


default search action
Sequential Monte Carlo Methods in Practice, 2001
- Arnaud Doucet, Nando de Freitas, Neil J. Gordon
:
Sequential Monte Carlo Methods in Practice. Statistics for Engineering and Information Science, Springer 2001, ISBN 978-1-4419-2887-0 - Arnaud Doucet, Nando de Freitas, Neil J. Gordon:
An Introduction to Sequential Monte Carlo Methods. 3-14 - Dan Crisan:
Particle Filters - A Theoretical Perspective. 17-41 - Pierre Moral, Jean Jacod:
Interacting Particle Filtering With Discrete Observations. 43-75 - Christophe Andrieu, Arnaud Doucet, Elena Punskaya:
Sequential Monte Carlo Methods for Optimal Filtering. 79-95 - Erik Bølviken, Geir Storvik
:
Deterministic and Stochastic Particle Filters in State-Space Models. 97-116 - Carlo Berzuini
, Walter R. Gilks:
RESAMPLE-MOVE Filtering with Cross-Model Jumps. 117-138 - Simon J. Godsill, Tim Clapp:
Improvement Strategies for Monte Carlo Particle Filters. 139-158 - Markus Hürzeler, Hans R. Künsch:
Approximating and Maximising the Likelihood for a General State-Space Model. 159-175 - Genshiro Kitagawa, Seisho Sato:
Monte Carlo Smoothing and Self-Organising State-Space Model. 177-195 - Jane Liu, Mike West:
Combined Parameter and State Estimation in Simulation-Based Filtering. 197-223 - Jun S. Liu, Rong Chen, Tanya Logvinenko:
A Theoretical Framework for Sequential Importance Sampling with Resampling. 225-246 - Christian Musso, Nadia Oudjane, François Le Gland:
Improving Regularised Particle Filters. 247-271 - Michael K. Pitt, Neil Shephard:
Auxiliary Variable Based Particle Filters. 273-293 - Photis Stavropoulos, D. M. Titterington:
Improved Particle Filters and Smoothing. 295-317 - Niclas Bergman:
Posterior Cramér-Rao Bounds for Sequential Estimation. 321-338 - Andrew Blake, Michael Isard, John MacCormick:
Statistical Models of Visual Shape and Motion. 339-357 - Nando de Freitas, Christophe Andrieu, Pedro A. d. F. R. Højen-Sørensen, M. Niranjan, A. Gee:
Sequential Monte Carlo Methods for Neural Networks. 359-379 - Petar M. Djuric:
Sequential Estimation of Signals under Model Uncertainty. 381-400 - Dieter Fox, Sebastian Thrun, Wolfram Burgard, Frank Dellaert:
Particle Filters for Mobile Robot Localization. 401-428 - Tomoyuki Higuchi:
Self-Organizing Time Series Model. 429-444 - Daphne Koller, Uri Lerner:
Sampling in Factored Dynamic Systems. 445-464 - Alan D. Marrs:
In-Situ Ellipsometry Solutions Using Sequential Monte Carlo. 465-477 - Shaun McGinnity, George W. Irwin:
Manoeuvring Target Tracking Using a Multiple-Model Bootstrap Filter. 479-497 - Kevin Murphy, Stuart Russell:
Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. 499-515 - David Salmond, Neil J. Gordon:
Particles and Mixtures for Tracking and Guidance. 517-532 - Anuj Srivastava, Aaron D. Lanterman, Ulf Grenander, Marc Loizeaux, Michael I. Miller:
Monte Carlo Techniques for Automated Target Recognition. 533-552

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.