
Bash2py: A Bash to Python Translator

Ian J. Davis, Mike Wexler, Cheng Zhang,
Richard C. Holt

David Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario, Canada
{ijdavis, mwexler, c16zhang, holt}@uwaterloo.ca

Theresa Weber
Owl Computing Technologies, Inc.

38A Grove Street, Suite 101
Ridgefield, Connecticut, USA

tweber@owlcti.com

Abstract—Shell scripting is the primary way for
programmers to interact at a high level with operating systems.
For decades bash shell scripts have thus been used to accomplish
various tasks. But Bash has a counter-intuitive syntax that is not
well understood by modern programmers and is no longer
adequately supported, making it now difficult to maintain. Bash
also suffers from poor performance, memory leakage problems,
and limited functionality which make continued dependence on it
problematic. At the request of our industrial partner, we
therefore developed a source-to-source translator, bash2py,
which converts bash scripts into Python. Bash2py leverages the
open source bash code, and the internal parser employed by Bash
to parse any bash script. However, bash2py re-implements the
variable expansion that occurs in Bash to better generate correct
Python code. Bash2py correctly converts most Bash into Python,
but does require human intervention to handle constructs that
cannot easily be automatically translated. In our experiments on
real-world open source bash scripts bash2py successfully
translates 90% of the code. Feedback from our industrial partner
confirms the usefulness of bash2py in practice.

Keywords— Bash; Python; scripting; open-source; translation

I. INTRODUCTION
Shell scripts are frequently used in system administration,

software development, and maintenance. Shell scripts can
organize long and repetitive commands in a structural way,
enabling the automation of various tasks, such as creating user
accounts, downloading and installing software packages,
initializing environment variables, etc. Shell scripting was
ranked the 7th most popular programming style in 2013 [1].

Despite its prevalence, Bash (Bourne-Again SHell) [2] is
problematic. Its syntax is often counter-intuitive. For example,
programmers must pay special attention to the treatment of
spaces and brackets to read or write bash shell scripts correctly.
Bash supports functions, but it does not invite reuse since it
lacks modularity and object-oriented facilities. It also lacks the
host of libraries available to developers using more modern
programming languages, so functionality is often achieved by
gluing specific utility programs together. Trouble-shooting and
diagnosis of runtime errors can be unnecessarily complicated.
These issues make it a daunting task to maintain a large
number of bash shell scripts, especially when most of these
scripts were written by developers now long gone.

One solution to this bash maintainability problem is to
replace bash shell scripts with scripts written in newer, more

maintainable, and more powerful, scripting languages.
However, manually translating many poorly understood bash
scripts involves a huge investment in time and effort, and
invites disaster. In this paper, we describe a code translator,
bash2py, which automatically converts bash scripts into
Python. This is significant since Bash is the official shell of the
Free Software Foundation (FSF) and GNU, and is used by
numerous users of other popular Linux distributions, such as
Ubuntu, Fedora, etc. The Shellshock vulnerability
demonstrates the popularity as well as the problems of Bash.
While enjoying the power of Bash, developers have to
judiciously handle its traps and complexity. As discussed in
Section II, bash2py can mitigate certain vulnerabilities by re-
organizing and translating the code.

Our industrial partner, Owl Computing Technologies Inc.
[3], chose to translate their bash scripts into Python because of
its increasing popularity; its continued support and
development; its functionality and improved security; its clarity
as a language; its superior run time performance and clearer
runtime diagnostics when compared to Bash. Python includes
readability in its core design. It also supports object-oriented
features to write reusable code which is flexible to changes.
Moreover, Python formally supports the concept of module,
improving maintainability by separation of concerns.

Bash2py leverages the open-source parsing component of
bash 4.2 to obtain the tree-like intermediate representation of
each bash command. Using this intermediate representation,
bash2py combines word expansions of bash and context-aware
string generation to produce Python output. During the
translation process, indentation is treated with care, as it is
especially important in Python. Comments are also preserved
and associated with their corresponding Python code.

Owl CTI has been using bash2py to migrate all their bash
scripts to Python, and their feedback is quite positive: Most of
the content of their scripts can be translated automatically and
effortlessly. The resulting python scripts are then much easier
to maintain. In addition, we ran it on six real-world open
source projects written in Bash. We found that bash2py can
translate 90% of the bash code, leaving only minor issues that
can be easily fixed manually.

Bash2py is publicly available as an open-source C tool to
everyone from either academia or industry [4]. Both Bash and
Bash2py are free software, distributed under the terms of
version 3 of the [GNU] General Public License as published by
the Free Software Foundation.

978-1-4799-8469-5/15 c© 2015 IEEE SANER 2015, Montréal, Canada

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

508

II. SOLUTION DESIGN AND IMPLEMENTATION
The overall architecture of bash2py, which is derived from

that of Bash, is shown in Figure 1(b). As shown in Figure 1(a),
Bash consists of three main components: lexical analysis and
parsing; text expansion; and command execution. The input
may come from an interactive user interface (e.g., console) or
from a bash script file. The first component parses each
command, which can be either simple or compound, into
internal data structures. Then the second component performs a
series of expansions and variable substitutions on the parsed
command, by following a set of sophisticated rules. Each
resulting command is then interpreted; with at end of run Bash
returning an exit status code.

Fig. 1. Architecture of bash and bash2py.

A. Parsing of Bash Code
Bash2py reuses the bash 4.2 lexical analysis and parsing, to

obtain the same data structures used in Bash, and to produce
the same syntactic error messages (internally bison [5] parses
commands). This ensures that bash2py can parse every bash
construct. While a customized parser might provide richer
information, which would then simplify subsequent code
generation, it would be both expensive and difficult to create
our own bash parser. The original bash component parses only
the high level constructs, and leaves much of the syntactic
interpretation of the detailed input to ad-hoc logic. In addition,
complicated lexical analysis is required simply to correctly
tokenize the bash input stream and to thus assist the parser [6].
This logic has grown and evolved over time, and is inherently
less informative than a complete bash grammar would be.

B. Combining Expansions with Code Generation
Before executing a command, Bash performs shell

expansions, which is essentially replacement of embedded
constructs within a command. Bash supports brace expansion,
tilde expansion, parameter and variable expansion, command
substitution, arithmetic expansion, word splitting, and filename
expansion [7]. These expansions permit the values of variables
to be recovered, the value of computations to be determined,
and the output of external commands to be used. They may
also result in side-effects, such as the declaration of an
undefined variable and the assignment of a value to it.
Expansions can simplify bash scripting. For example, brace
expansion makes pre{a,b,c}post into three strings, preapost,
prebpost, and precpost. But convoluted expansion rules often
make bash code hard to understand. They also complicate the
process of code generation within bash2py, since often there
are no obvious equivalent Python constructs.

Bash2py does not translate all bash expansions correctly,
but it does correctly translate most of the simpler expansions. It
must keep track of variables used within functions, and cases
where these variables are declared to be local, so that it can
correctly preserve bash semantics, by declaring all non-local
variables used within a bash function to be global in Python.
Expansions that produce side effects are expressed in Python as
statements that implement these side effects, but often such
Python statements may not be legally embedded within
surrounding text, as is permitted in bash.

Bash2py quotes unquoted text strings, and makes explicit
the implicit concatenation of string fragments permitted in
Bash, but not in Python. Rather than expand variables,
expressions and command invocations to their resulting values,
bash2py expands these constructs to their nearest Python
equivalents. Since bash2py is a code translator it does not
execute commands. In a future release of bash2py all of the
extant bash code used only during bash command execution
will be removed from our distribution, making our code
smaller, simpler, and subsequently incapable of erroneously
executing this redundant bash code.

In addition to bash expansion mechanisms, bash2py
indiscriminately replaces many common keywords that occur
in bash with their Python equivalents whenever they are seen.
For example, the bash operators -gt, -eq, and !, are translated to
>, ==, and not, respectively.

In Bash most constructs return a value which may then be
tested. Often this is used with lazy and/or evaluation to
concisely express when actions should be performed. Such
programming nuances cannot readily be translated into Python,
which expects conditions to be braced by if’s and else’s. Note
that the conditional expression of Python, which is in the form
of x if C else y, may be used in this case. We are still
investigating how to succinctly translate return values of Bash
commands into Boolean values in Python.

C. Dealing with Indentation and Comments
Indentation is of particular importance in Python, as the

depth of indentation is used to determine grouping of
statements. Contrariwise, indentation is only used for
readability in Bash, so it provides little information on how to
generate indentation in the corresponding Python code. To
address this issue, bash2py calculates the amount of
indentation at each relevant position in bash code, and inserts
the indentation accordingly during code generation. Actual
indentation is achieved by using a global variable to indicate
the desired level of indentation, and low level print routines
which transparently insert the desired indentation, each time
text is emitted that immediately follows a new line character.
The high level translation software is otherwise oblivious to the
need to indent.

Unlike indentation, code comments have no impact on
program behavior, but they often contain information useful to
a programmer. Unfortunately, the bash parser simply discards
comments during tokenization. To reintroduce comments into
the output stream, we instrumented the bash source to

509

accurately record where within the input each bash statement
and comment started. Comments were then temporarily
buffered as seen, but not emitted until processing a bash
statement that logically occurred after them. They were then
emitted in the order seen. This preserved the sequential
ordering of comments and commands within the output.

D. Main Bash Features Translated and Limitations
Within the current design and implementation, bash2py

focuses on translating the most frequently used language
features in bash, which can be summarized as follows:

• Simple single statement commands.

• Compound commands: commands structured with
control constructs, including conditional constructs such
as if, select, case, and loops such as for, while and until.

• Grouped commands grouped with () or {}.

• Pipelines and lists of commands: commands connected
with |, &, ||, &&, etc.

• Declarations of function and parameters.

• Function invocations and use of parameter, including
positional parameters and special parameters, such as *,
@, #, and 0.

• Shell expansions, except those discussed Sec. II-B.

• Extensions for input/output redirection, etc.

For each simple command, bash2py first checks whether
the command is a recognized keyword having a known
translation to Python. For example, the built-in command echo
can be translated to print in Python while the built-in command
cd which changes the current working directory in Bash, is
translated as os.chdir() in Python. When the command is not
recognized, it can be a request to invoke the same named
internal function, or to invoke an external operating system
command. We distinguish between these two possibilities by
remembering the names of all previously declared functions
within a script.

External commands are invoked using subprocess.call().
When the command involves complex shell constructs, we
perform a shell invocation, but for invocations involving only a
program name and arguments we encode these as an array,
since it is less vulnerable to certain well known shell exploits.

Bash2py does not presume to be capable of accurately
translating everything presented to it. It does not translate
correctly all the nuances of parameter substitution; it does not
recognize all of the mechanisms available in Bash for input and
output redirection. In Bash variable typing is inferred at run
time, and so not known to our translator. We therefore presume
that all variables may contain strings, and coerce them to
strings when this is in doubt. We recognize that for strictly
numerical variables considerable ugliness and needless
overhead results. In Bash a string variable containing newline
characters may transparently be treated as an array having one
entry per line. Manual intervention to translate a string to an
array is required to achieve this same effect in Python.

Many translation errors of bash2py are related to the
combination of variable expansion and use of string. For
example, the bash code

for error in "${tests_errors[@]}"

is translated to Python code

for error in [str(tests_errors[@])]

while “$@” should expand to a sequence of words containing
positional parameters, such as “$1”, “$2”, and so on [7].

III. INDUSTRIAL EXPERIENCE
During our consultation with Owl, we were given access to

a project that uses a heavy amount of shell scripting for its
installation process on the client machine and for monitoring
client-server interfaces. This shell code was written primarily
in Bash, and the rest using the Korn-shell. The project we
worked with had a total of 87 bash files, which contained a
total of 33,109 lines of bash code. This yields an average of
380 lines per file. The median number of lines is 210, and the
maximum number of lines found in a file was 2310. The
standard deviation was 437. One of the software developers at
OWL used bash2py to translate 640 lines of bash code. By
manual inspection, he found that only 26 of these lines
contained errors. Thus, 96% of the translated lines were
translated correctly. In their development environment, Owl
tested the Python code translated from Bash. For file
transmission, the translated code achieved a speedup up to
50%. Also, the CPU usage was much lower (by ~70%).

In the communications with us, the developer who used
bash2py commented that the tool can indeed ease the task of
code translation from Bash to Python, especially when there
are repetitive and relatively simple commands and structures.
As bash2py does not translate bash code completely, a certain
amount of time was spent on correcting and validating the
resultant Python code. However, the developer considered it as
a process of consolidating his knowledge on Python, which is
probably necessary if the translation was done manually.
Meanwhile, since most surrounding code has been translated,
the developer can focus on small pieces of difficult code.

IV. EXPERIMENTS
To further evaluate bash2py, we selected six open-source

bash projects from GitHub (links are available at [4]). All these
projects are written only in Bash, and they implement diverse
functions, using a wide range of bash language features. We
selected projects of moderate size, since it was feasible to
manually validate only small projects. Because the thorough
functional specifications are unknown for the subjects, we
checked the output Python code manually with the help of
pylint [8], a code checker for Python.

In Table 1, the column #Bash shows the size of subject
programs, and the columns #Python and #Rejected show the
size of the translated Python code and the lines of code rejected
by pylint, respectively. All the numbers are measured in non-
comment non-blank lines of code. The last column shows the
success rate of the translation, which is equal to (#Python-
#Rejected)/#Python. The output for these experiments is

510

available [4]. As shown in Table 1, bash2py translates 687 out
of 767 lines of code correctly, with a success rate of 90%.

Table 1. EVALUATION OF BASH2PY ON OPEN-SOURCE PROJECTS

Program #Bash #Python #Rejected Success
assert 113 119 18 85%
bash2048 245 250 10 96%
bashmarks 67 71 6 92%
bashtime 121 83 7 92%
bashttpd 124 93 23 75%
JSON 173 151 16 89%
Total 843 767 80 90%

V. RELATED WORK
The idea of converting bash code to Python has been

discussed among programming communities [9]. In [10],
Delaney lists several disadvantages of shell scripting and
discusses the benefits of replacing Bash with Python. The
article also exemplifies how to use Python, in place of Bash, to
fulfill tasks, such as data processing and sending emails. Gift
[11] gives a step-by-step tutorial on how to write Python code
based on relevant knowledge of Bash. He states that Python is
easier to program with and usually outperforms Bash as a
scripting language. The development of bash2py is largely
inspired by these discussions and Owl’s desire to switch to
Python.

There are many tools for source-to-source code
transformation. The ROSE compiler infrastructure [12] can be
used to translate and analyze several popular programming
languages, including C, C++, Fortran, Java, Python, PHP, etc.
The 2to3 tool automatically migrates code in Python 2 to
Python 3 [13]. The Google Webkit Tool (GWT) [14] allows
developers to use specific Java APIs to create web applications
which are automatically translated into JavaScript programs.
Among these various kinds of tools, a common approach is to
first parse/transform the source program into some
intermediate representation (IR), and then generate the target
output from the IR. Bash2py takes a similar approach, in which
the IR is the internal bash COMMAND data structure. To the
best of our knowledge, bash2py is the first publicly available
automatic translator from Bash to Python.

VI. CONCLUSIONS AND FUTURE WORK
Bash2py was developed with the specific goal of

dramatically reducing timeframes needed to port a substantial
body of industrial code written in Bash to Python. It assists in
this translation process by correctly translating most of the
bash control structures presented to it, and in migrating from
loose string representations in Bash, to the much stricter syntax
required by Python. In general, it is rather challenging to do the
translation automatically, due to idiosyncrasies of each
language. Nevertheless, the 80-20 rule applies in the settings of
our project: Most bash scripts needed to be translated use
relatively simple features, and thus are amenable to a partial

solution as implemented by bash2py. In retrospect, we believe
that developers may often avoid using complicated (although
powerful) bash features, as long as the required functionality
can be implemented in a simpler way.

Our future work will be to continue to support, and
improve bash2py. Bash2py currently employs a somewhat ad-
hoc sequence of translations to transform bash strings with
embedded parameters into Python. Better results might be
obtained if we generated Python strings by modifying the
existing low level runtime code that expands strings within
Bash. While obviously important, there are currently virtually
no diagnostics advising users of code known to have not been
correctly translated. We have not yet made any attempt to solve
this challenging problem. Proof of program equivalence is
generally undecidable, and more pragmatic solutions often
need test cases of the bash scripts. Moreover, Owl CTI does
not consider this as a severe problem, because the bash scripts
concentrate on file manipulations, of which they can easily
validate the results manually. Nevertheless, this problem needs
to be addressed, to make bash2py more generally useful.
Substantially more testing is required to discover and rectify
cases where our existing translation is flawed, much of which
we hope can be achieved by our industrial partner, and the
wider community.

ACKNOWLEDGMENT
This work was inspired, funded and supported by Ron

Mraz, the president of Owl CTI. Robb Zucker and Adam
Laughlin both assisted in validating the usefulness of this tool
to Owl.

REFERENCES
[1] Programming Language Popularity. http://www.langpop.com
[2] C. Ramey and B. Fox, Bash Reference Manual. Network Theory

Limited, 2003.
[3] Owl Computing Technologies Inc. Securing your networks from cyber

threats. http://www.owlcti.com
[4] SWAG Software Architecture Group. Bash to Python script translator.

 http://www.swag.uwaterloo.ca/bash2py
[5] Bison GNU parser generator. http://www.gmu.org/software/bison
[6] C. Ramey. The bourne-again shell The architecture of open-source

applications. http://aosabook.org/en/bash.html 2011.
[7] Bourne-Again Shell manual. http://www.gnu.org/software/bash/manual
[8] Pylint Home Page. http://www.pylint.org. 2014
[9] C. Jefferson. Can I use Python as a Bash replacement?

http://stackoverflow.com/questions/209470/can-i-use-python-as-a-bash-
replacement

[10] R. Delaney. Python scripts as a replacement for bash utility scripts.
Linux Journal, vol 2012 no 223. November 2012.

[11] N. Gift. Python for bash scripters: A well-kept secret. Red Hat
Magazine, http://magazine.redhat.com/2008/02/07/python-for-bash-
scripters-a-well-kept-secret 7 February 2008.

[12] ROSE compiler infrastructure. http://rosecompiler.org 2014
[13] 2to3 – Automated Python 2 to 3 code translation.

https://docs.python.org/2/library/2to3.html 2014
[14] Google Web Toolkit. http://www.gwtproject.org

511

