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Abstract—This paper compares the Simple Genetic Algorithm
(SGA) to the Triallelic Diploid Genetic Algorithm (TDGA) in
evolving an anti-jamming beamforming array in situ. The SGA
and TDGA are both able to find reasonable beamformer settings
that thwart two stationary interferers while allowing reception
of a stationary signal of interest (SOI). We evaluate the TDGA’s
performance in thwarting mobile interferers with stationary
and mobile SOIs. The array operates in the 2.4 GHz 802.11g
WiFi band, and the results presented are applicable to other
applications because the SGA and TGDA do not require signal
directions and modulation schemes a priori. Analysis of SGA and
TDGA convergence times is also presented.

Index Terms—Adaptive arrays, phased arrays, genetic algo-
rithms, anti-jamming, wireless networks, evolved hardware.

I. INTRODUCTION

This paper compares the Simple Genetic Algorithm (SGA)
to a Triallelic Diploid Genetic Algorithm (TDGA) in evolving
a four-antenna anti-jamming beamforming array in situ. The
array operates in the 802.11b/g WiFi 2.4 GHz frequency band.
The SGA and TDGA optimize a four-antenna beamforming
array for mitigating interferers in indoor WiFi communications
where multiple interferers (i.e., jammers) prevent communica-
tion between a WiFi base station and a WiFi receiver.

A beamforming array focuses electromagnetic (EM) energy
on a signal of interest (SOI) while simultaneously minimizing
EM energy in interferer directions. We assume that the jam-
mers and SOI directions of arrivals (DOAs) are not known
a priori. This problem is difficult in that the solution search
space is on the order of trillions and would require thousands
of years to solve using a brute force approach. Beamforming
arrays typically use dozens to hundreds of antennas and are
impractical for non-military applications [1], [2]. To the best
of our knowledge, the problem of optimizing a four-antenna
beamforming array has not been solved by other groups, so
this is a novel solution to a difficult problem.

Lee [3] noted that interference problems between femtocell
base stations occur because many such base stations are
installed in confined areas. It was shown in simulations that
interference could be mitigated through a combination of
coordinated user scheduling (CUS) and two beamforming
techniques. Because WiFi base stations are typically installed
indoors, they could be considered femtocells. CUS is infeasi-
ble because jammers may not be WiFi devices. Our method
inherently includes channel properties in EM measurements.

Fig. 1. Beamforming antenna array in anechoic chamber.

Previously, Massa [4] simulated an SGA with real-time
parameterized crossover and mutation probabilities to thwart
interferers having randomly varying DOAs. The crossover
and mutation probabilities were parameterized based on the
variance of the binary strings in a population of N trial
solutions. These probabilities varied linearly with variance
with crossover and probability mutation probabilities maxi-
mized with low variance. The modified SGA also discarded
a percentage of δ(k) solutions at the kth iteration that are
replaced with randomly generated strings.

Weile [5] simulated a GA that used dominance and diploidy
to null out five mobile jammers with an a 20 antenna array. It
was noted that the SGA’s convergence ”renders the crossover
useless. Thus, if the interference impinging on the array
changes, the GA can adapt only through the action of the
mutation operator – that is, by a painful process of blind
guesswork” [5]. To thwart mobile jammers, Weile used a
dominance and diploidy Genetic Algorithm (D&DGA) with
triallelic diploid strings based on the theory developed by
Goldberg [6]. Weile showed that the D&DGA thwarted mobile
jammer sets that changed every 20 generations, and the SGA
could not adapt to the second jammer set as expected. The
D&DGA also successfully thwarted jammer sets that changed
between three different subset [5].

The TDGA presented in this paper is of the same form
discussed in detail by Weile [5] and Goldberg [6], and it is
implemented in hardware. We presented the TDGA briefly in
[7], and it successfully nulled two mobile jammers regardless
if the SOI was mobile or stationary. The beamforming array



Fig. 2. Block diagram of Genetic Algorithm.
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Fig. 3. GA string hardware settings encoding with example encoding.

achieved null depths of 20 dB (with respect to the SOI) which
was significantly better than our prior work [2].

We further analyze and compare the SGA and TDGA
performance against stationary signals and mobile signals. We
present the beamforming array with two jammers and one SOI.
The remainder of this paper is as follows. Section II describes
the experimental setup and analyzes the results. Section III
discusses our conclusions.

II. EXPERIMENTAL SETUP AND RESULTS

The beamforming array was described in [7]. Previous
simulations by Lohn assumed that the antenna elements were
infinitesimal dipoles, and the array gain patterns were calcu-
lated using the array factor equation [1]. They do not include
EM coupling between antennas and reflections off hardware.
Antenna coupling could be easily accounted for in simulation
tools such as Numerical Electromagnetics Code (NEC) and
High Frequency Structure Simulator (HFSS). The hardware
components would be time-consuming to model and simulate
with those tools. The simulations tools also cannot account for
non-linearities such as control-voltage dependent phase-shifter
losses. Thus, a practical advantage of this hardware-in-the-loop
system is that it overcomes these problems.

The block diagram of a genetic algorithm (GA) is shown in
Fig. 2. The SGA and TGDA operate on a population of 30 bit
binary strings that encode the antenna phase and attenuation
settings for the beamforming array as described in [2]. The first
15 bits represent the settings for the three step-attenuators, as
each step-attenuator is controlled by five bits. The remaining
15 bits represent the settings for the three phase shifters. Each
phase shifter uses five bits which encodes to 11.6◦per bit,
as the phase shifters have ±5◦tolerance. Fig. 3 shows how
the GA encodes the 30 bit string into hardware settings for
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Fig. 4. Experimental test setup with array inside an anechoic chamber.

the three step-attenuators and phase shifters. The example
encoding shows the first step attenuator in antenna path four
set to 4.5 dB and the phase shifter in path two set to 151◦.
Table I lists common parameters used in the SGA and TDGA.

TABLE I
PARAMETERS USED IN GA OPTIMIZATION EXPERIMENTS

Parameter Value(s)
Probablily of Crossover, Pc 0.6

Probability of Mutation, Pm 0.02 1st5 generations
0.01 otherwise

Number of Elite Strings, ne 4

Population Size, M 100, 200

The TDGA performs a two-step crossover as described
by Weile and Goldberg [5], [6]. After the TDGA selected a
pair of mates, crossover is performed between the upper and
lower strings of each diploid individual. This forms a pair of
gametes. The upper and lower gametes of the first individual
are swapped with the lower and upper gametes of the second
individual. The two hybridized children are then expressed as
a single child through a process of triallelic dominance where
a negative one valued allele represents a recessive one, and a
positive one represents a dominant one. A zero valued allele is
always recessive. This value will be expressed at a bit location
if both children have zero valued alleles or if one child has a
recessive one and a zero. If a child has a dominant one, a one
valued allele will always be expressed regardless of the other
bit value. Mutation is performed after this two-step crossover
in the same fashion as the SGA.

Fig. 4 shows the experimental test setup. The beamforming
array is mounted in the anechoic chamber on a Delrin pipe
attached to a stepper motor on a turntable. Each step is 1/40th
of a degree. The source antenna is a wideband 0.3 GHz to
3.0 GHz horn antenna on a mount that allows it to be rotated
for either horizontal or vertical polarization. The beamforming
array is rotated in 5◦steps when an azimuth radiation pattern
is measured, and each azimuth pattern measurement takes
roughly 10 minutes. For details on the GA interface, see [7].
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Fig. 5. SGA SINR Landscape for SOI = 0◦and Jammers = [45◦, 200◦]: (a) M = 100 strings, (b) M = 200 strings
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Fig. 6. TDGA SINR Landscape for SOI = 0◦and Jammers = [45◦, 200◦]: (a) M = 100 strings, (b) M = 200 strings

A. SINR Fitness Landscape for Stationary Signals

In this section, we show that the fitness landscape is highly
multimodal when the beamforming array thwarts two jammers
and focuses RF energy on a single SOI. To create a fitness
landscape, we split the binary encoding string in half as shown
in Fig. 3 and convert the two 15-bit binary numbers into
decimal formats. The first 15-bit binary to decimal conversion
creates a number x that represents the settings for the three
step-attenuators and has values 0 ≤ x ≤ 215 − 1 = 32767.
The second binary to decimal conversion creates a number y
that represents the three phase shifter settings and has values
0 ≤ y ≤ 215 − 1 = 32767.

As shown in [2], the SINR fitness landscape for the three
jammer and one SOI case was highly multimodal. Figs. 5
and 6 show that this is still the case when the DOA for the
SOI is 0◦and the DOAs for the jammers are 45◦and 200◦. The
landscapes in Fig. 5 represent the landscape that the SGA with
M = [100, 200] strings found during its searches to maximize
SINR. Fig. 6 shows the M = [100, 200] TDGA landscapes.

It should be noted that the landscapes are based on the lo-
cations where the SGA and TGDA focused their searches and
are therefore approximations of the actual SINR landscapes.
Figs. 5 and 6 clearly show that the SINR fitness landscape is
multimodal and is therefore a difficult problem for the SGA
and TDGA to solve. The SGA with a population of 100 strings
focused its search more erratically around peaks throughout
0 ≤ x ≤ 32767 and 24576 ≤ y ≤ 32767, as it found many
points with SINR ≥ 20dB within that range. The SGA with

a 200 strings population was less erratic in comparison.
The TDGA’s fitness landscape in Fig. 6 differs from Fig. 5 in

a subtle manner. The M = 200 string TDGA fitness landscape
is more erratic than the 100 string population. The M = 200
string TDGA found more solutions with SINR ≥ 20dB in
the range 0 ≤ x ≤ 32767 and 24576 ≤ y ≤ 32767 than the
100 string population. This is an indication that the TDGA is
better equipped to handle a multimodal fitness function than
the SGA in solving the beamforming problem. We provide
additional analysis in the next section.

B. SGA & TDGA Applied to Stationary Signals
Fig. 7 shows the SINR of the fittest string averaged over

all runs of the SGA and TDGA for M = [100, 200] strings.
The error bars represent ±1 standard deviation in dB. Because
the error bars overlap in the four cases, the means for these
four cases are statistically equivalent. However, the M = 200
strings TDGA has the smallest standard deviation out of the
four cases. This indicates that the TDGA is better suited than
the SGA for solving this problem. The standard deviation for
the M = 200 strings SGA shown in Fig. 7b is similar in size
to the 100 string population of the SGA shown in Fig. 7a.

To show that there is statistical significance between the
SGA and TDGA in solving the beamforming problem for
stationary signals, we calculate the confidence coefficient
(1−α) for a ±3 dB confidence interval surrounding the mean
of best SINR found for the four GA cases shown in Fig. 7.
According to Papoulis [8], the confidence coefficient estimate
for a given confidence interval can be calculated under the



Fig. 7. SINR (dB) of the best (i.e., fittest) string in each population vs. generation number averaged over all runs of the SGA and TDGA for SOI = 0◦and
Jammers = [45◦, 200◦]. The error bars are ±1 standard deviation in dB. 30 independent runs were used for each of the four cases shown here.

Fig. 8. Confidence Coefficients for the SGA and TDGA with C = ± 3 dB

assumption that the processes are independent and identically
distributed (i.i.d.) Gaussian using equation (1):

P{SINRBest(K,n)− C ≤ SINRBest,Mean(K,n)

≤ SINRBest(K,n) + C} > 1− α (1)

where

1− α = 1− 2Q(c
√

(K)/σSINR(K,n)) (2)

and 0 ≤ n ≤ N = 100 is the generation number. Each run
of the SGA and TDGA are i.i.d. because we seed the random
number generator (RNG) that creates the initial populations
with a different prime integer at the start of each run, and the
beamforming array is tested inside a controlled environment.
Because the number of runs K = 30, and each run of the GAs

Fig. 9. Confidence intervals ±C dB with 95% confidence coefficient

is i.i.d., the Central Limit Theorem applies, and the results
produced by the SGA and TDGA are Gaussian [8].

Fig. 8 shows the results of our confidence coefficient
calculations for the SGA and TDGAs with populations M =
100, 200 strings. The ±3 dB case is important, as it indicates
the likelihood that the best solutions found in any generation
by the SGA and TDGA are within a half to double power
margin surrounding the mean of the best solutions.

Both the SGA and TDGA had 100% confidence coefficients
initially. The initial populations were chosen at random and
had low SINRs. The M = 100 strings population SGA
confidence coefficient approached 90% as it evolved, and the
SGA with M = 200 strings faired slightly better having
approached a confidence coefficient of 92.1% at generation
87 and a final confidence coefficient of 92.5% at generation
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Fig. 10. Azimuth radiation plots with M = 100 strings SGA having stationary signals for the best and worst cases of the fittest solutions found by the SGA
in independent 30 runs. SOI = 0◦and Jammers = [45◦, 200◦]: (a) Best fittest solution found in Run 7, (b) Worst fittest solution found in Run 30

(a) (b)

Fig. 11. Azimuth radiation plots with M = 200 strings SGA having stationary signals for the best and worst cases of the fittest solutions found by the SGA
in independent 30 runs. SOI = 0◦and Jammers = [45◦, 200◦]: (a) Best fittest solution found in Run 24, (b) Worst fittest solution found in Run 30

100. The SGA’s confidence coefficient decreased as the SGA
created better solutions because the SGA tends to lose bitwise
information as it created strings with higher fitness [9].

The M = 100 strings TDGA had a minimum confidence
coefficient of 92.4% at generation 100. This is roughly the
same as the M = 200 population SGA. The M = 200 strings
TDGA had a minimum confidence coefficient of 98.5% at
generation 81 and a final confidence coefficient of 98.7% at
generation 100. These results indicated that the TDGA is better
equipped to solve the beamforming with stationary signals
problem than the SGA. This is expected, as Weile et. al.
[5] and Goldberg [6] both noted that diploid strings store
long-term memory beyond the previous n−1 generation. The
TDGA is better able to retain bitwise information that would
otherwise be lost during the mate selection process.

We verified our results in Fig. 8 by plotting confidence
intervals (± C dB) of the M = [100, 200] SGA and TDGA
cases for a 95% confidence coefficient. Fig. 9 shows confi-
dence intervals calculated assuming a Gaussian distribution
and confidence intervals based on a Student-t distribution. The
Gaussian and Student-t confidence interval calculations are
nearly identical with a constant 4.2% error. This is expected

since the Student-t distribution approaches a normal distribu-
tion for K ≥ 30 [8]. The M = 200 TDGA performed best with
final 2.4 dB Gaussian & 2.5 dB Student-t confidence intervals.

Figs. 10 - 13 show the Azimuth radiation plots for the best
and worst cases of the fittest solutions found by the SGA and
TDGA. Data was collected from 30 independent runs each for
the SGA and TDGA with populations of M = 100 strings and
M = 200 strings. The signals are stationary with directions
of arrival(DOA) for the SOI = 0◦and jammers = [45◦, 200◦].

The generation 100 Azimuth plots shown Fig. 10a and
Fig. 10b correspond to SINR fitness values of 55.5 dB and
24.1 dB respectively. The generation 100 plots shows in
Fig. 11a and Fig. 11b correspond to SINR fitness values of
67.8 dB and 28.3 dB. These fitness values were recorded
by the SGA when it computed and compared string fitness
values. The motor did not move while the SGA computed all
fitness values in each generation, and the motor rotated in the
directions of the SOI and jammer before the SGA took M =
[100, 200] measurements at those angles. However, the motor
was rotated from 0◦to 360◦(in 5◦steps) to measure Azimuth
radiation patterns. Although the VNA averaged measurements,
variations due to motor movements limited the null depths seen



(a) (b)

Fig. 12. Azimuth radiation plots with M = 100 strings TDGA having stationary signals for the best and worst cases of the fittest solutions found by the
SGA in independent 30 runs. SOI = 0◦and Jammers = [45◦, 200◦]: (a) Best fittest solution found in Run 20, (b) Worst fittest solution found in Run 10

(a) (b)

Fig. 13. Azimuth radiation plots with M = 200 strings TDGA having stationary signals for the best and worst cases of the fittest solutions found by the
SGA in independent 30 runs. SOI = 0◦and Jammers = [45◦, 200◦]: (a) Best fittest solution found in Run 3, (b) Worst fittest solution found in Run 29

in these plots. It was not feasible to pause the motor for more
than a few seconds after each rotation. This would cause each
Azimuth pattern measurement to take over 30 minutes. With
error due to motor movement considered, the shallowest null
depth between SOI and interferers was 19.7 dB.

Fig. 12a and Fig. 12b show the Azimuth plots associated
with best and worst cases of the fittest solutions that the TDGA
found for stationary signals with this set of stationary SOI and
jammers and a population of 100 strings. The worst and best
of the fittest solutions measured by the TDGA had SINRs of
56.6 dB and 21.1 dB respectively. In addition, the Azimuth
plots shown in Fig. 13a and Fig. 13b correspond to best and
worst case values of fittest solutions having 55.5 dB and 31.1
dB. The TDGA had a population of 200 strings.

The Azimuth plots in conjunction with Fig. 7 show that the
SGA and TDGA both have a large variation in the final SINR
values that both algorithm variants found. However, both the
SGA and TDGA found acceptable solutions even in the worst
case. We will focus on improving the TDGA and explore other
algorithms in future works. It is believed that the SGA cannot
handle mobile jammers, as the mating process tends to select
the best few solutions and fill future populations with copies

of those solutions. This renders the crossover operator useless
because the bits swapped between mated pairs of strings are
the same. Information that present in the initial population
and not relevant to the current fitness landscape was lost.
Although the mutation operator can recover a small portion
of this information, the recovery isn’t at a rate sufficient for
the SGA to adapt to a changing fitness function ( [6], [9]).
Our own unpublished simulations showed that the SGA cannot
readapt to another solution if the signal directions are changed
after the SGA has converged to a good solution. In the next
section, we show that the TDGA can thwart mobile interferers
both when the SOI is stationary and mobile.

C. Performance of TDGA Adapting to Mobile Signals
Weile’s simulations showed that triallelic encoded diploid

strings allowed the GA to change dominant roles as the
environment changes. Those experiments focused on three
scenarios where an array with twenty isotropic radiators
thwarted groups of five interferers. The fist case thwarted
two groups of five interferers that changed directions every
twenty generations. The second scenario involved two groups
of five interferers that changed every two generations, and the
third scenaries focused on three groups of interferers. The first



(a) (b)

Fig. 14. TDGA learning curves for stationary SOI = 0◦and mobile Jammers = [45◦, 200◦] in first case and [120◦, 300◦] in second case with M = 200
strings TDGA and K = 18 runs: (a) Mean of best string SINR Fitness (dB) with ±C dB for (1−α) = 0.95 bounds plotted, (b) Confidence interval compared
to mean Hamming Distance averaged over K. Error bars represent ±1 standard deviation.

(a) (b)

Fig. 15. TDGA learning curves for mobile SOI = 0◦in first case and 60◦in second case and mobile Jammers = [45◦, 200◦] in first case and [120◦, 300◦]
in second case with M = 200 strings TDGA and K = 15 runs: (a) Mean of best string SINR Fitness (dB) with ±C dB for (1− α) = 0.95 bounds plotted,
(b) Confidence interval compared to mean Hamming Distance averaged over K. Error bars represent ±1 standard deviation.

and third subsets radiated for 10 generations while the second
subsets radiated for 20 generations [5].

The experiments presented in this paper focus on two signal
sets. The first signal set has a stationary SOI at 0◦, and two
interferer sets: [45◦, 200◦] in the first case, and [120◦, 300◦] in
the second case. The second signal set has a mobile SOI that
switches between 0◦and 60◦. The interferer sets are the same
as in the first signal set. To emulate mobility and to evaluate
the TDGA’s performance in adapting to mobile signals, we
alternate between the two sets every 10 generations.

Fig. 14 shows the convergence results for the first signal
set. Fig. 14a shows the mean of the strings having the highest
SINR averaged across all K = 18 runs. The dashed lines
show the confidence interval bounds with 95% confidence
calculated using a Student-t distribution as described in [8].
This figure shows that the TDGA successfully adapted to a set
of mobile interferers when the SOI remained stationary. The
TDGA performed better with the first signal set (SOI = 0◦)
in general because this was the first signal set that the TDGA
encountered. The confidence interval bounds are smaller for

the first signal set. When the interferers changed directions,
the TDGA had to relearn the search space.

Although the triallelic diploid strings allow for long term
memory, it is finite and imperfect. Future work includes saving
the best solutions in a memory pool for future evaluation.
We will investigate other methods for preserving population
diversity such as niching through fitness sharing [6].

Fig. 14b shows the confidence interval plotted with the mean
Hamming Distance averaged across all K = 18 runs. They
help explain the TDGA behavior shown in Fig. 14. The mean
Hamming Distance is maximum at generation 0 and slowly
declines. Although signal set switches at generations 10 and
20 cause brief upticks in the Hamming Distance, it continues
declining until generation 30 and oscillates until the end. The
confidence interval steadily increases until general 25 and
declines to generation 30. After generation 30, the confidence
interval oscillates in sync with the Hamming Distance.

Goldberg [6] noted that GAs can find better solutions when
population diversity is high. Because the Hamming Distance is
a measure of population diversity [10], our results imply that
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Fig. 16. TDGA Azimuth radiation plots: (a) Signal Set 1: Stationary SOI = 0◦and mobile Jammers = [45◦, 200◦] in first case & [120◦, 300◦] in second
case, (b) Signal Set 2: All signals mobile with SOI = 0◦& Jammers = [45◦, 200◦] in first case and SOI = 60◦& Jammers = [120◦, 300◦] in second case.

the TDGA has a better chance on average of finding better
solutions for multiple signal sets during the first few decades
of each run. This does not mean that the TDGA will not find
better in later generations. In individual results, the TDGA
sometimes found better solutions after generation 50.

Fig. 15 shows the convergence results for the second signal
set. The SOI switched between 0◦and 60◦while the jammers
switched between [45◦, 200◦] and [120◦, 300 ◦]. The results
are compatible to Fig. 14. This shows that the TDGA can
adapt to mobile interferers if the SOI is stationary or mobile.

Fig. 16 shows Azimuth radiation plots of best solutions
found by the TDGA. Fig. 16a shows radiation plots for the first
signal set. The TDGA moved the desired nulls from 45◦and
200◦to 120◦and 300◦. It sacrificed ≈ 2 dB of gain for the SOI
while adapting to the mobile jammers.

Fig. 16b shows radiation plots for the second signal set. It
directed a null at 45◦with a depth of 27.6 dB below the SOI
at 0◦. Although the second null was off by 5◦, the jammer at
200◦was 22.7 dB below the second SOI at 60◦. The TDGA
thwarted mobile jammers when the SOI was mobile. The array
gain at 60◦is ≈ 5 dB higher compared to the same direction
shown in Fig. 16a. The TDGA focused RF energy at 60◦for
the second signal set. As shown by Fig. 15a and Fig. 16, the
TDGA would refocus nulls at appropriate locations if the SOI
and jammers changed direction.

III. CONCLUSIONS

This paper showed that the SGA and TDGA were both
successful in evolving an anti-jamming beamforming array in
situ for 802.11b/g WiFi with results applicable to femtocells.
Both versions of the GA found acceptable hardware settings to
null out two stationary jammers while simultaneously focusing
energy on a stationary SOI. The M = 200 strings SGA achieved
best performance with the best solution having 67.8 dB SINR
in convergence. The best solution that the M = 200 strings
TDGA found had a 55.5 dB SINR in comparison.

However, the M = 200 strings TDGA had better statistical
results. It had a final 98.7% confidence coefficient for a ±3

dB confidence interval. This was significantly higher than the
M = 100 strings TDGA and M = [100, 200] strings SGAs
evaluated in this paper. The M = 200 TDGA also had a final
2.4 dB confidence interval with a 95% confidence coefficient
assuming normality. We verified our calculations using the
Student-t distribution, and the resulting confidence interval at
95% confidence was compatible with a 0.1 dB difference.

The TDGA was successful in thwarting mobile jammers
regardless of the SOI’s mobility. The learning curves for both
signal sets were comparible. Because we did not collect 30
independent runs for the TDGA with both mobile signal sets at
the time of publication, we calculated confidence intervals with
95% confidence using Student-t distribution. The confidence
intervals varied in sync with the mean Hamming distances.
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