LJ :
0ATC[1,n]

€T

2 Main results

We begin this section by giving a relation between the functions f and g. Then we give
the extreme values of ¢ and f and their connection with Jacobsthal and Jacobsthal-Lucas
numbers.

Proposition 3. For each ¢ > 2, we have
(i) fa17a27~~-7a2§m(0) = (_1)6—19 (in_l’ (:n_Qv e 7%)7

(11> fal,ag,...,ag;m(k) = <_1)£g (%7 (7171_27 R %7 %) + (_1)é_1g (%7 (;n_27 R %) .
Proof. This follows easily from the definitions of f and g but we give a proof for completeness.

We have
forazeanm(0) = D (=) {Z (%)J

TC[1,4 i€T
= > (- {Z (%)J
0#TC[1,4] i€T
= (—1)"! Z (—1) 7! {Z (%)J
AT C[1,) ieT
= (-1 g <%, %, . %) .
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Next let a1 = k. Then we obtain

a; a a; k a; a a
(_1)49 (Elv_Za 7E£aﬁ) + (_1)5—19 <E17_27 a_£>

- 3 s e |26
PATC[1,041] i€T PATC[1,4] icT
e D D {Z (%)J
Tegflé;l] €T
=(-1)" > (=) {—H%J
TC[1,4]

:fa1,a2,...,aum<k) .
O

Theorem 4. For each n > 2, the function g given in Definition 2 has mazimum value
22 — 1 and minimum value —2"2. The minimum occurs at least when xj, = % for every
1

1 <k <n. The marimum occurs at least when x;, = 3= # for every 1 <k <n.

Proof. 1f n = 2, then the result is a well-known inequality
—1<[z] +[y] - lz+y] <0, (3)

which holds for all x,y € R. The inequality (3) is sharp: if v =y = % the left inequality
in (3) becomes equality, and if z =y = }L the right inequality in (3) becomes equality. The
result when n > 3 is obtained from the case n = 2 and a careful selection of pairs. For
illustration purpose, we first give a proof for the case n = 3 and n = 4. Recall that

g(ﬂ?l,.’ﬂg,xg) = Lxlj + LI’QJ + I_.’L'gJ — |_£E1 + iL'QJ — |_$1 + ng — \_.1'2 —|—5L’3J + LiL’l + X9 + iL’3J.
We obtain by (3) that

0 < |21+ 2o+ as] — |21+ 22] — 23] <1, (4)
—1 < —|zo+x3] + |22 + |23] <0, (5)
—1 < —lor + a3 + [@1] + [23] 0. (6)

Summing (4), (5), and (6), the middle terms give g(z1, zg, x3). Then —2 < g(xq, z9, x3) < 1.
Next we consider
g(w1, 9,23, 04) = |21 + |2] + 23] + [24] — [21 + 22| — |21 + 23] — |21 + 74
— L$2+£L‘3J — |_$2+$4J — L$3+Z’4J + L$1+$2+£L‘3J + I_Jl'l —|—$2+.Z'4J
+ (21 + 23 + 24| + |22 + 23+ 24] — |21+ T2 + 23+ 14).



Again, we obtain by (3) the following inequalities:

—1 < oy + 20+ 23+ 24| + |21 + 22+ 23] + |24] <0, (7)
0<|z1+z2+z4] — |21+ 22| — |24] <1, (8)
0<|z1+z3+z4] — |21+ 23] — [24] <1, 9)
0<|za+ a3+ x4] — |22+ 23] — |24] <1, (10)

—1 < =2y 4+ 2] + |21 + [24] <0, (11)
—1 < —[wa+m] + [22] + [24] <0, (12)
—1 < —|x3 + x4) + |23] + |24 <0O. (13)

Summing (7) to (13), we see that —4 < g(z1, 9, 3, 14) < 3.

Next we prove the general case n > 5. The expression of the form |z;, +z;, + -+, |
will be called a k-bracket. So for each 1 < k < n, there are (Z) k-brackets appearing in the
sum defining g(xy, z9, ..., x,). We first pair up the n-bracket with an (n — 1)-bracket and a
1-bracket as follows:

si= (D" Yoy +ag+ - Fa,| + ()" 2oy +re+ o F o]+ (1) 22, (14)

Notice that the sign of |z, | in (14) may or may not be the same as that appearing in the
sum defining g(x1, xo, ..., x,) but it is the same as the sign of |zy + 29+ -+ x,_1| so that
we can apply (3) to obtain the bound for s;. Next we pair up the remaining (n — 1)-brackets
with (n — 2)-brackets and 1-brackets as follows:

(1) 2|, + @y + - @, |+ ()" g i+ ]+ (D), ], (15)

where 1 < iy < iy < ... <i,_1 <n. We note again that the sign of |z;, +x;, + - -+ x4, _, |
and |x; + @4 + -+ + @, ,] in (15) are the same as those appearing in the sum defining
g(x1, xg, ..., x,) while the sign of |x; | in (15) may or may not be the same, but we can
apply (3) to obtain the bound of (15). Since |z +x2+---+x,_1] appears in (14), the term
x;,_, appearing in the (n — 1)-brackets in (15) is always z,,. So in fact (15) is

(=1)" i, + i, + o+ Ty 2]+ ()" @+ o @+ (1) 2] (16)



Then we sum (16) over all possibles 1 <1y < iy < ... <1, o <mn, and call it s5. That is

o= (1" Y b an b m )

1<i1<ig<...<ip—2<n

T S o L St A [

1<i1<i2<...<ip—2<n

We continue doing this process as follows. For each 0 < ¢ < n — 1, let ¢, be the sum of all
|z, + iy + - 4y, ] with 1 <4y <iy < ... <i,_ <n, as the sum of all such terms with
in—¢ = n, and by the sum of all such terms with 4,,_, < n. Therefore ¢, = a, + by,. As usual,
the empty sum is defined to be zero, so by = 0. The number of (n — ¢)-brackets appearing in

the sum defining ¢, is (nﬁ 6), the number of (n — ¢)-brackets appearing in the sum defining

: n—1
aris ("0
In addition, we have

), and the number of (n — ¢)-brackets appearing in the sum defining b, is (Zj)

s1=(=1)""ag + (=1)" b1 + (=1)"*[@a),

s9 = (—1)"2ay + (—=1)" by 4 (—1)"3 (Z B 1) |2, ].

In general, for each 1 </ <n — 1, we let

se=(—1)" a1 + (=1)"" o + (—1)" ! (Z B 1) | 0]

Then

1<0<n—1 2<<n—1 1<0<n—2

) Y0 (e (Z - 2) (17)

1<t<n—1

Recall a well known identity >, Segn(—l)é(;f) = 0 for all n > 1. Therefore the last sum on
the right hand side of (17) is

-z e () X e () e () e

1<¢<n—1 1<¢<n—1 0<(<n—1

Therefore the last term in (17) is |2, |. Replacing ¢ by ¢+ 1 in the first sum on the right
hand side of (17), we see that



1<0<n—1 1<0<n—2

=(=D)"eo+ D (=1)"ert buoy + 2]
1<t<n—2

=(-)""a+ > (=)t e (18)
1<0<n—2

_ Z (_1>nféflc

0</<n—1
= g(x1,$2, s 7xn)7

where (18) can be obtained from the definition of ¢, _1, b,_1, and a,_; that

Cr1 = |@1] + |@2] + -+ 2],
boo1 = |z1] + [z2] + -+ [T0-1],
an1 = |z,|, and

Cpn—1 = Qp—1 + by_1.
We apply (3) to (14) to obtain
0<s1<1lifnisodd, and —1 < s; <0 if n is even.

Similarly, applying (3) to (16), we see that such sum lies in [0, 1] if n is even, and lies in
[—1,0] if n is odd. Therefore

n—1

2) < 59 < 0if n is odd.

OSSQS(”

n —

1
2) if n is even, and — (

n —

In general, for each 1 < ¢ <n — 1, we have

IN
»

—1
< (n g), if n and ¢ have the same parity,
n —

0
n—1 . : :
—( ) < sy <0, if n and ¢ have a different parity.
n

Since g(z1,%2,...,Tn) = > <4<,y S¢, We obtain, for odd n,

S (Z:é)gg(ajl,xg,...,xn)ﬁ S (2:2)

1<t<n-—1 1<t<n—1
{ is even ¢ is odd

and for even n,

S Sl () EVC R ERD DI (|

1<t<n—1
¢ is odd ¢ is even



Recall a well known identity

o;n (Z> B o;k;n (Z) —on-1,

k is even k is odd

Therefore if n is odd, then

n—1 n—1 _—
> (n_g): > < , ):2 — 1, and
1<<n—-1 1<<n-—1

7is odd {is even
n—1 _ n—1 _ n—1 _ gn-2
Z n—1{ Z 12 Z l
1<t<n—1 1<4<n—1 0<t<n-—1
£ is even £ is odd £ is odd

Similarly, if n is even, then

3 (Z:ﬁ 7 and Y (”‘1) o2 _ 1

1<t<n—1 1<6<n—1

£ is odd [is even
Hence —2"72 < g(xy,9,...,7,) < 272 — 1, as required. Next we show that the lower
bound —2"2 and the upper bound 2”2 — 1 are actually the minimum and the maximum
of g(x1, 9, ..., x,), respectively. Recall that the fractional part of a real number z, denoted

by {«}, is defined by {z} =z — |z]. Let j, = 5 for every k =1,2,...,n. Then

g(x1, 20, w) = Y (=DM EJ (Z)

1 n
_ k 1 =
_ z veu(l) -3 2 ()): (19)
1<k<n 1<k<n

k is odd

where the last equality is obtained from the fact that {%} = 0 if k is even and {g} = % if k
is odd. By differentiating both sides of

oy =3 (1) (20)

k=0

and substituting x = —1, we obtain a well-known identity
Z(—1)’“k<2) = 0, which holds for all n > 2. (21)
k=1



In addition, we know that

") = on-t,
= ()

k is odd
Therefore (19) becomes
_ _1 n—1\) _ __on—-2
g(xy,29,...,2,) =0 2(2 )— 2",
This shows that —2"72 is the minimun value of g. Next let z;, = % — # for every k =

1,2,...,n. Then

@, za .z = Y (~1)F E = %J (Z) (22)

1<k<n

If 1 <k <nand k is even, then g—n%J zg—lz L%J If 1 <k <nandk is odd, then
FoLl =5+ 5 - 5| =[%57+]. Therefore (22) becomes
k—1 n
son ) = 3 0 5| (), )
1<k<n

Now we can evaluate the sum (23) by using the same method as in (19). We write |51 ] =
L {ELY and we know that {£2} = 0if & is odd and {2} = L if k is even. Then (23)
can be written as

T % 3 (-1)’%%(2) —% 3 (—1)’€—1(Z) +% sz;n <Z>

1<k<n 1<k<n

2

k is even

The first sum is zero by (21). The second sum is 1 by substituting © = —1 in (20). Therefore
1 1 n—1 n—2
g(x1,$2,...,xn)20—§+§(2 —1):2 — 1.

]

Recall that the Binet forms of Jacobsthal numbers .J,, and Jacobsthal-Lucas numbers j,
are
3
for every n > 0. Therefore we obtain the connection between Jacobsthal and Jacobsthal-
Lucas numbers and sums introduced by Jacobsthal [4] and Tverberg [6] as follows.

Iy = and j, =2"+ (—1)" (24)

Corollary 5. If n is odd, then the maximum and the minimum value of g(x1,xa, x3,. .., Ty,)
are jn_o and —1—j,_o, respectively. If n is even, then the maximum and the minimum value
of g(x1,x9,x3,...,2,) are 3J,_o and 1 — j,_o, respectively.

9



Proof. This follows immediately from (24) and Theorem 4. O

Remark 6. From this point on, we will apply the well-known identities which are already
recalled without reference.

Next we give the extreme values of fy, 4, a;m(k). Although we can write fo, 4y, apm(K)
in terms of g(xy,z9,...,x,) as given in Proposition 3, we do not know the proof which
applies Theorem 4 to obtain Theorem 8. Nevertheless, we can use the same idea in the proof
of Theorem 4 together with the following lemma to prove Theorem 8.

Lemma 7. The following statements hold.
(i) For each i€ {1,2,...,n} and q € Z, we have
g(xy, 2o, i+ q, . ) = g(T1, 20, .., ).
In particular, g has period 1 in each variable.
(ii) For each i € {1,2,..., 0} and q € Z, we have
far a2, aitam,..agm (k) = far a2, a5m(k) = faran,..apm(k + qm).
In particular, f has period m in each variable ay,as,...,a; and k.

Proof. Since |q+ x| = q+ |x]| for every q € Z and x € R, we see that

g(x1,To, . i+ G, Ty) = (q—l—ZLxd) _ ((TLIl)q_i_ Z in1+xi2j>

1<iy <ig<n
n—1
+(( ) )q+ > Lmi1+xi2+xi3J>
1<i1<i2<i3<n
n—1 n—1
— (1) 0 1)t Lot )
_g<xlux27"'7xn)+q Z (_1) ( k' )
0<k<n—1
= g(z1, 29, ..., 2y).

This proves (i). Next we prove (ii). By Proposition 3 and by (i), we obtain

a, a a; ar k
fa1,az,-..,aﬁqm,m,az;m(k) = (_1>€g (_17 _2’ i T é’ _>

m’'m m m
a; a a; a
+(_1)€_1g <_17_27 7_+Q7 7_£>
m’' m m m
a a ay k _ a, a ay
= (_1)59 (_17_27 _)_) +(_1)€ lg <_17_27 a_>
m’'m m’'m m m
fal az,..., ae;m(k)
Similarly, fu, as...apm(k 4+ qm) = fa; as....apm(k). This completes the proof. O

10



Theorem 8. For each { > 2, ay,ao,...,ap, k € Z and m > 1, we have
22 < faran,anm(k) < 2072

Moreover, —2=% and 2= are best possible in the sense that there are ai,as,...,apm,k
which make the inequality becomes equality. More precisely the following statements hold.

<1> Iff s 0dd’ m is even, a?d @i = % fOT 6U67’yi = 17 27 s 767 then fal,az,...,az;m(o) = 202
and fa1,a2,...,a4;m<%) =202,

(ii) If ¢ is even, m is even, a?ani =2 for everyi = 1,2,....¢, then fu, a.apm(0) = 2072
and fal,(lz,...,ag;m(%) = _2 =,

Proof. By Lemma 7, we can assume that a; € [0, m — 1] for every 1 < i < {. Therefore

{%J =0 for every i € {1,2,...,(}. (25)
m

If ¢ =2, then the result follows from (25) and (3), and we have

0< LMJ _ Lal +kJ <1, (26)
m m
and
1< Vz i kJ + FJ <0. (27)
m m

Summing (26) and (27), we obtain —1 < f,, 4,.m(k) < 1. The result when ¢ > 3 is based on
a careful selection of pairs and the case ¢ = 2. For illustration purpose, we first give a proof
for the case £ = 3 and ¢ = 4. Recall that

ap +as +ag +k ay +as+k a; +as +k as +as +k
fa1,a2,a3;m(k) - m — o — ==

B

We obtain by (3) and (25) that

m m

OS\‘a1+a2+a3+kJ_{a1+a2+kJSL (28)
m m

S e e KL (29)
m m

_1§_{a2+a3+kJ+{a2+/€J§07 (30)
m m

11



0< V‘”’HCJ - FJ <1 (31)

Summing (28), (29), (30), and (31), we see that the middle term is fu, 45 45.m(k). Therefore
—2 < fuy ap.as:m(k) < 2. Next we consider

a1 +as +az+ag+ k - a1+ as +as+k - a1+ as +ag+k
m m m
_ CL1+CL3+CL4+I€ _ (12+CL3+CL4+I€ 4 a1+a2+l€
m m m
a1 +as+k a1 +ag+k as+as+k as+aq +k
! 3 J+{ 1 4 J+{ 2 3 J+{ 2 4 J

i m m m m
i CL3+CL4+I€ _ a1+k _ a2+k3 _ (l3+l€ _ CL4+k' i E
i m m m m m m|’

Again, we obtain by (3) and (25) the following inequalities:

fa17a27a3,a4;m(k) -

OS{a1+a2+a3+a4+k‘J_{a1+az+a3+kJSl, (32)
m m
1< ay +ay+ag+k n ay +as+k <0, (33)
i m i i m
_1§_ CL1+CL3+CL4+]€ i CL1+CL3+]€ SO, (34)
—IS— a2+a3+a4+k i a2+a3+k SO, (35)
i m | i m
k k
0< Graat Ry et <1, (36)
- m - - -
k k
(e i el N ) (37)
m i . m
0< CL3+CL4+I€ _ (I3+l{7 Sl, (38)
m i . m
k k
—1§—V4+ J+L—J§0. (39)
m m

Summing (32) to (39), we see that —4 < fo, 4y.05.00.m(k) < 4.

Next we prove the general case ¢ > 5. The expression of the form {

ai1+ai2+"'+ai7-+k‘J will
m

be called an r-bracket. So for each 1 < r < /¢, there are (f) r-brackets appearing in the sum

12



defining fo, ay.....apm (k). We follow closely the method used in the proof of Theorem 4. So
we first pair up the ¢-bracket with an (¢ — 1)-bracket as follows:

. {a1+a2+---+a5+kJ {a1+a2+---+ag_1+k:J
1= - )
m

(40)

m

and we can apply (3) and (25) to obtain the bound for s;. Next we pair up the remaining
(¢ — 1)-brackets with (¢ — 2)-brackets as follows:

_ \‘ai1+ai2+"'+aie—l+kJ + \‘ai1+ai2+"'+aie—2+kJ

— (41)

m

and we sum (41) over all 1 < iy < iy < ... <iy_; < ¢ and call it sy. Since a; does not appear
in the second term on the right hand side of (40), the term a;, , appearing in (41) is always
ap. So in fact

aj, + @i, + - +a;, , +a+k
S = — Z \‘ 1 2 - -2 4 J
1<i1 <i9<...<tp_o<l
Qiy +a12+"'+aizf2+k
D Y - -

1<ii<ia<...<ip_o<l

We continue doing this process as follows. For each 1 < r < {, let ¢, be the sum of all
ai taitotan k| < <y <<, </, a, the sum of all such terms with i, = ¢,

and b, the sum of all such terms with i, < ¢. Therefore ¢, = a,+b,, the number of summands

of ¢, is (f), the number of summands of a, is (fj), and the number of summands of b, is
(gzl). As usual, the empty sum is defined to be zero, so b, = 0. We have s; = ay — b1 and

Sg = —ay_1 + by_s. In general, for each 1 <r < ¢ — 1, we let

sp = (=1 ag 1 + (=1)"bep and s, = (=1)"ay + (=1)° {%J ,

Then

(-1 (-1
0<s, < if r is odd, and — < s, <0if ris even,
{—r {—r

13



1<r<¢ 2<r<f—1 1<r<f—2
k
= Uy + Z (—1)T((Z£7T + bg 7«) —+ (—1>Z71b1 + (—1)€+16L1 + \‘—J
1<r<f—2
=t Y (et (1) e+ {—J
1<r<f—2
. k
- Z <_1) Co—p + \‘EJ
0<r<¢—1

- fa1,a27---,ae;m(k:)'

Therefore

- > (i:i) < fuvaragm®) < (i:i)

1<r<t 1<r<t
r is even r is odd

Replacing r by r + 1, we see that

S ()= ()=

1<r<t 0<r<t—1
r is odd r is even
Similarly,
- ()=
1<r<t t=r
Therefore
=22 < foran,anm (k) <2772, (42)

as required. If £ is odd, m is even, and a; =
sition 3 and Theorem 4 that fu, a;...asm(0) = g (3, 3,....3) = —27%and fu, 0. am(%) =
(=Dfg (34, )+ (=) g (3,4, 1) =22 [ If { is even, m is even, and a; = 2 for
every 1 < i < ¢, we obtain similarly that fu, 4. .a;m(0) =272 and fo, gy, apm(%) = =272
So 272 and —2°~% in (42) cannot be improved. This completes The proof. O

for every 1 < ¢ < ¢, we obtain by Propo-

We obtain the extreme values of S, a,.... a,:m fOr some cases ¢ > 4 as well. More precisely,
we have the following result.

Theorem 9. For each { > 2, ay,as,...,,ap € Z, m € N, and K € NU {0}, we have
22| 2| < Supnaeml(K) <272 2] (13)
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Moreover, If { is odd, then the lower bound —2‘2 L%J 1s sharp and if ¢ is even, then the
upper bound 22 L%J 18 sharp in the sense that there are ay,aso, . .., ap, m, k which make the
inequality becomes equality. More precisely, the following statements hold.

(i) If € is odd, m is even, and a; = % for every i = 1,2,... L, then Sq, ay... apm(K) =

~22 3],

(ii) If € is even, m is even, and a; = 3 for every i = 1,2,... L, then Sa, ay,..apm(K) =
27 5]
Proof. 1f £ = 2, then the result is already proved by Jacobsthal [4]. See also another proof
by Tverberg [6]. We recall the result when ¢ = 2 for easy reference as follows:
0 < Supm(EK) < gJ . (44)
As before the result when ¢ > 3 is based on the case ¢ = 2 and a careful selection of pairs,
and we first illustrate the idea by giving the proof for the case ¢ = 3 and ¢ = 4. Recall that

f (k) = mtataz+k| |atat+k| |Jata+k| |atatk
ay,a2,a3;m - m m m
\‘al—*—k‘J \‘GQ—FICJ \‘ag—i-kJ \‘k‘J
+ + + ——=1.
m m m m

a1+a2+a3+k‘J _ {al—i-ag—l—k‘

m

We have

m m

fa1+a2,a3;m(k> = \‘

_fa17032m(k> = \‘ m m

k k
_fag,ag;m(k):_ {a2+a3+ J+ {a2+ J+

m m

|
a1+a3+kJ+Vl+kJ +V3+k
|

Summing (45), (46), and (47), we see that

fa17a2,a3;m(k) - fa1+a2,as;m(k> - fa17a3§m(k) - fa2,a3;m(k)' (48)
By the definition of Sg, ay.045:m (K), (48), and (44), we obtain

K
Sa1,a2,a3;m(K) = Z fa1,a27a3;m(k)
k=0

K K K
= Z fa1+a2,a3;m(k) - Z fal,aa;m(k) - Z faz,as;m(k)
k=0 k=0 k=0

= S;l—&-az,az;m(K) - Saha:a%m(K) o S‘l?vai*;”:(K)
m m m
20- 5] -[5]=2[3]
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Similarly,
S 2] 00 2] <22

Similarly, we have the following equalities:

a +ag+az+as+k ay +as+as+k as+ k k
fa1+a2+a3,a4;m(k5> = \‘ J - { J - \‘ =1, (49>
m m m m
k k k k
—fa1+a27a4;m(k) _ aq -+ a9 + ay + 4 aq + a9 + 4 ay + N (50)
i m 1L m 1L m | |m]
k k k k
—fa1+a37a4;m(k) _ ay -+ as + ay + 4 aq + as + 4 ay + N (51)
L m 1 L m 1 L m i _m_
k k k k
—fa2+a37a4;m(k) _ a9 -+ as + ay + 4 a9 + as + 4 ay + N (52)
i m 1L m 1L m | |m]
k k k k
Foragm(k) = | LT QTR QTR 2 (53)
L m h L m i L m 1 _m_
k k k k
funagm(k) = | BTN (O TRN G TR T (54)
L m h L m i L m 1 _m_
k k k k
(S A A R R g e (55)
L m h L m i L m 1 _m_

Summing (49) to (55) and recalling the definition of fu, 4, as.0.:m(k), We see that

fa1,a2,a3,a4;m(k5) = fa1+a2+a3,a4;m(k) - fa1+a2,a4;m(k) - fa1+a3,a4;m(k7) - fa2+a3,a4;m(k)
+ faraim(k) + fazaim(K) + fagazm (k). (56)

Then we obtain from (56) and (44) that

Sa1,a2,a3,a4;m(K) = Sa1+a2+a3,a4;m(K) - Sa1+a2,a4;m(K) - Sa1+a3,a4;m<K) - Sa2+a3,a4;m(K)
+ Sa17a4;m(K) + Saz,az;;m(K) + Sa37a4;m(K)

2] -0-0-0+ 3]+ 3]+ 3] 1)

Similarly, S, as.a5,05m(K) > —4 L%J Next we prove the general case ¢ > 5. The expression

of the form V”JF%J;'M”MJ will be called an r-bracket. So for each 0 < r < /¢, there are

IN

(f) r-brackets appearing in the sum defining fy, 4, a,:m(k). We first pair up the ¢-bracket
with an (¢ — 1)-bracket, a 1-bracket and a 0-bracket as follows:

(k) = V1+a2+---+ag+kJ B {a1+a2+---+a5_1—l—kJ B VHI{;JJFVJ' (57)

m m m m
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So s1(k) is in fact fo,t+ap+-tapi.a0m(k) and we can apply (44) to obtain the inequality

0 < Sursarttar am(K) = > s1(k) < | 2]
k=

[e=]

Next we pair up the remaining (¢—1)-brackets with (¢—2)-brackets, 1-brackets and 0-brackets
as follows:

_ \‘ai1+ai2+"'+a’ie—1+kJ + \‘ai1+ai2+"'+aiz_2+kJ + \‘aiz_1+kJ - \‘kJ (58)

m m m m

and we sum (58) over all 1 < iy < iy < -+ < ip; < £ and call it sy(k). Since a, does not
appear in the second term on the right hand side of (57), the term a;, , appearing in (58) is
always ay. So in fact (58) is —fai1+ai2+...+aié_2M;m(kz) and

sa(k) = — § faz-l+a¢2+-~~+ai£_2,ae;m(k5)
1<i1<in<...<ig_o<l
Furthermore,
K
E SQ(k) = E : Sai1+ai2+“'+ai[_2»aé§m(K) <0,
k=0 1<i1 <in<...<ig_o<l

where the last inequality is obtained from (44). We continue doing this process and follow
closely the method used in the proof of Theorems 4 and 8. The well-known identities
previously recalled will be applied without reference. For each 1 r < {, let ¢.(k) be

the sum of all {ai1+a¢2+---+ai,«+kJ with 1 < 4 < 49 < -+ < 4, ¢, a,(k) the sum of

all such terms with i, = ¢, and b,.(k) the sum of all such terms with i, < ¢. Therefore

¢y (k) = a,(k) + b.(k), the number of r-brackets appearing in the sum defining ¢, (k) is (f),
-1
r—1

of r-brackets appearing in the sum defining b,.(k) is ( As usual, the empty sum is
defined to be zero, so by(k) = 0. We have si(k) = as(k) — bi_1(k) — ai(k) + |£] and

s2(k) = —ar1(k) + be—a(k) + (02 ar(k) — (023) | £]. In general, for each 1 <r < ¢ — 1, we
let

r(k) = (=1 aemra (k) + (=1) b () + (=1)" (ﬁ _ 71«)%@) + (-1 <§ _ 1) {%J
= (-1 > Faus vy s, e (K.

1<i1 <ia<...<tp_ <l

<
<

the number of r-brackets appearing in the sum defining a,(k) is ( ), and the number

(-1

Then .
Zsr(k) = (_1)T+1 Z Sail+ai2+-~+ai4_rw;m(K)'

k=0 1< << <t <l
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So by (44), we see that

K

(E_ i) LEJ if r is odd, and — (i_ 1) L J ZST ) <0 if r is even.

=0

Mx

Similar to the proof of Theorems 4 and 8, we obtain

Z s (k) = a; + Z (=) ag_yq + Z )b+ (—1)1

I<r<t-1 2<r<l—1 1<r<(—2
(0 |
—art 30 (1) (a4 bi) (1) (1) ”ﬂﬂ
1<r<t—2
=+ > (=D e+ (=) e+ (-1)f {%J
1<r<e-2
- 3 vt | £
0<r<f—1

- fal,&g,...,a[;m(k) N
Therefore

SN R IETED SIS wil Vi 1R

1<r<f—1 1<r<i—1

r is even r is odd
The middle term in (59) is Su,.a9...apm(K). The left and right most terms in (59) are,
respectively, equal to —2/72 | 2| and 272 |2 | which can be evaluated by the well-known
identity previously recalled. This proves the first part of the theorem. Next we show that
one of the upper bound or lower bound is sharp. Let C' = {ay, as,...,as}. Suppose ¢ is odd,
m is even, and a; = 3 for every 1 <+ < (. Then we obtain by Proposition 3 and Theorem
4 that fo,m(0) =g (3,3,---,3) = =272 Let 0 < k < . By the definition of fcy,(k), we
see that

fom®k) = 3 (~)T Lm @J

TC[1,0)
¢
S e (Y | R
—Z%( 1) ( ~+ (60)
Since 0 < k < 3, we have g % +35 < T21. So if r is even, then L% + gJ =35 = GJ and
if 7 is odd, then LE + gJ = = ng n any case, Lnﬁl + gJ =35= L% + %J This implies

18



that fo.n(k) = foum(0) for every k =0,1,2,...,% — 1. Then

S (1) = 3 8 = )= 22 2]

So —2¢~2 L% (43) cannot be improved when ¢ is odd. Next suppose ¢ is even, m is even,
and a; = 7 for every 1 < ¢ < (. Then we obtain similarly that fe.,.(k) = foum(0 ) =22 for
every k=0,1,2,...,% — 1. Then S¢yn(% —1) =272 [2]. So 272 | 2] in (43) cannot be

improved when ¢ is even This completes the proof.

]
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