CWE-806: Buffer Access Using Size of Source Buffer
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses the size of a source buffer when reading from or writing to a destination buffer, which may cause it to access memory that is outside of the bounds of the buffer.
When the size of the destination is smaller than the size of the source, a buffer overflow could occur.
![]()
![]() ![]()
![]()
![]() Languages C (Sometimes Prevalent) C++ (Sometimes Prevalent) Example 1 In the following example, the source character string is copied to the dest character string using the method strncpy. (bad code)
Example Language: C
...
char source[21] = "the character string"; char dest[12]; strncpy(dest, source, sizeof(source)-1); ... However, in the call to strncpy the source character string is used within the sizeof call to determine the number of characters to copy. This will create a buffer overflow as the size of the source character string is greater than the dest character string. The dest character string should be used within the sizeof call to ensure that the correct number of characters are copied, as shown below. (good code)
Example Language: C
...
char source[21] = "the character string"; char dest[12]; strncpy(dest, source, sizeof(dest)-1); ... Example 2 In this example, the method outputFilenameToLog outputs a filename to a log file. The method arguments include a pointer to a character string containing the file name and an integer for the number of characters in the string. The filename is copied to a buffer where the buffer size is set to a maximum size for inputs to the log file. The method then calls another method to save the contents of the buffer to the log file. (bad code)
Example Language: C
#define LOG_INPUT_SIZE 40
// saves the file name to a log file int outputFilenameToLog(char *filename, int length) { int success;
// buffer with size set to maximum size for input to log file char buf[LOG_INPUT_SIZE]; // copy filename to buffer strncpy(buf, filename, length); // save to log file success = saveToLogFile(buf); return success; However, in this case the string copy method, strncpy, mistakenly uses the length method argument to determine the number of characters to copy rather than using the size of the local character string, buf. This can lead to a buffer overflow if the number of characters contained in character string pointed to by filename is larger then the number of characters allowed for the local character string. The string copy method should use the buf character string within a sizeof call to ensure that only characters up to the size of the buf array are copied to avoid a buffer overflow, as shown below. (good code)
Example Language: C
...
// copy filename to buffer strncpy(buf, filename, sizeof(buf)-1); ...
![]()
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |