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1. Introduction

The main result of this paper concerns the second Hamiltonian structure for the
Lax equations based on a scalar n'® order differential operator

(1.1) L=¢&"4u, &2+ ... +u, i+u,, ¢=7¢/cx

(see [1, 5]). We show that this complicated-looking structure arises by ‘re-
duction’ from a vastly simpler one (essentially just ¢/Cx) on an appropriate
space of ‘modified’ variables.

We begin by explaining this in the simplest case n=2, so that L is the
Schridinger operator &2 +u; here u is a function of two variables x and t. By a
Lax equation formed from L we mean an equation of the form

(1.2) L=[P, L]

where P, is a differential operator whose coefficients are differential polynomials
in u, that is, polynomials in u and its x-derivatives u". (The subscript + may be
ignored at this point: we introduce it so as not to conflict with the notation in
the main body of the paper.) Since L, is an operator of order zero, for (1.2) to
make sense P, must be chosen so that the commutator on the right has order
zero too; (1.2) is then equivalent to an evolution equation for u, that is, an
cquation of the form

u,=f(uu_ u_,..)

(no t-derivatives on the right). The construction of such operators P_ is now well
understood, and is reviewed in Sect. 3. The simplest non-trivial example is the
operator

P, =4&+06ué+3u,;

the corresponding Lax equation (1.2) is the Korteweg-de Vries (KdV) equation

0020-9910/81/0062/0403/$06.80



404 B.A. Kupershmidt and G. Wilson

(1.3) u=u, +6uu,.

t XXX

Equation 1.2 is called the ‘Lax representation’ of the KdV equation.
Among the many remarkable properties of the KdV equation, we shall be
specially concernell with the following.

(1) The equation has an infinite sequence H,,H,,... of conserved densities;
they are differential polynomials in u, and we have H,=4u, H,=u?,
Hy=%u—%ul, ...

(it) The conserved densities satisfy the recursion relation (due to A. Lenard )

OH, 2 0H,

14 1o34uo+e
(1.4) (36°+uc+ou) 5 S

(iii) The equation can be written in Hamiltonian form

SH,
ou

u,=20

First a few words of explanation for non-expert readers. In (ii) and (iii), ¢
means §/0x: our principle is that in differential operators we write 8/¢x as ¢
when we are thinking of the operator as an algebraic object in its own right, as
in (1.1), but as ¢ when it is actually going to operate on something, as in (ii) and
(iii). In (i1}, u means the operator: multiply by u, then differentiate. ‘Conserved
densities’ means that we have identities

oH
Camg,
ot

which follow formally from (1.3); the J, are also differential polynomials in u.
For example, for H,=u? we have
ofotw?)=2ulu,  +6uu)=0Quu, —u’+4u’).

xXXxXx

Under suitable analytic circumstances, for example if all the u“ vanish as
x— +oo, if follows at once that the integrals of the H, will be constants
(independent of t). In (ii) and (iii), 6/0u denotes the (formal) variational de-
rivative (Euler-Lagrange operator)

oH . 0H

=2
We refer to Sect. 5 for a precise explanation of the term ‘Hamiltonian’ in (iii),
but the idea is as follows: for any differential polynomial H we think of the
equation

u,=2é’§u‘
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(or rather the corresponding derivation ¢/dt) as the Hamiltonian vector field
corresponding to H; we are thus thinking of H as a function on phase space,
OH/du as its gradient, and the skew operator 2 ¢ is playing the role of the matrix

|
(_1 0) in the usual form of Hamilton’s equations. The t;rm ‘Hamiltonian’

then refers to the following property of the operator 2¢: if we define Poisson
brackets in the usual way, then this map (functions)— (vector fields) takes
Poisson brackets to commutators.

Let us look more closely at the Lenard relations (1.4). Given an arbitrary
differential polynomial H, we can form the expression (5> +u ¢+ cu) dH/Su, but
in general there is no reason why this expression should lie in the image of the
operator 27 6/0u; it is thus by no means obvious that, given H,, we can find any
differential polynomial H_ , satisfying (1.4). However, that is in fact the case for
the whole infinite sequence of conserved densities H,. The papers [6, 10] throw
considerable light on this miracle: it is closely connected with the fact that the
operator 383+ u +7u on the left of (1.4) is Hamiltonian in the same sense as
indicated above for the operator 2¢ on the right. (Perhaps we should emphasize
that this property is by no means shared by all skew-adjoint differential
operators: for example, the operator 1% +u? ¢+ du’ is not Hamiltonian; nor
are any of the operators « 32" "'+ ud+cu for r>1, « a non-zero constant.) The
KdV equation can thus be written in two Hamiltonian forms:

u,=20 %%3-—-(%(?3+u8+6u)5;2.
Furthermore, these two Hamiltonian structures are compatible in the sense that
for any constants «, B, the operator «(20)+ (& & +ud+cu) is Hamiltonian.
(That is not automatic, since the requirement of being Hamiltonian imposes a
quadratic, not linear, condition on the skew operator.) In [6] (see also [10]) it is
shown that this is sufficient to ensure that the equation has an infinite sequence
of conserved densities satisfying (1.4).

The main question, then, is: why is the operator 4 &*+u @+ éu Hamiltonian?
Our explanation for this involves the relationship between the KdV equation
and the ‘modified’ KdV equation

(1.5) v,=v, . —6v70v,.
1 XXX X

This relationship played an important role in the original discovery of the
properties of the KdV equation (see, for example, [8]). The connexion between
the two equations, due to Miura, is the following: let

{1.6) u=v, —v’

Then if v satisfies (1.5), u satisfies (1.3).
Now, the modified KdV equation can be written in the Hamiltonian form

oH

(L.7) U,=(—%0)~5j
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where H=u?=(v_—1?)%. As we have seen, the KdV equation can be written in
the form

(1.8) =L +uc+au oH

ou
with the same Hamiltonian H =u? This connexion between Egs. 1.7 and 1.8 is
not an accident involving the particular Hamiltonian H=u? but reflects a
relationship between the two skew operators —4¢, 123 +ud+ du. If v satisfied an
Eq.(1.7) for any other Hamiltonian H(u,u_,...), then u=v, —v? would satisfy the
corresponding Eq.(1.8). That is a simple consequence of the easily verified
identity

(1.9) 103 4yd+cu=D(-58)D*

where D=0-—2v is the ‘Fréchet Jacobian’ of u with respect to v, and D*= —7—2¢
is its (formal) adjoint. It follows automatically from (1.9) that the operator
503 +ul+ du is Hamiltonian (given that —1¢ is). We say that the Hamiltonian
structure defined by the operator 1 @* +uc + éu is obtained by restriction of that
defined by —1¢ (from functions of v to functions of u). (The term ‘reduction’
would be appropriate if we were thinking in a geometric, rather than algebraic,
context.) We refer to Sect. 6 for a detailed explanation of all this.

We shall generalize everything we have said so far to all values of n. Here we
Just point out the two main clues as to how the generalization is to be done.
First, if we formally factorize the Schrodinger operator

Etu=(E~0v)(+v)

then u and v are related by the ‘Miura transformation’ (1.6). We are not sure to
whom this observation should be credited, but it is certainly to be found in the
paper of Adler and Moser [16]. Secondly, the modified KdV equation has a
matrix Lax representation in which

L 1 0 0 v

= (o —1)€+(~v o)'

In the general case we shall introduce ‘modified’ variables v,,...,v,_; by
splitting the operator (1.1) into linear factors, and the modified Lax equations
will be based on a first order operator with n x n matrix coefficients.

Here are some remarks to orient the reader among the various sections. The
modified Lax equations are defined in Sect.4; the definition depends on some
very simple matrix algebra involving ‘circulants’, which is set out in Sect. 2. Our
main theorem on the second Hamiltonian structure is in Sect. 8. The intervening
sections are of a trivial and/or expository nature. Section 3 reviews the general
theory of Lax equations (following [15]) and discusses ‘specialization’ of the
basic operator L. The point is that in the general theory the coefficients of L are
supposed to be independent variables; but in practice we often want to consider
operators for which that is not the case. Some parts of the general theory carry
over automatically to a specialized L, but others cause problems. Sections 5-7
could be regarded as a quick introduction to the Hamiltonian formalism.
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Section 5 contains definitions and examples. We have formulated the definitions
in the minimum generality adequate for our purposes; for example, there would
be no difficulty in working with, say, C™* functions rather than polynomials,
which would put us essentially in the framework of [11], Chap. 1. Section6
discusses the process of restricting Hamiltonian structures. We should emphas-
ize that a structure obtained by restriction is automatically Hamiltonian (pre-
serves brackets); in Sect.8 we show that the second Hamiltonian structure for
Lax equations arises in this way, so we obtain a proof that this structure actually
is Hamiltonian; this proof is quite different from that of Gel'fand and Dikii [5].
The compatibility of the two Hamiltonian structures for Lax equations (see [5,
6, 10]) is a trivial consequence of the fact that the second structure is Hamil-
tonian {see Sect.5, Example6), so we have a new proof of that too. Section7
explains why Lax equations have these two Hamiltonian structures. The expo-
sition essentially follows [11], with appropriate modifications to take care of the
matrix case (which we need).

Sections 9 and 10 give the proofs of two comparatively technical results used
in Sect. 8. Then finally, in Sect. 11 we consider what happens if we abandon the
assumption that the second coefficient u, , of the operator (1.1) should vanish.
The restriction u,_,=0 is a natural one for many purposes, but for the
discussion of the second Hamiltonian structure the general case u, ;=+0 is
actually easier (compare Examples 4 and 5 in Sect.5). In the case u, , +0, our
main result can be formulated very simply as follows. Recall that we are dealing
with Hamiltonian structures on spaces of coefficients of differential operators.
Then the second Hamiltonian structure is characterized by the following proper-
ties:

(1) for a first order operator ¢+x, it is just —¢

(i) the composition of operators is a ‘canonical transformation’.

We mention briefly two other applications of the idea of ‘modification’. The
first concerns ‘Biacklund transformations’: as is well known (see [4]), in the KdV
case (n=2) these are closely connected with the fact that the modified KdV
equation (1.3) is invariant under v— —v. For general n, our modified equations
are invariant under vp—o'v,, where ® is an n'™ root of unity. Second, one
can discuss systematically the hierarchies of Lax equations based on certain
specialized operators L obtained by imposing relations among the ‘roots’ of
the basic operator {1.1). The simplest examples would be when n=3; then we
should obtain hierarchies of Lax equations based on the operators

L=&+ué+ou, a=0, Jorl

(The three values of a correspond to the three roots of L vanishing. The
equations with a=0 or 1 coincide, so there are only two hierarchies.)

We should like to draw the reader’s attention to two recent short papers [17,
18] which are closely related to our work. We saw these papers only during the
revision of our manuscript (August 1980).

This work arose out of conversations between the authors at the Workshop on Non-linear Waves,
Clarkson College, Potsdam, N.Y. in July-August 1979. We should like to express our appreciation
to the organizers of that conference for their hospitality.
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2. Circulants

Let A be an associative, but not necessarily commutative, algebra over € (in our
application 4 will be an algebra of formal pseudo-differential operators). Let
M,=M (A) be the algebra of all nxn matrices with entries in 4. We consider
the map ¢: M,— M, defined by

((p(X))ij:Xi+l,j+ 1> XeM,.
(Here the subscripts are to be read modn.) It is easy to check that ¢ is an
algebra automorphism: indeed, ¢ is just the inner automorphism of M, induced
by cyclic permutation of the standard basis for A" The matrices left fixed by ¢

are called circulants (see [2]). For example, a 3 x 3 circulant is a matrix of the
form

a b ¢
¢ a bl
b ¢ a

More generally, we want to consider the decomposition of M, according to the
different characters of the cyclic group of order n generated by ¢ (obviously, ¢"
is the identity). To make this explicit, we fix a primitive n'® root of unity, say

w=exp(2ni/n).
(2.1) Definition. We say a matrix XeM, is an w*-circulant if
e(X)=w* X.

More explicitly still, X is an w*-circulant if it can be obtained from a
circulant by multiplying the i'" row (or column) by »* (we index the rows and
columns by the numbers 0,1,...,n—1). For example, a 3 x3 w-circulant is a
matrix of the form

a b ¢
we wa wb
w?bh w*c o’a

(2.2) Proposition. (1) Each XeM, has a unique decomposition
X=X,+X,+...+X,

with X, an o*-circulant.

(i) The product of an w*-circulant and an w'-circulant is an w**'-circulant.

Briefly, we have a modn grading on M, (as indicated above, the grading
really takes values in the character group of the cyclic group generated by ¢).
We introduce the following notation:

X =wkcirc(xg, Xy, ..., X,_1)
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means that X is the (unique) w*-circulant whose first row is the vector indicated.
Let L be an e-circulant, say

L=w-circ(vg,v;,...,0,_1).

s Yn—1
For k=0,1,...,n—1 we define circulants L, by
L, =circ(vy, 0* v, 0¥ v,, ..., 0" V¥p, ).

If Q denotes the diagonal matrix
(2.3) Q=diag(l,w, % ...,0" )
it is easy to check that

L=QL,, L,=Q*L,Q"
Using this, and the fact that Q" is the identity, we get the next proposition.
(2.4) Proposition. We have

L'=L, ,..L,L, L.

n

This can be regarded as a non-commutative version of the well known
factorization for the determinant of a circulant in the case where 4 is com-
mutative (see [2]). n-1

Finally, if X =circ(x,,...,x,_,) is a circulant, we set s(X)= ) x,.

0

(2.5) Proposition. The map
s: (circulants)— A4
is a homomorphism of algebras.

Indeed, s(X) is just the eigenvalue of X corresponding to the eigenvector
(,1,..., 1)

3. Lax Equations and the Problems of Specialization

Let 4 now be an associative differential algebra over €; that is, an algebra
together with a derivation ¢: 4- A. We denote by A[¢&] the algebra of
(ordinary) differential operators with coefficients in A4: thus each element of

A[£] has a unique representation in the form Zai &, a,eA, and the rules for
0

multiplying two such expressions follow from the basic one

3.1 Ea=al+(0a), acA.

If A4 is an algebra of functions of x and d=43/0x, then A[E] is just the usual
algebra of differential operators. We denote by A[&, &~ 1] the algebra of formal
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pseudo-differential operators obtained from A[&] by formally inverting £. Each
element X of A[E ¢~ 1] has a unique representation in the form

(3.2) X=3 x;& x€A.

The rules for multiplying these expressions also follow from (3.1): for example,
-1

multiplying (3.1) on the right and left by ¢, we easily find
Ela= Y (=1)dac !, aeA.

(This rule explains why it is essential to allow infinite sums in A[£, £ 1].) It 1s easy
to check that the multiplication in A[& £~ 1] is associative (see, for example,
[11]). Each element XeA[¢, £~ 1] has a unique decomposition

X=X_+X_
where X , is a differential operator and X _ is an ‘integral operator’ {involving

only negative powers of £). If we write X in the form (3.2), then we have

X =

+

&, X =) x¢&

o~

Finally, the coefficient of £~' in the expansion (3.2) is called the residue of X,
written res X.

Throughout this paper we shall be working with differential algebras of the
form

B=C[w{,...,w{], j=0

(polynomials in independent variables w;, and their ‘derivatives’; the derivation is
defined by dw=wl*tY and as usual w,=w!”, so that w¥’=@&'w,). When it is
necessary to indicate the variables we shall write this algebra as B(w,, ..., wy), or
sometimes just B{w). We write M(B) for the algebra of | x| matrices with entries
in B(w); the derivation 0 is extended to M(B) so as to act on each entry
separately.

The theory of Lax equations starts out from a differential operator
LeMyB)[£]:

(3.3) L=u,&"+u, (" '+...+ul+uy,, ueM(B).
We assume that the two leading coefficients satisfy the following conditions.

(3.4)(1) The first coefficient u, is a constant diagonal matrix
u,=diagl(cy,...,¢)

where the c, are all non-zero, and ¢, #c, if a#p.
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(3.4)(ii) The diagonal entries in the second coefficient vanish :

u =0.

n—1.xx

The reason for these assumptions (apart from the fact that they are satisfied
in all the examples of physical interest) will become clear below. The assumption
that the ¢, be distinct is in fact quite inessential; we make it just to introduce
some verbal simplifications in what follows. The case when some or all of the ¢,
are equal is treated in [15].

In the general theory of Lax equations (for example in [ 15]) it is assumed in
addition that the (non-constant) entries u; ,, in L are differentially independent,
that is, that there are no polynomial relations among the u{, . In that case one
might as well start off from the algebra B(u, ,,), as is done in [15]. We shall refer
to an operator (3.3) in which the u, ,, are differentially independent as a *general®
L. On the other hand, in practice we often want to form Lax equations from an
operator L in which the u; ,, are not differentially independent; we shall refer to
such an operator as a ‘specialization’ of the general L. (We prefer this to the
commonly used term ‘reduction’.) Formally, we could define a specialization to
be a homomorphism of differential algebras

¢0:Blu; ) = BOv, ...owy),

but since such a homomorphism is determined by its values on the v, ,,, and
these may be chosen arbitrarily, giving ¢ is equivalent simply to writing down
an operator of the form (3.3). Perhaps the simplest example of a “specialized’ L is
the operator

) e

This L gives rise to the hierarchy of modified KdV equations. But since the
entries v, —uv, are not differentially independent, the theory of [15] does not
apply immediately.

Let us review the general theory, paying attention to any problems caused by
specialization. Given an operator L of the form (3.3), the associated Lax
equations have, by definition, the form

(3.6) ¢,L=[P.L}=[L.P]

where PeM(B)[E E7 "] is an operator that commutes with L, so that the two
sides of (3.6) are indeed equal. To describe all such equations we have therefore
to determine the centralizer Z(L) of L in the algebra M (B)[&, ¢ '], That is done
in [15] for the general L, and the argument is unaffected by specialization. It
goes as follows: we find an ‘integral operator” K of the form K=1+y,&" '+ ...
such that K~ 'LK =u,&" It is easy to see that the centralizer of u, " consists of
the operators B, each of whose coefficients is a constant diagonal matrix. Thus
Z(L) consists of the operators P=KP,K~'. The operators P with B, a mo-
nomial, B,=p¢& (p a constant diagonal matrix), are called homogeneous. The
reason is that in the general case (u;,, differentially independent) one can
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introduce a grading on M,(B)[¢,¢7'] in which ¢ has degree 1 and u¥), has
degree n—i-+j, so that L is homogeneous of degree 1; then the operators P just
described are indeed homogeneous with respect to this grading. (Strictly speak-
ing, we are using the word ‘grading’ a bit loosely, because there are infinite sums
involved.) In the case of a specialized L there might in general be no such
grading, that is, if ¢: B(u) — B(w) is the homomorphism defining the specializa-
tion, there might not be any grading on B(w) making ¢ a graded homomor-
phism; however, for the specializations of interest in practice there nearly always
is such a grading. For the operator (3.5), for example, we give v degree 1. Thus
the reader may safely think of ‘homogeneous’ as referring to a natural grading
determined so as to make L homogeneous of degree n.

(3.7) Remark. The idea of finding an operator K that conjugates L into its
leading term plays, in some guise or other, a basic role in most work on this
subject. We can now understand the conditions (3.4) better: given (3.4){i), the
condition (3.4) (ii) is just what is needed to ensure that we can find the desired K.
We take this opportunity to correct the incautious remark 2 in Sect. 6 of [15]: the
condition that all the ¢, be non-zero is quite essential for the construction
sketched above. That is clear from a glance at the equations determining the
coefficients y, of K (Eqgs. (5.4) in [15]).

(3.8) Remark. In the sketch above, we have suppressed the main difficulty,
namely that the entries in the coefficients of K do not lie in our original algebra
B, but in a larger one. It is thus not obvious that the entries in the operators
P=KPF,K~! lie in B: but it is one of the main results of [15] that this is in fact
the case.

To sum up, then: for each constant diagonal matrix p and each integer r,
Z(L) contains a unique homogeneous operator P with leading term p¢™; and
Z(L) consists of the linear combinations of these. For cach PeZ(L), we can try
to form the Lax equation (3.6). It is at this point that specialization makes a
difference. Since P and L commute, we have

[P, L]=[L,P]

which shows that this expression is a differential operator of order at most n— 1,
and also that the diagonal entries in the coefficient of £"~! vanish. This shows
that in the general case each PeZ(L) gives us a sensible Lax equation (3.6).
But if L is a specialization, these equations will in general be inconsistent.
In the case of the operator (3.5), for example, the general theory assures us that

2 g) but it does
not guarantee that b= —qg, which we need if Eq.(3.6) is to make sense. In
general, whatever relations there may be among the coefficients of L, we shall
not be happy with Eq.(3.6) unless the same relations are reproduced among the
coefficients of [P, L]. More formally, we make the following definition.

[P., L] will always be an operator of order zero of the form (

{3.9) Definition. Given a specialized L, we say an operator PeZ(L) (or the
corresponding equation (3.6)) survives the specialization if there is an evo-
lutionary (that is, commuting with @) derivation &, of B so that (3.6) holds.

We then have the following basic problem.
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(3.10)  Problem. (First problem of specialization.) Determine which operators P
survive a given specialization.

Next we consider the conservation laws. In the general case (see [15], (4.1))
one shows that for each QeZ(L), the trace trres Q is a conserved density for all
the Egs. (3.6), that is, ¢, tr res Qelm . It follows automatically that for a spe-
cialized L, the trresQ will still be conserved densities for any Egs.(3.6) that
survive the specialization; the problem now is that they may be trivial; that is,
we may have trresQelmc. This is perhaps best viewed in terms of the map
B{u)— B(w) defining the specialization: there is no reason why the induced map
B(u)/Im ¢ —» B{w)/Im ¢ should be injective. So we have another problem.

{3.11)  Problem. (Second problem of specialization.) Determine which conserved
densities trres Q survive a given specialization (that is, do not become trivial).

In studying this problem it is of course helpful to know that (for Q of
positive order) the conserved densities trres Q are not trivial to begin with, for
the general L (except when @ is an integral power of L). This is not proved
anywhere in the literature (it was conjectured in [15]), but it is a simple
consequence of the fact that the general Lax equations (3.6) can be written in
Hamiltonian form. We shall give the argument at the end of Sect. 7.

Naturally, one can formulate many more ‘problems’ associated with
specialization, but the two above will do for the moment. We do not know any
general approach to these problems, but we can solve them for most of the
specializations that interest us in practice. Sections 4 and 8 will illustrate this.

4. The Modified Equations

We shall work over the algebra B=B(¢,...,v,_,) of differential polynomials in
n—1 variables r;. Combining the trains of thought in Sects. 2 and 3, we consider
the (specialized) first order differential operator

4.1 L=w-circ(& vy, .. v, )

Thus if n=2, L is the operator (3.5). If n=3, then we have

1 0 O -0 v, v,
L=10 o 0 ]i+| wr, 0 owr,
0 0 o? w’r, o't, 0,

As in Sect. 3, let Z(L) be the centralizer of L in the algebra M (B)[&, &7 ']

(4.2) Proposition. If L is given by (4.1), then Z(L) contains a unique homogeneous
element P of each order r with the properties
(1) P=1d. &+ (lower order terms)
(i1) P is a circulant
(iii) the Lax equation formed from P is consistent; that is, there exists an
evolutionary derivation ¢, of B(v) such that (3.6) holds.

Proof. We recall from Sect. 3 that ‘homogeneous’ refers to the natural Z-grading
such that ¢ has degree 1 and v¥ has degree j+ 1. We know that there is a unique
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homogeneous PeZ(L) satisfying (i), so we have only to see that this P satisfies
(i) and (iii). Now, there is also the modn grading given by the decomposition
into w*-circulants (see (2.2)); in fact it is easy to see that we have a bigrading,
that is, each operator in M (B)[&, £~ '] has a unique decomposition as a sum of
components that are homogeneous in both senses. Since L is bihomogeneous,
when we decompose an element of Z(L) in this way each component will still lie
in Z(L). Now, an operator is clearly an w*-circulant if and only if each of its
coefficients is; and a Z-homogeneous element of Z(L) is uniquely determined by
its leading term. Hence a Z-homogeneous element of Z(L) is an w*-circulant if
and only if its leading term is. Since the identity matrix is a circulant, it follows
that the homogencous element PeZ(L) satisfying (i) also satisfies (ii). Finally, to
prove (iif), we note that the consistency condition for the Lax equation (3.6)
formed from P is just that the right hand side [P, L] should be an w-circulant
(as is the left hand side ¢,L); that is clearly the case if P (hence also P,) is a
circulant. That proves (iii). Indeed, [P,,L] is an w-circulant if and only if any
non-circulant part of P contributes zero to the Lax equation, so we have solved
the ‘first problem of specialization” (3.10) for this L: only circulant operators
PeZ(L) give non-trivial consistent Lax equations.

Remarks. (i) Of course, if r is a multiple of n, the operator P described in (4.2) is
just a power of L, so the corresponding Lax equation is trivial.

(ii) Instead of using the theory of [15], we could also construct the necessary
operators using the technique of ‘fractional powers’: the operators P of (4.2) are
just the admissible fractional powers of L" in the sense of [11].

The Eqs.(3.6) formed from the circulant operators of (4.2) constitute our
hierarchy of ‘modified Lax equations’. To see why we call them that, define a
differential operator L with scalar coefficients by L=s(L"), where s is the
summation map of Sect.2. Of course L" is a circulant, by (2.2)(ii); its leading
coefficient is the identity, hence its second coefficient vanishes, so that L is an
operator of the form

L=¢"4vu, ;& 24 . 4u é+u,

with u;eB(v). (To avoid confusion with the notation of Sect. 3, note that these u,
are scalars, not matrices.)

(4.3) Proposition. (1) Let P be the circulant of order r described in (4.2); set
P=s(P). Then P is the operator of order v in the usual hierarchy formed from L (in
particular, the coefficients of P are differential polynomials in the u,).

(i) If the variables v, satisfy the modified Lax equation (3.6), then the variables
u; satisfy the (scalar) Lax equation

o,L=[P,L]

Proof. Since s is a homomorphism (see (2.5)), the equation [P, L"] =0 implies that
[P, L]=0; since P is homogeneous of degree r with leading term ¢&", (i) follows.
Part (ii) is also a trivial consequence of the fact that s is a homomorphism.

Finally, we apply the homomorphism s to the factorization of L" into n
circulants (see (2.4)) to obtain the relationship between the ‘original’ and
‘modified’ variables in a more convenient form.
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(4.4) Proposition. The operator L splits into linear factors

i=(f+yn~1)---(é“')’l)(é‘i'YO)
where

Y=+, + ...+

n—1-

Thus the variables u; are some kind of ‘non-commutative elementary sym-
metric functions’ in the variables v,.

Examples. In the case n=2, the variables u and v are related by the Miura
transformation (1.6). The circulant P, of degree 3 described in (4.2) is

P, =circ(&—3v2¢—3ov, 0 E+ V).
The Lax equation formed from 4P is the modified KdV equation (1.5). Also
P =s(P)=E+3(v'—v?)E+30" —3ov' =+ 3ué +3u

the scalar Lax equation formed from 4P is the KdV equation (1.3).
In the case n=3, explicit formulas are already quite unenlightening. For
example, the relationship between the two sets of variables is

=(l—w?)v; +(1—w)v,—3v,v,
Uo =07+ 05+ +v,)[(0— o] +(w*—1)v,]+ 03 +0v3.

5. Hamiltonian Structures

Let B=B(w,,...,wy) be a differential algebra of our usual kind (see Sect.3). We
first recall the definition of adjoint operators. The adjoint Q* of a (scalar)
differential operator QeB[¢] is characterized by the two properties (i) = is an
anti-automorphism of B[&] (‘anti-” means that (QR)*=R* Q*) (ii) if feB, then
(f&*=—¢&f If | is a matrix of differential operators, then I* is defined by
(1*);;=1%. The main property of /* is the following: if F, G are column vectors
of elements of B, then

(5.1) (*FYG=F(G) modImé.

(As usual, the superscript t denotes the matrix transpose.) Intuitively: the
‘integrals’ of the two expressions in (5.1) are equal.

Now let I be an N x N skew matrix of differential operators (I* = —I). We are
going to use / to assign to each feB an evolutionary derivation d, of B. We
write w for the column vector (w,,...,wy), and similarly of/ow for
(Of/owy, ..., 8f/0wyY. Here 8/0w, is the partial variational derivative

O i a0
5y =20

owi’
1

Then given feB, we define J; to be the evolutionary derivation of B whose
values on wy,..., wy are given by
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of

opw= S

The value of ¢, on any function geB is then given explicitly by the chain rule:

(5.2) 0;g= Z (@ W)(Ja 0

We think of 0, as the Hamiltonian vector field corresponding to f, though the
term ‘Hamiltonian’ is not justified unless [ satisfies the extra condition for-
mulated below (5.5).

Given f,geB, we define their Poisson bracket (with respect to [) by

53 o= (1),

Since the variational derivatives vanish on the image of d, the derivations J, and
the brackets {f, g} depend only on the class of f, g in B/0B. We regard the
brackets too as taking values in B/0B; it then follows from (5.1) that the bracket
is skew-symmetric. The Definition (5.3) is justified by the next lemma, which
follows at once from (5.2) and ‘integration by parts’.

(5.4) Lemma. In B/0B, we have
{fg}=0,g=—0 /.

Now we can formulate our main definition.

(5.5) Definition. We say the skew operator [ is Hamiltonian if for all f,geB we
have

(f gt [af’ eg]

Before giving examples, we should like to comment on the intuitive meaning
of our set-up. We think of B, or possibly B/0B, as being like the algebra of
smooth functions on a manifold; we then think of d; as a vector field and the
map f+-3df/0w as the exterior derivative or ‘gradient’. It is then natural to think,
more generally, of any N-tuple x=(x,, ..., xy)' of elements of B as a 1-form, and
assign to each 1-form x the vector field 0, defined by

o,w=Ix.

Thus the basic structure we are studying is a map from 1-forms to vector fields
(satisfying certain conditions). Our skew matrix / should therefore be thought of
as analogous to a skew form on the cotangent bundle (not the tangent bundle) of
a manifold.’ This is something rather more general than what is usually
encountered in Hamiltonian mechanics; there one is given a 2-form, that is, a
skew form on the tangent bundle, and it is necessary to assume that it is non-

! That is, I is like a skew tensor of the opposite type from a 2-form. It is for this reason that we

avoid the term ‘symplectic’
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degenerate in order to invert the corresponding map (vector fields) — (1-forms).
The best finite-dimensional example of our situation is provided by the dual of
a Lie algebra (see [7], Chap.2, Sect. 15). There one has a natural skew form on
the cotangent bundle, and it is not non-degenerate. As is well known, this form
induces a symplectic structure in the usual sense on each co-adjoint orbit, but
for our present purposes that is an unnecessary refinement. We refer to [6] for a
more detailed discussion along these lines.
Now we give some examples of Hamiltonian structures.

Example 1. Let | be any skew matrix of differential operators with constant
coefficients. Then [ is Hamiltonian (see, for example, [117], Chap. 1, (7.13)(a)).

The rest of the examples are motivated by the theory of Lax equations (see
(7.13) below).

Example 2. (First Hamiltonian structure for Lax equations, case u,_, +0). We
take B=B(uq,...,u,_,). Let L be the differential operator

L=&4u, (& 4. +u,.
We assign to each ‘1-form’ x =(x,,...,x,_,) the (formal} integral operator

X=¢"1x,+&2x,+...+ & "x

n—1-

Then the vector field ¢, corresponding to x is defined by
(5.6) ¢ L=[L,X],

where as usual ¢, is understood to act coefficient-wise on L. It is clear that the
map x+—¢, is given by a certain matrix of differential operators I, which we shall
not write out explicitly. This matrix is Hamiltonian.

This Hamiltonian structure has the following, rather silly, properties: (i) ¢,
does not depend on the last ‘co-ordinate’ x,_, (i) we always have ¢.u, ,=0;
intuitively, all the Hamiltonian vector fields are tangent to the ‘sub-manifold’
u,_,=0. It is thus more sensible (as is usually done) to restrict this structure to
the submanifold u, ,=0.

Example 3. (First Hamiltonian structure for Lax equations, case u,_,=0). We
take B=B(u,,...,u,_,). Let L be the differential operator

L=8"4u, & *+... +u,.
We assign to each 1-form x=(x,,...,x,_,) the integral operator
X=E&Txg4+...+E " Ux, .

The vector field ¢, is defined by the same formula as before (5.6). The matrix /
implementing this map x+ 3, is Hamiltonian.

The fact that the operators of examples 2 and 3 are Hamiltonian has been
proved many times, originally by horrifying computations (see [11]): better
proofs can be found in [1, 6, 9]. The present paper incidentally provides yet
another proof, because the fact that the second structure is Hamiltonian implies
trivially that the first is too (see the discussion of Example 6 below).
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Example 4. (Second Hamiltonian structure for Lax equations, case u,_, +£0.) We
take B, L and X as in Example 2, but now @, is defined by

(5.7) 8, L=(LX),L—L(XL), = —(LX)_L+L(XL)_.

(The first expression shows that ¢, L is a differential operator, the second that it
has order at most n—1, so the formula makes sense.) Again it is clear that the
map x4, is given by some matrix / of differential operators, more complicated
than before; the interested reader will find it written out explicitly in [5].

Notice that now we do not always have d,u, ,=0, so this structure cannot
be restricted to u, =0 as casily as before.

Example 5. (Second Hamiltonian structure for Lax equations, case u, ;=0.) We
take B and L as in Example 3, but we can not quite take X as in Example 3,
because we want to define ¢, by (5.7) as before, and this expression may still
have order n—1, not n—2 as we need. We proceed as follows. It is easy to check
(from the second expression) that the coefficient of "~ ! in (5.7) is res [ X, L]. So
given a 1-form x=(x,,...,X,_,), We set

(5.8) X=¢("xg+... +& " Vx,_,+E"x,_,
where x,_; is determined by the condition res[X, L]=0, or, explicitly,
(5.9 ox,_,=(/myres[E xg+...+E " Ux L]

Since the right hand side here is in Im @ (see [11], Chap.2, (3.3)), this equation
does indeed determine an element x,_,€B (uniquely if we agree that it is to have
zero constant term). Also, it is clear from (5.9) that x,_, is a linear combination
{(with coefficients involving the u,) of derivatives of x,,, ..., x,_,. It follows that if
we define X by (5.8) and (5.9), and &, by (5.7), then the map x— 0, is still given
by a matrix [ of differential operators, this time so complicated that even
Gel’'fand and Dikii [5] do not care to write it out explicitly.

The fact that the operators [ in Examples 4 and 5 are Hamiltonian was
conjectured by Adler [1] and first proved by Gel'fand and Dikii [5], essentially
by direct calculation. We shall give a different proof in Sects.8 and 11.

Example 6. (Compatibility of first and second Hamiltonian structures for Lax
equations.) Let [/, [, be the skew operators of Examples 2 and 4 (or 3 and 5).
Then for any scalars o, f, the operator al, + 1, is Hamiltonian.

This is a trivial consequence of the fact that [, is Hamiltonian. For if in the
expression (LX), L—L(XL), (see (5.7)) we replace L by L+4 (4 a scalar) the
effect is just to add on a term A[L,X], . That implies that if in the operator /,
we replace u, by u,+4, we get [, + 11, this operator is therefore Hamiltonian
(given that [/, is). (That could be regarded as a very special case of (6.1} below,
the Fréchet Jacobian here being the identity.) Finally, given that the operators
I, + A1, are Hamiltonian for all 4, it follows at once that [, is too.

Note on signs. Our definition of the second Hamiltonian structure has the opposite
sign to that of Gel'fand and Dikii [5]. Changing the sign would improve
our main results (8.6) and (11.5), but then a minus sign would appear in (7.13)(i1),
which seems unacceptable.
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Perhaps an explicit formula would be helpful at this point. Let us calculate
the matrix [ of Example 5 in the simplest case n=2. So we have L=¢%+u,
X=¢""x,+ & %2x,; a short calculation yields

(LX), L—L(XL), =(8%*x,—20x )&+ 3 xo— 0% x, +2ulx,+0u-x,.
To make this have order zero we must take x, =10x,, and then
0. L=1x,+2udxy+0u-x,=1Ix,,

where [ is the operator $0%+ ud+ du. This is therefore the operator defining the
second Hamiltonian structure for n=2.

Before leaving the examples we comment quickly on the generalization to
the case where L has matrix coefficients. Examples 2 and 3 present no problem,
and in Example 4 the definition presents no problem. However, more work
would be needed to prove that the skew operator arising in Example 4 is
Hamiltonian. We conjecture that it is, and we see no obstacle to proving it
either by our method or by the method of Gel'fand and Dikii [5]; but we have
not checked the details. (To use our method, we should start off from an
operator of the kind (4.1), but now each entry would be a matrix block. This
method would not be any use in the case where L has order 1, but in that case it
1s easy to check directly that the relevant skew operator | is Hamiltonian, for
example using the criterion of Gel'fand and Dorfman [6].)

If however we try to generalize Example5 to the matrix case, we meet a
different problem. Let L be a matrix operator of the form (3.3), satisfying
conditions (3.4). Let us try to imitate the procedure of ExampleS. To a 1-form x
we shall now associate an operator

X=&txo+...+E"x,_,,

where the diagonal entries x,_, ,, have to be determined so as to make Eq.(5.7)
consistent. As in the scalar case, this condition gives equations dx,_; ,,=..., but
now the three dots are not necessarily in Im é. The reason is that in the matrix
case it is only the trace of the residue of a commutator that is in Im d, not the
individual entries. It follows that in the matrix case with u,_, ,, =0, the second
Hamiltonian structure does not exist, at least in the (admittedly rather narrow)
sense we have been discussing (one would have to let the matrix I involve
‘integrations’, a possibility we prefer not to contemplate here).

6. Restriction of Hamiltonian Structure

In this section we should like to discuss the functorial properties of Hamiltonian
structures, that is, how they behave with respect to homomorphisms of differen-
tial algebras

¢: Buy,...,u,)— B(v,...,vy).

Unfortunately, since derivations, like vector fields on manifolds, are not func-
torial, Hamiltonian structures will not be either. However, the case when ¢ is
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injective is easy to analyse. Suppose that is the case (so that r<s: in the
examples that will interest us r=s); we shall use ¢ to identify B(u) with a
subalgebra of B(v). Let I be a skew matrix defining a Hamiltonian structure on

B(v). Then under certain circumstances ! will induce a Hamiltonian structure on
B(u).

(6.1) Proposition. Let D denote the Fréchet Jacobian of u with respect to v
(defined below). Set [=DID*. In general this will be a matrix of differential
operators with coefficients in B(v); suppose however that | and ¢ are such that all
the coefficients lie in the subalgebra B(u). Then

(i) fdeﬁnes a Hamiltonian structure on B(u)

(i) for feB(u), the Hamiltonian vector field 0; on B(u) determined by [is just
the restriction to B(u) of the Hamiltonian vector field 0, ,, on B(v) determined by .
(In particular, all the derivations 0, preserve B(u).)

We naturally say that the Hamiltonian structure defined by the operator [ in
(6.1) 1s obtained by restriction of the one defined by I. The simplest non-trivial
example of this situation is the one discussed in the introduction: let r=s=1,
and let @: B(u) — B(v) be defined by ¢(u)=38v—v? (the Miura transformation).
Let |=—10. Here D=0~ 2v, so an easy calculation gives

DID*=(0—-2v)(—30)(—0—2v)=30%+ud+du.
Proposition (6.1} therefore shows that this operator is Hamiltonian: as we have
seen, it is the operator of Sect. 5, Example 5 in the case n=2.

Proof of (6.1). If feB(u) we shall write f instead of ¢(f) (thus f is just f regarded
as a function of the variables v,). First recall that the Fréchet Jacobian is the r x s
matrix of differential operators with entries

Ou;
D,.= Lok,
ij k§0 ol
Its main properties are the following.
(a) Let &, be any evolutionary derivation of B(v), then

u=Dav.

(b) Let feB(u), and let f as above be the corresponding element of B(v). Then

§f  .of
T opr,
ov ou

Property (a) follows at once from the definition of D, and justifies the term
‘Jacobian’. Property (b) can be deduced from (a), or, better, from the fact that
the ‘total variation operator’ & (see Sect.7) is functorial (commutes with ¢).
Property (b) holds for any homomorphism ¢, not necessarily injective.)

Now let feB(u). Then using (a) and (b) above, we have
é f of f Of

= *_2 -
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which proves (ii). The operator [ is obviously skew; to see that it is Hamiltonian,
note first that for any f, ge B(u) we have

{fg}=0g=08={18),

a{f,g} = 8(],,2) |B(”) = [af: ag]' B(u) = [afs ag] -

so that

That proves (1).

7. Hamiltonian Structure of Lax Equations

We start off from the usual algebra of differential polynomials B=B(w,, ..., wy).
We let Q=Q!(B) denote the free B-module on the symbols dw'”, j=0, with
‘universal derivation® (total variation, exterior derivative on the jet space)
&: B Q'(B) defined by

o L
Of =Y —=owY,
ow

We extend d to a derivation of Q, commuting with J; then the variational
derivatives df/ow,; are characterized by

(7.1) 5fzz%5wi mod Im &.

We denote by M the algebra M(B)[ E7"'] of I x ] matrices of formal pseudo-
differential operators with coefficients in B, and by M(£Q) the M-bimodule of { x
matrices of operators with coefficients in € (‘bimodule’ means that we have
(obvious) right and left actions of M on M(Q), and these actions commute). We
extend 0, 6 to act coefficient-wise on matrices of operators; then we have a
commutative diagram

M 4 M(Q)
8 8
M —2 M(Q)

in which all the maps are derivations (in appropriate senses).
If CeM, DeM(Q), we can form the ‘commutator’

[C,D}=CD—-DCeM(Q).
(7.2) Lemma. We have
trres[C,D}e0q.

(Here as usual res singles out the coefficient of £~1.)
Now let LeM be a differential operator of the form (3.3), satisfying the
conditions (3.4). The description of the centralizer Z(L) of L in M given in Sect.3
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can be rephrased as follows. Let X! denote the (unique) homogeneous element
of Z(L) with leading term E_, &"; that is, if K is the operator of Sect. 3 that
conjugates L into its leading term, we have

XM=KE_ &K1,

(Here and below, E,; denotes the matrix with 1 in the place («, ) and zeros
elsewhere.) Then Z(L) consists of the linear combinations of these elements X',
and an element of Z(L) is homogeneous of degree r precisely when it is of the
form ) p, XU, p, scalar constants. We write X, instead of X!'L If r is positive,

o
then X' is just X7; for r <O that is not strictly true, since X, is not invertible.
However, we have the following.

(7.3) Lemma. For any integers r, s, we have

(i) X7 X=X+

(i) if a= B, then XTIXG1=0,

Both parts of the lemma follow at once from the corresponding assertions for
the operators E_ &7, conjugate to X,

In the next few lemmas we shall use the following notation: if R and S are
elements of M(Q), we write R=S to mean: R—S is a sum of commutators of the
form [X" D], DeM(Q). Lemma (7.2) shows that this use of the symbol = is
compatible with our previous one, in the sense that if R=S then trres R=trres S
{mod 09Q).

(74) Lemma. If R=S, then for any a, r, we have X"IR= XS and RX"=85x1",

Proof. This follows at once from the fact that all the X! commute with each
other, and the relation a[b,c¢]=[b,ac], valid if a and b commute.

(7.5) Lemma. For any integer r, we have
XN =rxtr-15x

Proof. Suppose first that = 2. Since ¢ is a derivation, 0X! is a sum of r terms of
the form X! dX,. X7~~'. But each of these clearly differs from X’~'6X_ by a
commutator of the desired form.

Now let r=1, so we have to prove that 6X,=X""6X,. Applying é to the
relation X =X X . we get

56X, =XI6X +5X19. X .

In view of (7.4), it is thus enough to show that §X°'=0, which is the case r=0 of
our lemma. To prove that, we apply 6 to the relation X = (X" to get

X WO=p XI5 XIT  for all nx2.

Hence 6X11=0.
It remains to prove the lemma for »r<0: we omit this argument, since we
shall use (7.5) only for r>1.
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(7.6) Lemma. For any integers r, s, we have
(i) rXVoxbi=g x15x1
(ii) if o % B, then XX =0.

Proof. From (7.5), it follows that the two sides in (i) are both congruent to the
expression

o fr+s—1]
rs XV 0X,.

Part (ii) also follows at once from (7.5) and (7.3)(11).

The next lemma is the crucial one that we have been aiming at. Our proof,
like everything in this section, is modelled on the treatment of the scalar case
(I=1) given in [11].

(7.7) Lemma. Let P, QeZ(L) be homogeneous of degrees r, s, respectively. Then
FPOQ=sQoP.
Proof. This follows from (7.6), since P and @ are just linear combinations of the
elements X' and X, respectively.
(7.8) Corollary. Let PeZ(L) be homogeneous of degree r. Then
HMLP)y=(n+rynoL-P.
Proof. Using (7.7) with @ =L, we find
S(LP)y=0L-P+L-0P=0L-P+(r/n)oL-P.

If PeZ(L) is homogeneous of degree r, we set

(7.9) Hp=

P

(n/r)ytrres P, r>0
0, r<0.

If PeZ(L) is not homogeneous, we define H, by adding (7.9) over its homo-
geneous components. Then (7.8) and (7.2) imply the following.

(7.10) Corollary. Let PeZ(L). Then
0H, p=trres{(dL-P) modIm¢d.

This corollary can be used to calculate the variational derivatives 6H,p/0w,
in terms of the coefficients of P_. Let us do this in the case of the ‘general’ L,
that is, the u, ,, are differentially independent, so that we can work over the
algebra B(u, ,4). For HeB(u, ,,), let H/u; denote the matrix whose («, i) entry
is 0H/du, », (note the transposition of o and f).

{7.11) Corollary. Let PeZ(L), L general. Let H=H,, (defined as above). Then

oH oH oH
P =¢' g2 T
= 5u0+€ 6u1+ e ou

n—1
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(In the case of the coefficient of <", since we are assuming u, _, ,. =0, this has to
be interpreted as meaning that the off-diagonal entries are those indicated. )

Proof. We have

OL=Y ou, ,E,, &,
i, B

so (7.11) follows at once from (7.1), (7.10) and the obvious fact that

;e ab lflzj 0(:(3’ ﬁ::«’v
7.12 trres(ak,, &-¢~'E, b)= A
(12 rres(aky < 72?) {0 otherwise.

(7.13) Corollary. (i) For general L, the Lax equations
¢ L=[L,P]

can be written in first Hamiltonian form (as in Sect.S, Example 3} with Hamil-
tonian H,p. (11) In the case of scalar coefficients (I=1), they can also be written in
second Hamiltonian form (Sect.5, Example S) with Hamiltonian Hp.

Perhaps (i1) deserves some explanation. In view of (7.11) it is clear that to
have any chance of finding a Hamiltonian form for ¢, L=[L, P ] with Hamil-
tonian H, we must rewrite the equation in terms of Q=L"! P. That is easy:

0, L=[L,(QL)_1=[L.(Q_L)_].

Since Q and L commute, we can also write this as
O L=L(Q_L)_ —(LQ_ ) L=(LQ_ ), L-LQ_L);

we have arrived at the strange-looking expression (5.7) (with Q _ for X). The last
expression shows that d, L in fact depends only on the first n coeflicients of Q _.
Since the first n—1 (right hand) coefficients are the J0Hp/du;, and the n'*
coeflicient obviously satisfies the consistency condition (5.9), part (ii) of (7.13)
follows at once from the definition of the second Hamiltonian structure.

For want of a better place, we indicate here how (7.11) implies that if P has
positive order the conserved density H, for the general Lax equations is non-
trivial (except when P is an integral power of L). For simplicity we give the
argument in the scalar case (/=1). It is enough to show that if PeZ(L) is the
homogeneous operator of the form P=¢ +(lower terms) and r is not divisible
by n, then the conserved density res P is non-trivial. Suppose it were trivial.
Then (7.11) shows that the first n—1 coefficients of (L™! P)_ would vanish; in
particular, we should have res L™' P=0. Repeating the argument, we deduce
that the first n—1 coefficients of the operators (L7¢ P)_ vanish for alt g=1. But
one of these operators has leading term ¢, 1<i<n—1, a contradiction.

In the matrix case a similar argument (a little more claborate, especially if
n=1) shows also the linear independence of the conserved densities, as con-
jectured in the last paragraph of [15].
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8. The Second Hamiltonian Structure

We now return to the study of the modified Lax equations constructed in Sect. 4.
We begin by establishing the analogue of (7.11) for our specialized L

L=w-circ(i, vy, ...,0,_ 1)

For each PeZ(L), we have the ‘Hamiltonian’ H, defined by (7.9): thus if P is
homogeneous of degree r>0, then H,=(1/r)trres P (the n in (7.9) was the order
of L). Extending the notation used in Sect. 2, we shall write

X =ot-cire(xg, ..., x, )

to mean: X is the w*-circulant whose first column is the vector indicated: thus

the (i,/) entry of X is w”x_}.. (As in Sect. 2, indices run from 0 to n—1 and are

read mod n where necessary.)

(8.1) Proposition. Let PeZ(L). Then
(i) if P is an w*-circulant, k0, then Hpelm ¢
(1) if P is a circulant, then?

res L' P=(1/n) o~ '~circ(0,0H ,/dv,, ..., 0Hp/dor, ).

Note that since every P is a sum of w*-circulants, (8.1) solves the ‘second
problem of specialization® (3.11) for this L: essentially just the conserved
densities coming from circulants survive the specialization.

Proof of (8.1). Let Q=L"' P, and let

resQ =" '-circ(qg, ... q, 1)
By (7.10) (with Q instead of P) we have
oHp=trres(dL-Q) (modIm?¢c)
EZ((SL)U(YCSQ)J-I- (by(7.12))
i

. i, {(k—1)i
=Y ov;, ;- q;_;
i J

E(Z ") (2{:(317,-(1,).

(In this calculation all sums are taken from 0 to n—1, indices j—i are read
mod n, and we set v,=0.) Now, if k 0, the sum of roots of unity is zero, so (7.1)
shows that 6H /0v, =0 for all i, which proves (i). If k=0, then (7.1) gives

oH
_(S_Eﬂznqi’ i=1,2,....n—1,

which almost proves (ii); that ¢,=0 will follow from our next calculation (8.2).

2 We exclude the case where P has a component that is of degree zero, that is, a multiple of the

identity
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Proposition (8.1) shows that a ‘first’ Hamiltonian structure for our modified
equations, formed from circulant operators P, does not exist, since the relevant
Hamiltonians H,, do not survive the specialization. However, since the Hamil-
tonians H, do survive, we may well have a ‘second’ Hamiltonian structure. We
shall now verify that, and calculate explicitly the corresponding skew matrix [.

Let x=(xy,....x,_,;), x;€B, be a ‘1-form’. Motivated by (8.1), we assign to x
the operator

X=(1/mc ' w tcire(xg, X;,.... %, )

where x, is to be determined so that Eq.(5.7) is consistent.

(8.2) Proposition. The equations
¢, L=(LX), L-L(XL),
are consistent if and only if x, is constant: in that case they take the form
c.u=—(tndx, ;, i=1,...,n—1L

The first assertion completes the proof of (8.1): for we know that the Lax
equation formed from a circulant P is consistent, and has the form in (8.2) with
X =0 (see the proof of (7.13)). It follows that the element ¢, in the proof of
(8.1) is constant, hence zero if P has no degree zero component.

Proof of (8.2). Direct calculation. Let us set
V=circ(0,0,,...,0,_,), X=(1/n)circ(xg,....x,_,)
so that L=Q(¢+ V), X=¢"1 X Q! where Q is as in (2.3). We then find

(LX), =QXQ"', (XL), =X,
so that

(LX), L=QX ¢+ QXV, LXL),=QX&+QoX+QVX.
Subtracting and using the fact that XV =VX, we get
6, L=—Q08X,

from which (8.2) follows at once.
Combining (8.1) and (8.2), we obtain the following.

(8.3) Proposition. Let PeZ(L) be a circulant. Then the modified Lax equations
o, L=[P ,L]1=[L,P]

can be written in Hamiltonian form
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where [ is the matrix of operators with —{1/n) ¢ along the ‘off-diagonal’ and zeros
elsewhere.

Note that / is indeed Hamiltonian (Sect. 5, Example 1).

Next we show that the conserved densities (Hamiltonians) of the original and
modified equations are ‘the same’. In the KdV case (n=2) this is a very old
observation, due to Miura (see [8]).

(8.4) Proposition. Let PeZ(L) be the~ homogeneous circulant of the form
P=Id-&+ ... (see (4.2)); let P=s(P)eZ(L). As usual, set

Hy=(l/r)trres P,  Hz=(njr)res P.
Then Hp=Hp (mod Im o).
Proof. Let res P=circ{p,, ..., p,_). Then a trivial calculation shows that the Lax
equation ¢, L=[L, P_] is equivalent to

Av=(1—oY)p, i=12,..,n—L

It follows from (8.3) that p,elm ¢ for i=0. Thus modulo Im ¢, we have

n-—-1

(nfryres P=(n/r) ¥ p;=(n/r)po=(1/r)trres P.
0

Finally, before stating our main theorem we need the following lemma, the
proof of which we defer until Sect.9. Recall from Sect. 4 that the coefficients u; of
L are certain differential polynomials in the modified variables v;.

(8.5) Lemma. The variables (u,, ...,u, ,) are differentially independent.

That means that we have an inclusion of differential algebras

B(ug,tiy, ..., 4, )<Bv,0,,...,0,_ )

»¥n—1
sO we are in a position to use Proposition 6.1.

(8.6) Theorem. The Hamiltonian structure on B(v) defined by the operator | of
(8.3} restricts to give the second Hamiltonian structure on B(u) (Sect.5, Example 5).

Proof. Let D be the Fréchet Jacobian of u with respect to v, and let [ be the skew
operator defining the second structure on B(u). By (6.1), we have to prove that
for all fe B(u), we have

(DlD*—T)(s'—sz.
du

Now, (4.3)(ii), (8.3) and (8.4) show that this is true whenever f = H; is one of the
Hamiltonians for the Lax equations. Hence the proof is completed by the next
lemma, which will be proved in Sect. 10.

(8.7) Lemma. Let S be a matrix of differential operators with coefficients in B(v)
that annihilates all the vectors 0Hp/ou, PeZ(L). Then S=0.
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9. Proof of Lemma (8.5)

In view of (4.4), what has to be proved is clearly a differential analogue of (the
easier part of) the standard lemma on symmetric functions. The problem is a
little obscured by the fact that the ‘roots’ of L are not independent, but add up
to zero. Let us formulate the corresponding result without this restriction; it will
be needed in any case to handle the Lax equations with u, | +0 (see Sect. 11).

(9.1) Proposition. Let x,, ..., x, be differentially independent variables, and define
the ‘non-commutative elementary symmetric functions’ o, ...,0,€B(x) by

9.2) &m0, & (1) 0, = (E X )E X, ) (E = xy).
Then o, ...,0, are differentially independent.

The usual (commutative) version of this is generally proved by induction on
n (one considers the effect of putting, say, x, =0), but we did not succeed in
imitating that argument. Instead, we imitate the following one.

(9.3) Proposition. Let x,,...,x, be elements of a field F, algebraically inde-
pendent over some subfield, say C. Let 2 be an indeterminate (commuting with the
elements of F), and define o,€F by
Mg AT +(——1)"0'n:n(/l—x,-).
1

Then o,...,0, are algebraically independent (over Q).

Proof. Consider the field extensions
CcCloy,...,0,)=C(xy,...,x,).

The composite extension has transcendence degree n, and the second extension
is algebraic; hence the first extension has transcendence degree n. That implies
that the g, are algebraically independent (for otherwise we could choose a
proper subset of {g,,...,0,} such that all the remaining o, were algebraically
dependent on this subset: the extension € «C(g,) would then have transcen-
dence degree less than n).

To adapt this argument to prove (9.1), we have to develop the theory of
‘differential fields’ (J-fields for short), that is, fields F equipped with a derivation
0: F—F. Most of the necessary work is done in [12], so we shall sketch the
theory only briefly. For simplicity, and also so as to be able to refer to [14], we
confine ourselves to the case of finite transcendence degree.

Let EcF be an extension of O-fields. An element xeF is said to be 0-
algebraic® over E if some (nontrivial) differential polynomial in x with coef-
ficients in E vanishes. An element xeF is said to be d-dependent (with respect to
E, considered fixed) on a subset {y,....y,J<F if x is {-algebraic over
E(yy,...,y,). (This last symbol naturally denotes the smallest 0-field containing
E,y.,...,v,.) We have the following basic properties of 0-dependence.

3 In[12] the confusing term ‘algebraically transcendental’ is used
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{1) Every y, is é-dependent on {y,...,y,}.

(i) If x is C-dependent on {y,...,y,} but not on {y,...,y, .}, then y, is C-
dependent on {y,,...,y, {,x}.

(1) If x is ¢-dependent on {y,,...,y,} and each y, is C-dependent on {z,, ...,z },
then x is C-dependent on {z,,...,z.}.

It follows from (i), (11) and (i) that most of the properties of algebraic
dependence (see [14]) also hold for ¢-dependence. In particular one can define
the ¢-transcendence degree® of an extension E c F to be the number of elements
in any maximal ¢-independent subset of F. (4 subset of F is ¢-independent (with
respect to E) if no element of it is ¢-dependent on the rest: this coincides with
our usual notion of differential independence.) We mention explicitly the lollow-
ing.

(9.4) Proposition. An extension EC F has C-transcendence degree O if and only if
every element of F is C-algebraic over E.

(9.5) Proposition. An extension EC E(x,,...,x,) generated by n elements has 0-
transcendence degree at most n; it has ¢-transcendence degree n if and only if the
x; are O-independent.

(9.6) Proposition. If EcFcG with the extensions E<F, F =G having ¢-trans-
cendence degrees p, q, respectively, then the extension Ec G has ¢-transcendence
degree p+yq.

Finally, we need the next proposition, which would be a tautology in the
usual case (without derivations).

(9.7) Proposition. Let EcC F be ¢-fields, and let x,,...,x,€F. Define o, ...,0
(9.2). Then each x; is ¢-algebraic over E{o,...,0,), so that the extension

by

Elo(,....,0)<E{xy,....X,)

has O-transcendence degree 0.

(9.8) Lemma. Let A, B, C be differential operators with constant leading
coefficients and A=BC. Then the coefficients of any one of A, B, C are
differential polynomials in the coefficients of the other two.

The proof of (9.8) is trivial.

Proof of (9.7). We use descending induction on i. By the transitivity of ¢-
dependence (property (iii) above) it will suffice to show that if we rewrite (9.2) as

(99) &—0o =@ e ET e L)E=)(E T D E L)

then x=x; is d-algebraic over the field E(s;,a,). We should like to put {=x in
(9.9), but because of the non-commutativity we can not do that in the usual way.
However, we can expand the right hand side of (9.9) and move the powers of &
over to the right to put it in the form ) d;&'; equality of two such expressions
means of course that all the coefficients are equal, so we can then substitute x

4 ‘Hypertranscendence degree’ in [12]
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for £. Doing that yields a relation of the form
(9.10} x"—o, x"" 1+ ... =(some differential polynomial in (a;,x, b))

By (9.8), the right hand side of (9.10) can be rewritten as a differential poly-
nomial in (a;,x,0,), so we have a relation of the kind that we want. It is non-
trivial because, for example, the term x" does not occur on the right of (9.10). We
omit the proof of that.

Proof of (9.1). This can now proceed exactly like the proof of (9.3) given above.

Proof of (8.5). This follows the same lines: the only difference is that the ¢-
transcendence degrees are now n— 1, rather than n.

10. Proof of Lemma (8.7)

Since we shall not be referring to the modified equations in this section, we
abandon the tildes, and let L denote the scalar operator £"+ ... +u,. Similarly P
will denote an element of Z(L)=B(u)[& ¢ 1].

To explain the idea of the proof of (8.7), let us first give it in the simplest case
n=2. In that case it is well known that the 6H/du, rewritten in terms of v, have
the form

SH
~5—u£= B v +(lower terms),

where f§ is a non-zero constant and ‘lower’ means: involving only derivatives of
order less than r. Suppose

S=5,0"+ ... +59, s,€B), 5,¥0,

is a differential operator that annihilates all these. Choose r greater than the
orders of any derivatives of v involved in any of the coefficients of S. Then in

SBv”+..)=0

the only term involving v"*% is fs_v"*%. Hence s,=0, a contradiction.

To imitate this argument in the general case, we need an analogue of the fact
that f+0. That is provided by the work of Veselov [13].

Let P=¢£"+ ... be the homogeneous element of Z(L) of order r; we recall that
‘homogeneous’ refers to the natural grading such that ¢ has degree 1 and u{) has
degree n—i+j. We write P_ in both ‘left’ and ‘right’ notations, singling out the
linear terms:

£
!
[N}

(Xiju5~r_"+1+i+j)é_i_l+

P:

=

It

| Sl
DMs e

é—i—l Biju§r—n+1+i+j)+

-
I
=}
i
=}

(Here the dots indicate non-linear terms involving only lower derivatives of u;
than those indicated.) We recall from (7.11) that the first n—1 ‘right hand’



Modifying Lax Equations and the Second Hamiltonian Structure 431

coefficients of P_ are precisely the variational derivatives dH, p/0u; that we are
interested in. Let f denote the matrix

ﬁz(ﬁij)a Oéi,j§n—2.

(10.1) Proposition [13]. If r is prime to n, the matrix B is non-singular.

For completeness we indicate how this is proved. First, it is clearly equiva-
lent to prove that the corresponding matrix o =(g;;) is non-singular, since « and
p are related by a lower triangular matrix with I’s on the diagonal. The «;; are
determined as follows.

(10.2) Lemma [13]. Let auy’) be a linear term occurring in any of the ‘left-hand’
coefficients of P. Then a is equal to the coefficient of z% in the power series

[(1+2—1][1+2"—1]"%

Proof. The following seems to us simpler than the proof given in [13]. Let P(g)
(and similarly L(¢)) denote the operator obtained by replacing each u; by eu;; set

- 0
P==Ple)l.-o.

Clearly, P is the ‘linear part’ of P that we want to compute. Finally, let P, denote
the result of setting all the variables except u; equal to zero. Differentiating the
relation

[L(e), P(e)] =0,

we easily find
(10.3) (& P)=[¢u; .

Let us associate to each homogeneous operator 4 of the form

the formal power series Zaq z%. Then the power series associated to [£°, A] is

(Zaqz”)[(l +z)yf—1].

Hence (10.2) follows at once if we equate the formal power series corresponding
to the two sides of (10.3).

Lemma 10.2 shows that a is a ‘Hankel matrix’. If r is prime to n, the
numerator and denominator of the power series in (10.2) have no common
factor except z; (10.1) then follows from the theory of Hankel matrices (see [13]
and [3], Sect. 5, exercice 3).

To prove (8.7), we have to write the H/du; in terms of the modified variables
v;. (That is essential, since it is not clear a priori that the operator D! D* can be
expressed in terms of the u;.) So we need the following.
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(10.4) Lemma. Let the linear part of u; be given by

u=y 8, ug.""" Dy (lower terms ).
J

Then the matrix (8;;) is non-singular.

Proof. Introduce new variables y,,...,y,_, by
Yi= Z o Ujs
Jj
so that we have

n—2

(10.5) Ebu, LT L U= (g“- > y,.)(é+y,,_2)...(§+yo).

o]

Since the (Vandermonde) matrix (V) is non-singular, it is enough to show that
if
u; =y @; ¥~V 4 (lower terms),
j

then the matrix (¢;;) is non-singular. But that is clear, because (¢,) is triangular
with non-zero entries on the diagonal. (To see that, we imagine oursclves
calculating u; by expanding (10.5), picking either a & or a y from each factor. To
get a term linear in y, we must pick only one y; and to get n—i—1 derivatives,
we have to pick at least that number of £’s before the y.)

Combining (10.1) and (10.4), we get the result that we really need.

(10.6) Proposition. Set

6HL,,__
Su;,

1

n—1
Y v 00+ (lower terms).
j=1

Then if r is prime to n, the matrix (y,;) is non-singular.

Note. Here, unfortunately, we have i running from O to n—2, j from 1 to n—1.

q
Proof of (8.7). Let S =) s, * be a matrix of differential operators that annihilates
0

all the vectors 0H p/du. Since of course that means that each row of S separately
annihilates all the H, p/6u, we may as well assume that S has just one row; thus
each s, is a row vector with entries s,, ;€B(v), 0=j<n—2, and we assume that
s,#0. Choose r large enough (prime to n) so that no derivatives v’ with Izr
occur in any of the s,.;. Then in the expression

OHpp

(10.7) =

0

the only terms involving derivatives of order p=g+r+n—2 are

(p)
qu;n—l yn—Z,jvj :
j



Modifying Lax Equations and the Second Hamiltonian Structure 433

Hence s, ,7, , ;=0 for all j. Since 7 is non-singular, some y,_, ;#0; it
follows that the last entry Sgin_2 of S, vanishes.

Next we consider the (remaining) terms in (10.7) involving derivatives of
order p—1. These are

. (p—1)
Z(Sq;n—3’ynv3.j+‘sq—1;n—2yn»2_j)vj .

J

Hence the expressions in the brackets here vanish for all j. Since 7 is non-
singular, some 2 x 2 submatrix formed from the last two rows is non-singular. It
follows that the second last entry of s, and also the last entry of s, _,, vanish.
Continuing this painful argument, we deduce after n—1 steps that 5,=0, a
contradiction.

11. The Case u, _,+0

In this section we take
L=&"4u, & '+.. +u,,

and we work over the algebra B=B(uq,u,,...,u,_,). The algebra of operators
B[, &7 '] has its usual grading (deg ¢ =1, degu!’=n—i+j). We want to discuss
what difference the extra variable u, , makes to our theory.

The first step is to determine the centralizer Z(L). The answer is the same
as before: for each integer r, Z(L) contains a unique homogeneous operator
P=&4...: and Z(L) consists of the linear combinations of these. There are at
least two ways of seeing that. First, we could use the method of fractional
powers [11], which works equally well whether or not u, ,=0. Second, we
could deduce the result for u, , %0 from the one for u, _,; =0 by the usual device
for getting rid of the second coefficient: introduce a new symbol { such that

(rol=—(Un)u,_,.

Then for all g, (= @{ is a differential polynomial in u,_,, so that conjugating
by ( gives an automorphism of the algebra B[&,¢é~1]. The operator (' L{ has
vanishing second coefficient, hence the result.

For each PeZ(L) we can define a Lax equation as usual:

o,L=[P ,L]1=[L,P].
But we shall always have ¢,u,_,=0.
Next we consider the modified equations. We introduce an extra ‘modified’
variable v,, and start off from the operator

L=w-circ(E+vy, 04, ., 0,_1)-

s Uy g

The centralizer Z(L) has the same description as before (to prove it, conjugate
by Id-{, where {~'0{= —uv,). In particular, we have circulants P as in (4.2)
defining our modified Lax equations. In these equations we always have
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2,v,=0. As before we set L=s(L"); the variables u;, v, are related by

L=L
where

(1L.1) L=¢+vo+av + ...+ Diy

Note that u, ;=nuv,.

Now we come to the Hamiltonian structure. The calculation in the proof of
(8.2) shows that the ‘second’ Hamiltonian structure on B(v)=B(vy,...,0,_4) Is as
follows: let x=(x,,...,x,_,) be a I-form; then the corresponding vector field is
given by

ava: —(I/H) 6}x()
o,v,;=—(/n)éx,_;, i=1,...,.n—1

The corresponding skew matrix ! is therefore just the direct sum of our previous
[ with an extra —(1/n)0 in the top left corner.

(11.2) Theorem. This Hamiltonian structure restricts to give the second Hamil-
tonian structure on B(ug, ...,u,_,) (Sect.5, Example 4).

The proof starts off like that of (8.6). The modified Lax equations can be
written in Hamiltonian form with the above [ and Hamiltonians H, defined as
before; it follows that the operator DI D* —[ (which we want to prove to be zero)
annihilates all the vectors 6Hs/du. However, the analogue of (8.7) is now false.
To see that, note that since in the modified Lax equations ¢,v,=0, we must
always have 6H,/0v,=0. Hence if we were to change [ by substituting anything
else in the top left corner, the modified Lax equations would not know the
difference; thus the Hamiltonians H;, PeZ(L) are clearly not enough to detect
what we put in this corner. The remedy is clear: we have to throw in a few more
Hamiltonians to tie down this corner entry. As our ‘extra’ Hamiltonians we take

H,=(= 17 3 P = (=17 320,
(11.3) Lemma. Let S be a matrix of differential operators (with coefficients in
B(v)) that annihilates all the vectors OH,/ou. Then the last column of S vanishes.

Proof. Since obviously

OH

r—(0 (2r) 13
5=, . ).

”nl

each entry in the last column of S annihilates all the functions v{". It follows
easily that these entries vanish (see the argument at the beginning of Sect. 10).

q

(11.4) Lemma. Let S=) s,0" be a matrix of operators that annihilates all the
0

vectors OH/du where either H=H; or H=H,. Then S=0.

Proof. By (11.3), the last column of S vanishes. For each PeZ(L), define the
matrix y=(y;;) as in (10.6), but with i, j now running from 0 to n—1. It is easy to
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see that the (n—1)x{(n—1) matrix obtained by deleting the last row and first
column of y is precisely the matrix y that we had in Sect. 10; it is therefore non-
singular (for infinitely many P). Now we can use the same argument as in the
proof of (8.7) to show that the remaining n— 1 columns of the leading coefficient
s, vanish. (Since the last column of S is zero, the last row of y will play no part in
this argument.)

Proof of (11.2). It remains only to show that the operator DID* —[ annihilates
the vectors 0 H,/ou. We do that by direct calculation. Since

oH
—=mn?",0,...,0),
v

the Hamiltonian vector field on B(v) corresponding to H, is

By o= —nviEr+ D

dyr,=0, >0,
Hence for all i we have

o oy py2r+)_ _ 2r+ D)
oy L= —nuvy =—u Y,

the L, being as in (11.1). The restriction of ¢;; to B(u) is therefore given by

n—1
byl=—=Y L, ..l u® VL .. L.
i=0
On the other hand, let us calculate the second Hamiltonian vector field ¢
on B(u) determined by H,, using the definition in Sect. 5, Example4. We have
X=&"u?: so (LX), =(XL), =ul?",

hence
Oy L= (U™, L].
Writing L as the product of the L, and using the relations
Lo =uZ Li+uPrih,

we see at once that this is the same expression as before.

To conclude on a more dignified note, let us point out that Theorem (11.2)
takes an even simpler form when expressed in terms of the actual ‘roots’ of L,
rather than our variables v;. That is, let us set

Edu,  E L tuy=(E—x, ). (E—x)(E—X,).

Thus we have x;= — ) w'v;, giving an isomorphism B(x)= B(v). A short calcu-
lation shows that if we transfer our Hamiltonian structure on B(v) to B(x) via
this isomorphism, the resulting structure is given by the matrix /= —1d. . Thus
we have the following.
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(11.5) Theorem. The Hamiltonian structure on B(x,,...,x,_,) defined by the
matrix 1= —1d.0 restricts to give the second Hamiltonian structure on
Blug,...,u,_,)

There must surely be a more direct proof of this simple assertion than the
one we have just given.

References

1. Adler, M.: On a trace functional for formal pseudodifferential operators and the symplectic
structure of the Korteweg-de Vries type equations. Inventiones Math. 50, 219-248 (1979)

2. Aitken, A.C.: Determinants and matrices, Edinburgh and London: Oliver and Boyd, 1939

3. Bourbaki, N.: Algébre, ch.4. Paris: Hermann, 1950

Chen, H.-H.: Relation between Bécklund transformations and inverse scattering problems. In:

‘Bidcklund transformations’ (R.M. Miura, ed.), Lecture notes in mathematics 515, pp.241-252.

Berlin-Heidelberg-New York: 1976

5. Gef'fand, 1M, Dikii, L.A.: A family of Hamiltonian structures connected with integrable non-
linear differential equations. Preprint, Inst. Appl. Math. Acad. Sci. USSR, 1978, no. 136
(Russian)

6. Gel'fand, I.M., Dorfman, 1. Ya.: Hamiltonian operators and algebraic structures related to them.
Funct. Anal. Appl. 13, 13-30 (1979} (Russian), 248-262 (English)

7. Kirillov, A.A.: Elements of the theory of representations. Berlin-Heidelberg-New York:
Springer-Verlag 1976

8. Kruskal, M.D.: Non-linear wave equations. In: Lecture notes in physics 38. Berlin-Heidelberg-
New York: Springer-Verlag 1975

9. Lebedev, D.R,, Manin, Yu.l.: The Gelfand-Dikii Hamiltonian operator and the co-adjoint
representation of the Volterra group. Funct. Anal. Appl. 13, 40-46 (1979) (Russian), 268-273
(English)

10. Magri, F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19, [156~1162
(1978)

11. Manin, Yul: Algebraic aspects of non-linear diffcrential equations. Itogi Nauki i Tekhniki, Ser.
Sovremennye Problemy Matematiki 11, 5-152 (1978) (Russian). English translation in J. Sov.
Math. 11, 1-122 (1979)

12. Raudenbush, H.W., Jr.: Differential fields and ideals of differential forms. Ann. Math. 34, 509-
517 (1933)

13. Veselov, A.P.: On the Hamiltonian formalism for the Novikov-Krichever equations of com-
mutativity of two operators. Funct. Anal. Appl. 13, 1-7 (1979) (Russian), 1-6 (English)

14. Van der Waerden, B.L.: Modern Algebra, vol. 1, second edition. New York: Ungar, 1949

15. Wilson, G.: Commuting tlows and conservation laws for Lax equations. Math. Proc. Camb. Phil.
Soc. 86, 131-143 (1979)

16. Adler, M., Moser, J.: On a class of polynomials connected with the Korteweg-de Vries equation.
Comm. Math. Phys. 61, 1-30 (1978)

17. Reyman, A.G., Semenov-Tian-Shanskii, M.A.: A family of Hamiltonian structures, a hierarchy
of Hamiltonians and reduction for first order matrix differential operators. Funct. Anal. Appl.
14, 77-78 (1980) (Russian)

18. Sokolov, V.V., Shabat, A.B.: (L, A)-pairs and a substitution of Riccati type. Funct. Anal. Appl.
14, 79-80 (1980) (Russian)

19. Gel'fand, I.M., Dorfman, 1.Ya.: The Schouten bracket and Hamiltonian operators. Funct. Anal.
Appl. 14, 71-74 (1980) (Russian)

Received February 1980/Revised August 18, 1980

hal

Note Added in Proof

The additional reference [19] below contains a proof that the second structure is Hamiltonian: it is
a more sophisticated version of the proof in the unpublished preprint [5]. The proof is valid also in
the case of a matrix operator L with u, _; %0, which confirms the opinion expressed at the end of
Sect. 5 above that this generalization would not present any extra problems.



