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Abstract—In heterogeneous networks, a macro cell can cause
excessive interference to users in co-channel pico cells. In Release
10 of 3GPP’s LTE system, enhanced Inter-Cell Interference Coor-
dination (eICIC) has been introduced to reduce the interference
experienced by pico users by having the macro mute some of
its subframes. This is a tradeoff, because the benefit to pico
users comes at the cost of the macro sacrificing a portion of its
resources. This tradeoff is also influenced by the determination
of which users are offloaded from the macro to the pico. We
formulate the joint optimization of the proportion of muted sub-
frames and the assignment of users to macro and pico cells
as a network-wide utility maximization problem, and obtain an
analytical characterization of the optimal solution. We propose
an iterative algorithm that successively improves the assignment
of users to cells and the muting proportion, and prove its
convergence to the optimal solution.

Index Terms—Enhanced Inter-Cell Interference Coordination,
EICIC, Almost Blank Subframes, ABS, range extension, utility
maximization, load balancing.

I. INTRODUCTION

In heterogeneous networks, a macro cell causes interference
to users in co-channel pico cells. This is aggravated when a
bias or range extension is applied to offload a larger number
of users to pico cells. The intention of the range extension is
to reduce the load on the macro and maximize the usage of
pico cells that are under-loaded relative to the macro. The bias
is typically applied at the time of cell selection or handover
so that a user would associate with a pico cell even if the
received signal from the macro cell were stronger. However,
such users that are offloaded due to the range extension
would experience excessive interference from the macro. Thus,
in order to capture load-balancing gains, some interference
mitigation between the macro and pico is necessary.

In Release 10 of 3GPP’s Long Term Evolution (LTE)
system, enhanced Inter-Cell Interference Coordination (eICIC)
has been introduced [1, Section 16.1.5] for this purpose. In
eICIC, the interference caused by a macro cell to its underlay
pico cells is mitigated by having the macro mute some of
its subframes so that pico users experience reduced downlink
interference during the muted sub-frames. These are known
as Almost Blank Sub-frames (ABS) or Low Power Sub-frames
(LPS) based on the level of muting (we will generically use
the term ABS for all muting levels). Since only the picos
get to transmit during the macro’s muted sub-frames, this
can be considered as resource partitioning in time-domain
[2]. Pico users can feed back an indication of their channel
quality within the muted sub-frames separately from the
channel quality within non-muted sub-frames. These resource
restricted measurements [2] allow the pico cell to transmit at

higher spectral efficiency to the pico users during the muted
sub-frames. This benefit of increased spectral efficiency for
the pico users, however, comes at the cost of the macro users
having access to fewer resources due to the macro muting. So
in order to ensure that the system as a whole is better off, the
proportion of muted sub-frames needs to be carefully chosen.
Note that the correct proportion of muted sub-frames to be
used depends on the choice of which users are assigned to the
picos and which users are assigned to the macros. The larger
the number of users assigned to the macro, the greater the cost
of the the macro sacrificing resources for muting. Furthermore,
another aspect that influences this is the determination by the
pico eNB of the users to whom it should allocate the ABS
(low-interference) resources, and the users to whom it should
allocate the non-ABS (high-interference) resources. This is a
function of the underlying resource allocation (or scheduling)
method used in the picos. Thus we need to jointly optimize
the proportion of muted sub-frames, the assignment of users
to macro or pico cells, and the resource allocation within each
cell. This joint optimization is the subject of this paper.

Resource allocation to a given set of users within an
individual cell is the function of a scheduling algorithm such
as the proportionally fair (PF) algorithm [3]. PF and its
generalization to a gradient-based scheme have been shown
to maximize a utility function under very general conditions
[4], [5], [6]. The utility function quantifies a tradeoff between
efficiency and fairness, with PF being a particular instance of
the tradeoff given by the logarithmic utility function.

In the multi-cell case, an added dimension is the determina-
tion of which users should be assigned to receive allocations
from which cell, an aspect that can be considered as load-
balancing. In the context of networks without eICIC, [7],
[8], [9], [10] formulate this problem as utility maximization
across multiple cells. [7], [8], [9] recognize a key property,
that it is preferable to assign a user resources from a base
station that is most attractive according to a certain measure
related to the ratio of the user’s spectral efficiency from a
given base station to the number of users in that base station
(for logarithmic utility, or to a shadow price for a more
general utility function). This measure can be interpreted as
the throughput that a user can expect to achieve if connected
to that base station, given the load in that base station. [7]
applies this property to associate newly arriving users to base
stations, through a heuristic cell-association mechanism that
is shown by simulation to approach the performance of the
optimal when there are a large number of users. [8] applies
this property for successively moving users from one cell to



a more attractive one (a procedure that can be practically
interpreted as handover). [9] uses this property for an iterative
algorithm which successively improves Lagrange multipliers
(shadow prices). [7], [9], [10] also observe that in the optimal
allocation, some users may have to be allocated resources
from more than one cell. [10] solves a relaxed version of
the utility optimization, assuming equal resource allocations
to users including those that are partially associated to a cell.

Heterogeneous networks with eICIC further require optimal
resource partitioning for interference management. Here in
addition to deciding (a) which users should be assigned to
receive resources from macro cells and pico cells, one also
has to decide (b) what the muting proportion (or resource
partition) should be, and (c) within each pico cell, which users
should receive resource allocations within ABS or non-ABS.
[11] demonstrates through simulations that the performance
of eICIC is sensitive to the setting of the range extension
(which is one type of criterion for deciding (a)) and the muting
proportion (b). [12] uses a utility-maximization formulation to
address (b) and (c), proposing a dynamic programming method
to determine (c) for a given value of the muting proportion,
and then finding the optimal muting proportion by exchanging
potential utility values corresponding to all possible muting
proportions between the base stations. [13] looks primarily
at (c), demonstrating through simulations that the use of the
proportionally fair scheduler to allocate resources within a pico
across ABS and non-ABS gives better performance than a
scheme that a priori classifies users into cell-center (scheduled
only during non-ABS) and cell-edge (scheduled only during
ABS), using a criterion related to the difference of the signal
strengths received by the user from the macro and pico.
[14] addresses (b) and (c) using a Nash-Bargaining Solution
approach, which is different from but related to the network
utility maximization approach as discussed in [15].

Thus all of these papers address pieces of the overall prob-
lem to varying degrees. The main contribution of our paper is
a unified approach that addresses all the above aspects, using
a joint optimization formulation based on multi-cell utility
maximization described in Section II. This can be viewed as a
multi-cell generalization of the underlying scheduling/resource
allocation problem within each cell, incorporating the multi-
cell aspects of load balancing through optimal cell assignment
and interference management through optimal resource parti-
tioning. In Section III we obtain the conditions that character-
ize the optimal assignment of users to macro or pico cells for a
given muting proportion. We show how these conditions admit
a simple graphical interpretation that provides insight into the
case where the optimal solution may involve allocating at least
one user resources from more than one cell. We highlight the
role played in this determination by the ratio of the user’s
spectral efficiency to a certain generalized proportionally fair
(GPF) metric that represents the load of a cell. For the
logarithmic utility function, the GPF metric turns out to be
equivalent to the number of users, validating an observation
in [7], [8], [9], [10]. The rule for the optimal assignment of
users to cells also yields the criterion by which a pico cell

can determine the users to which it should allocate resources
within ABS or within non-ABS (or both), with the ratio of
the users’ spectral efficiency to the GPF metric again playing
a key role. Based on these insights, we obtain a criterion for
improving the assignment of users to cells one user at a time.
In Section IV, we characterize the conditions for the optimal
muting proportion for a given assignment of users to cells, and
identify a criterion for improving the muting proportion. The
GPF metric again turns out to be instrumental in determining
the optimal muting proportion. In Section V, we propose an
iterative improvement algorithm that successively uses the
criteria for improvement of the assignment of users to cells
and the muting proportion, and prove its convergence to the
global maximum of the network-wide utility maximization.

Our approach in this paper is purely analytical, since the key
results are mathematical in nature. Due to space constraints we
omit detailed proofs, instead concentrating on the key insights
from the results, and provide high-level outlines of the key
arguments used in the proofs.

II. PROBLEM FORMULATION

Consider a system in which users 1, · · · , N are served by a
network of M macro cells and P pico cells. Each cell has
a unit resource that it can allocate amongst the users. We
assume that all the macros mute (or do not mute) in tandem,
i.e. in the same set of sub-frames, so that all macros use the
same muting proportion a. We can visualize each pico cell as
consisting of two logical sub-cells, one which is active only
during ABS (and thus has access to a fraction a of the pico-
cell’s unit resource), and the other which is active only within
non-ABS (and thus has access to remaining fraction 1− a of
the pico-cell’s unit resource). Due to muting, each macro cell
can allocate only a fraction 1 − a of its unit resource. Thus
we can consider a collection of 2P +M sub-cells, wherein
P of the sub-cells (comprising the picos’ ABS sub-cells) are
active during ABS, and the remaining P +M (comprising the
picos’ non-ABS sub-cells and the macros) are active during
non-ABS. For simplicity, we will simply refer to each of
these as just cells rather than sub-cells. User u can achieve a
spectral efficiency (i.e. throughput per unit resource) of Rc(u)
from cell c. Rc(u) is known through the resource-restricted
measurements fed back by the user. We assume the Rc(u) to
be given constants (i.e. not time-varying, and not dependent on
the resource allocation). For each u, we assume that Rc(u) > 0
for at least one c.

For mathematical convenience, we restrict a to be in [εa, 1−
εa] for some εa > 0. This is not a major limitation, because
εa > 0 can be chosen arbitrarily small.

In a hard-handover system like LTE, a user is allocated
resources from only one cell at a time. But since we are
treating the ABS resources and the non-ABS resources within
a pico cell as two separate logical cells, a user in the pico
cell could receive resource allocations from both of these.
So in our formulation we will allow the possibility of a user
being allocated resources from multiple cells. This relaxation



also lets us address evolutions of LTE like Coordinated Multi-
Point operation (CoMP) [16], wherein a user could receive
allocations from multiple cells. We assume the user devices
have appropriate capabilities (including receiving simultane-
ously from multiple cells if needed), in order to achieve any
feasible resource allocation.

Let the fraction of cell c’s resources allocated to user u be
ρc(u). A serving cell of user u, i.e. a cell such that ρc(u) > 0,
will be denoted by s(u). We collect the resource allocations
ρc(u) into a (2P+M)N -tuple ρ. We say that an allocation ρ is
consistent with muting proportion a if ∀c ∈ {1, · · · , 2P+M},

0 ≤ ρc(u) ≤ 1 for all users u
N∑
u=1

ρc(u) ≤

{
a, if c is an ABS cell
1− a, if c is a non-ABS cell.

(1)

Define Sa as the set of all (ρ, a) such that ρ is consistent
with a given muting proportion a. The feasible set of resource
allocations consistent with some muting proportion is then

S =
⋃

a∈[εa,1−εa]

Sa. (2)

A cell assignment indicator is a binary N(2P +M)-tuple z
that indicates, for each user u and cell c, whether that user is
allowed to get resources in that cell. A valid z indicates, for
each user u, at least one allowed cell c wherein the user can
achieve non-zero spectral efficiency, i.e. zc(u) = 1 for at least
one c such that Rc(u) > 0. We say that z is consistent with z′

if, for every c, u such that z′c(u) = 0, we also have zc(u) =
0. A resource allocation ρ is naturally associated with a cell
indicator z̃ = ζ(ρ), satisfying z̃c(u) = 0 if ρc(u) = 0, and
z̃c(u) = 1 otherwise. We call ζ(ρ) the derived cell assignment
indicator of ρ. If ζ(ρ) is consistent with a cell assignment
indicator z′, then we say that ρ is consistent with z′. If ρ is
also consistent with muting proportion a, we say that (ρ, a)
is consistent with z′.

For a given valid cell assignment indicator z, define S0(z)
as the set of all (ρ, a) ∈ S that are consistent with z. We can
further define S0a(z) = S0(z)∩ Sa comprising the allocations
consistent with both the cell assignment indicator z and the
muting proportion a. Note that all of S, Sa, S0(z), and S0a(z)
are closed, bounded, and convex.

The throughput given to user u by resource allocation ρ is

T (ρ;u) =

(2P+M)∑
c=1

ρc(u)Rc(u) (3)

Define the system utility provided by (ρ, a) as

U(ρ, a) =
∑
u

wuUu(T (ρ;u)), (4)

where Uu(·) : R+ → R is the user utility function of user
u, and wu > 0 is the (given) weight associated with user
u. Uu are typically taken to be monotonic increasing and
concave. The weights are typically used to differentiate the
Quality of Service (QoS) afforded to different users. The

system utility does not explicitly depend on a, but we define
U as a function of (ρ, a) to emphasize that we are looking at
resource allocations consistent with muting in eICIC. Note that
if each Uu(·) is a strictly concave function, then U(·) is also a
strictly concave function over the convex set S. Formally the
system utility maximization problem is stated as follows.

Problem: Find (ρ, a) ∈ S to maximize U over S.
Note also that an optimal solution (ρ, a) must satisfy

N∑
u=1

ρc(u) =

{
a if c is an ABS cell
1− a if c is a non-ABS cell,

(5)

i.e. with equality rather than inequality in (1), otherwise we
could increase the allocation ρc(u) to some user and increase
the system utility.

We specifically consider the family of strictly concave user
utility functions Uα : R+ → R for α > 0, where for x > 0,

Uα(x) =

{
x1−α

1−α if α 6= 1

log(x) if α = 1.
(6)

This family of utility functions defines various tradeoffs be-
tween efficiency and fairness. Smaller values of α skew the
tradeoff in favour of efficiency, and larger values in favour of
fairness. The case of α = 1 (corresponding to U(x) = log(x))
gives proportional fairness (PF).

Since S, Sa, and S0a(z) are all closed, bounded, and convex
subsets of Rn, and since U is a concave continuously differ-
entiable function, standard theorems ([17, Theorem 2.41], [17,
Theorem 4.16], [18, Proposition 2.1.1, p. 193]) imply that (a)
U attains its maximum on each of these sets, (b) any local
maximum is also a global maximum, and (c) if U is strictly
concave, then it has a unique global maximum.

Our approach to the optimization of U over S is motivated
by the following property.

Proposition 1: If (ρ, a) maximizes U over both Sa and
S0(z̃) where z̃ = ζ(ρ), then (ρ, a) maximizes U over S. �

Proof: The proof works by showing that any change from
(ρ, a) to (ρ′, a′) ∈ S within a sufficiently small ε-ball around
(ρ, a) can be decomposed as a superposition of two changes,
one that preserves the muting proportion at a, and another that
remains consistent with the cell assignment indicator vector
z̃. Since (ρ, a) is optimal within Sa by assumption, any small
change that preserves the muting proportion at a results in
a decrease in the utility. Since (ρ, a) also maximizes U over
S0(z̃) where z̃ = ζ(ρ), any small change that preserves the
cell assignment indicator at z̃ also results in a decrease in the
utility. Thus when these two changes are superposed, the net
change also results in a decrease in utility. Since this is true
for any change within an ε-ball, [18, Proposition 2.1.2] implies
that (ρ, a) must be optimal over S.

Proposition 1 decomposes the global optimization over S
into two sub-problems: (i) optimal load-balancing, finding
the best cell assignment for a fixed muting proportion (i.e.
maximizing U over Sa), and (ii) optimal resource partitioning,
finding the best muting proportion for a fixed cell assignment
(i.e. maximizing U over S0(z)). If (ρ, a) is simultaneously
optimal for both then it is also globally optimal over S .



III. LOAD-BALANCING FOR A FIXED MUTING PROPORTION

We now analyze the maximization of U(ρ, a) over Sa
keeping the muting proportion fixed at a.

Proposition 2: (ρ∗, a) is optimal over Sa iff (ρ∗, a) sat-
isfies (5), and there exist non-negative constants vc, c =
1, · · · , 2P +M , such that for all users u and cells c,

∂U
∂ρc(u)

(ρ∗, a) = Rc(u)wu
∂Uu
∂T

(T (ρ∗;u)){
= vc if ρ∗c(u) > 0, and
≤ vc otherwise.

(7)

�
Note that if, for some user u, ρ∗c(u) > 0 for multiple cells c,
say for cells c1 and c2, then we must have

wu
∂Uu
∂T

(T (ρ∗;u)) =
vc1

Rc1(u)
=

vc2
Rc2(u)

.

Similarly, for any user u, if ρ∗c1(u) > 0 and ρ∗c2(u) = 0 for
cells c1, c2, then we must have

wu
∂Uu
∂T

(T (ρ∗;u)) =
vc1

Rc1(u)
≤ vc2
Rc2(u)

.

Thus user u will have ρ∗c∗(u) > 0 for cell c∗ only if

c∗ = argmin
c

vc
Rc(u)

. (8)

Proof: The proof largely follows the application of [18,
Proposition 2.1.2] described in in [18, Example 2.1.2].

A further important sub-problem is maximization of U
over S0a(z), fixing both the muting proportion a and the
cell assignment indicator z. The key difference from the
optimization over Sa above is that if a user u is indicated
as not assigned to cell c (i.e. zc(u) = 0), that user need not
satisfy the inequality part of (7). Thus z may constrain user
u to be assigned to a sub-optimal cell, but user u will get an
optimal allocation subject to this constraint.

Proposition 3: (ρ∗, a) is optimal over S0a(z) iff (ρ∗, a)
satisfies (5), and there exist non-negative constants vc, c ∈
{1, · · · , 2P +M}, such that for all users u and cells c,

∂U
∂ρc(u)

(ρ∗, a) = Rc(u)wu
∂Uu
∂T

(T (ρ∗;u)){
= vc, if ρ∗c(u) > 0

≤ vc, if ρ∗c(u) = 0 and zc(u) = 1.
(9)

�
We note here that given a muting proportion a and a cell
assignment indicator z, the resource allocation ρ that achieves
this optimum over S0a(z) is achieved by an appropriately
designed scheduler. In a single-cell context, the PF scheduler
[3] achieves an allocation that maximizes the log utility
function for a given set of users within a single cell. The PF
scheduler, at each iteration, tries to equalize among the users in
the cell a PF metric which is derived from the gradient of the
log utility function. At the log-utility-maximizing allocation,
the PF metrics of all users in the cell will be equalized.

This equalized PF metric of the users is the equivalent of
the vc coefficient of (9) in a single-cell context. For more
general utility functions like (6), the gradient-based scheduler
algorithm [4], [6] behaves similarly, achieving the utility-
maximizing allocation by equalizing a generalized PF metric
(GPF metric) which is the single-cell equivalent of vc in (9) for
the appropriate utility. In the multi-cell case, given a muting
proportion a and an assignment z of users to cells, the same
gradient-based scheduler can be operated in each cell c over
the users u assigned to that cell (i.e. with zc(u) = 1). In
this case, the throughput of a user used in computing the
gradient of the utility should be taken to be the total throughput
provided to the user across all cells. Thus if there is a user that
are assigned to multiple cells (i.e. if for some user u, zc(u) = 1
for more than one cell c), then appropriate coordination or
messaging is required so that the scheduling within each
cell can take into account the user’s total throughput. With
this modification, the same gradient-based scheduler achieves
the multi-cell utility-maximizing allocation ρ∗ for the given
muting proportion a and the cell assignment z, i.e. it yields
the (ρ∗, a) that maximizes U over S0a(z) and satisfies (9). The
gradient-based scheduler within each cell c would equalize the
GPF metric among the users for which ρ∗c(u) > 0, yielding
the coefficients vc in (9).

Denote µc = a if c is an ABS cell, and µc = 1 − a if
c is a non-ABS cell. Let βc(u) be the fraction of user u’s
throughput that is delivered by cell c. Then for the logarithmic
utility function, we can show from (9) the identity

µcvc =
∑
u

wuβc(u). (10)

Consider the case where all the weights are unity (wu = 1). If
each user gets its entire throughput from just one cell (i.e.
for each u, βc(u) = 1 for some c), then the right hand
side is Nc, the number of users getting their throughput from
cell c. Thus (10) relates the PF metric vc to the number of
users in the cell. But if for some user u, 0 < βc(u) < 1
for some c, then that user essentially contributes to vc as a
“fractional user” within cell c, with a fraction βc(u). The
following proposition clarifies the conditions under which a
user can get its throughput partially from multiple cells, and
the criterion that determines whether a user prefers one cell
over another.

Proposition 4: Consider Uu(T ) = log(T ) and wu = 1
for all u. Suppose (ρ∗, a) maximizes U over Sa, with the
corresponding constants vc as in Proposition 2. Consider any
two cells (without loss of generality, cells 1 and 2). Suppose
there are L users u such that ρ∗c(u) > 0 for at least one
c ∈ {1, 2}. Then the following properties hold.

1) If ρ∗1(u) > 0 then R1(u)/R2(u) ≥ v1/v2, and if
ρ∗2(u) > 0 then R1(u)/R2(u) ≤ v1/v2. That is,
users prefer cell 1 to cell 2 based on a threshold rule,
comparing R1(u)/R2(u) to a threshold v1/v2.

2) Suppose the L users have distinct values of
R1(u)/R2(u), and the users are numbered 1, · · · , L in
increasing order of R1(u)/R2(u). Let σ = µ1v1+µ2v2.



Then µ2v2 is the abscissa of the intersection of the
functions F1 : (0, 1] → R+ and F2 : (0, 1] → R+

defined below, and v1/v2 (the threshold) is the ordinate.
For i = 1, · · · , L, define F1(x) and F2(x) as

F1(x) =
R1(i)

R2(i)



if x ∈
[
0,
µ2v2
σ

]
and x ∈

[∑i−1
k=1 β2(u)

σ
,

∑i
k=1 β2(u)

σ

]
or, if x ∈

(µ2v2
σ

, 1
]

and x ∈

[
µ2v2 +

∑i−1
k=1 β1(u)

σ
,

µ2v2 +
∑i
k=1 β1(u)

σ

]
(11)

F2(x) =
µ2

µ1

1− x
x

. (12)

�
F1 is a staircase function which takes values R1(u)/R2(u)
for the L users. Due to the ordering of the users, the steps of
the staircase to the left of x∗ = µ2v2/σ correspond to users
u for whom R1(u)/R2(u) ≤ v1/v2, whereas the steps of the
staircase to the right of x∗ = µ2v2/σ correspond to users u for
whom R1(u)/R2(u) > v1/v2. This is graphically illustrated
in Fig. 1. The curves for F1 and F2 intersect at x∗ = µ2v2/σ,

(a) Intersection on a rise.

(b) Intersection on a flat.

Fig. 1: Graphical illustration of Proposition 4

and F2(x
∗) = v1/v2. If k∗ is the lowest user index such

that R1(k
∗)/R2(k

∗) ≥ v1/v2, then all users u < k∗ (in the
renumbered order) will get zero resources from cell 1, while
all users u ≥ k∗ will get zero resources from cell 2. If the
intersection occurs at a rise of the staircase function F1, then
there is no user that will receive non-zero resources from both
cells. This case is illustrated in Fig. 1a. If the intersection
occurs at a flat of the function F1(·), then user k∗ (in the
renumbered order) gets resources from both cells, as illustrated
in Fig. 1b, and for this user, R1(k

∗)/R2(k
∗) = v1/v2.

As a special case of this, suppose there are just two macro
cells in the system (no pico cells) with ABS turned off (i.e.
a = 0), so that µ1 = µ2 = 1 and L = N , the total number of
users. The behaviour reduces to the illustration of Fig. 2.

(a) Intersection on a rise.

(b) Intersection on a flat.

Fig. 2: Two macro cells.

As a second special case, consider a single macro cell with
a single pico-cell within the coverage of the macro, with a
given muting proportion a. In this case there are three (sub-
)cells: the pico’s non-ABS sub-cell, the pico’s ABS sub-cell,
and the macro-cell. Take the cells 1, 2 from Proposition 4 to
be the pico’s non-ABS sub-cell and ABS sub-cell respectively.
At the (ρ∗, a) that optimizes U over Sa, suppose there are
L = Np users which are allocated non-zero resources within
either the pico’s ABS sub-cell or the pico’s non-ABS sub-
cell. Proposition 4 indicates that the determination by the pico
cell of which users should receive allocations within the non-
ABS resources (i.e. ρ∗1 > 0) and which users within the ABS



resources (i.e. ρ∗2 > 0) also follows a threshold rule with a
threshold of v1/v2, as illustrated in Fig. 3. Pico users for whom
R1(u)/R2(u) > v1/v2 are allocated non-ABS resources, and
pico users for whom R1(u)/R2(u) < v1/v2 are allocated ABS
resources. A pico user who has R1(u)/R2(u) = v1/v2 (user
k∗ in Fig. 3b) can get allocations from both ABS and non-ABS
resources, . This holds more widely with multiple picos under

(a) Intersection on a rise.

(b) Intersection on a flat.

Fig. 3: One macro and one pico with a given a - optimal
allocation between ABS and non-ABS within the pico.

a macro, and not just with a single pico as in this example.
The threshold rule in Proposition 4 also provides a prescrip-

tion for improving the cell assignment z. Consider any current
serving cell s(u) of user u. Suppose that for some cell c,

Rs(u)(u)

Rc(u)
<
vs(u)

vc
, or,

Rs(u)(u)

vs(u)
<
Rc(u)

vc
. (13)

Per Proposition 4, it would be preferable to allocate user u
resources from cell c rather than from s(u). Thus to improve
the cell assignment z, we should identify a user u and cell
c for which (13) holds but zc(u) = 0 (i.e. the current
cell assignment indicator z does not allow user u to get
resources from cell c), and then modify the cell assignment
by setting zc(u) = 1. Although Proposition 4 restricts to the
log utility and wu = 1, we can show that this cell assignment
improvement criterion holds more generally as well.

This cell assignment improvement process enables the user
to get resources in an additional cell, but does not necessarily

prevent the user from also getting resources from its original
cell, since it may be optimal to allocate the user resources from
both. This can be thought of as a generalization of handover.

IV. OPTIMAL RESOURCE PARTITION FOR A GIVEN CELL
ASSIGNMENT

We now look at the conditions for optimality of a muting
proportion a∗ and a corresponding allocation ρ∗, keeping the
cell assignment indicator z fixed, i.e. conditions for optimality
of (ρ∗, a∗) over S0(z).

First note that if (ρ∗, a∗) is optimal over S0(z), it has to
be optimal over S0a∗(z), for which the optimality conditions
are given by (9). Then we assert the following.

Proposition 5: For a∗ ∈ [εa, 1− εa], if (ρ∗, a∗) is optimal
over S0a∗(z), it is also optimal over S0(z) if and only if

a∗ = εa and
∑

c is ABS

vc ≤
∑

c is non-ABS

vc,

or a∗ ∈ (εa, 1− εa) and
∑

c is ABS

vc =
∑

c is non-ABS

vc,

or a∗ = 1− εa and
∑

c is ABS

vc ≥
∑

c is non-ABS

vc(14)

�
Proof: The proof uses the fact that (ρ∗, a∗) satisfies (9) to

show that the condition of optimality given by [18, Proposition
2.1.2] is equivalent to (14).
Proposition 5 indicates that

∑
c is ABS vc (respectively∑

c is non-ABS vc) can be interpreted as a measure of the total
loading of the ABS (respectively non-ABS) resources. At the
optimal muting proportion, the loading of the ABS resources
is balanced by the loading of the non-ABS resources.

We now look at finding a new muting proportion b∗ in
the appropriate direction while preserving the cell assignment
z, and a corresponding allocation (ρ′, b∗) ∈ S0b∗(z) which
improves the utility over (ρ, a).

Proposition 6: Suppose (ρ, a) maximizes U over S0a(z).
For any muting proportion b ∈ [εa, 1 − εa], let ρsc ∈ S0b (z)
be a scaled version of ρ, defined as follows.

If c is ABS, ρscc (u) =
b

a
ρc(u)

If c is non-ABS, ρscc (u) =
(1− b)
(1− a)

ρc(u) (15)

Then for Uu(·) = Uα(·) defined in (6),

U(ρsc, b∗) ≥ U(ρ, a)

where

b∗ = max [εa,min (1− εa,
a

1−a
(∑

c is ABS vc
)1/α

a
1−a

(∑
c is ABS vc

)1/α
+
(∑

c is non-ABS vc
)1/α

 . (16)

�
Proof: Having determined the direction of increase in

Proposition 5, we find the best value of b in that direction
based on the scaled resource allocations ρsc. The proof shows



that U(ρsc, b) is a concave function of b, and b∗ is the point
at which this is maximized.

V. ITERATIVE ALGORITHM

We now propose an iterative procedure that successively
uses the cell assignment improvement condition (13) and
the muting proportion improvement (16), and show that this
converges to the optimal solution that maximizes the utility.
We restrict attention to the family of utility functions (6).

At step 1, start with an arbitrary cell assignment indicator
z1 and arbitrary muting proportion a1 ∈ [εa, 1− εa]. Find ρ1

such that (ρ1, a1) maximizes U over S0a1(z1) (e.g. by using
the gradient-based scheduler). Choose λ1 ∈ (0, 1). For each
iteration i = 1, 2, · · · , if there is at least one user u and cell
c satisfying

ρi,c(u) = 0 and
Rc(u)vsi(u)

Rsi(u)(u)
− vi,c > 0, (17)

(where si(u) is any serving cell of user u at iteration i i.e.
ρsi(u),i(u) > 0), then among such users, pick c, u as follows.

1) Set m = 1.
2) Pick any c, u for which

Rc(u)vsi(u)

Rsi(u)(u)
− vi,c > λmi . (18)

If there is no such c, u, set m = m+ 1, and repeat.
3) Set λi+1 = λmi , where m is the value reached in the

above step.
The metric in (17) is derived from the cell assignment im-
provement condition in (13). The above selection ensures that
any c, u for which (17) is becoming vanishingly small are
ignored if there are other c, u for which the metric is larger.
With the chosen c, u, let

δ1i =
Rc(u)vsi(u)

Rsi(u)(u)
− vi,c

(or 0 if there was no c, u satisfying (17))

δ2i =

∣∣∣∣∣ ∑
c is ABS

vi,c −
∑

c is non-ABS

vi,c

∣∣∣∣∣ . (19)

Execute one of Operations 1 and 2 below to go from (ρi, ai)
to (ρi+1, ai+1), based on the following rule. If only one of
δki , k = 1, 2 is positive, execute operation k. If both are
positive, execute operation k∗ = argmaxk δ

k
i . If neither is

positive, stop.
Operation 1 takes (ρi, ai) to (ρi+1, ai+1) keeping the

muting proportion constant (ai+1 = ai) but improving the
cell assignment. It comprises the following:

1) Set ai+1 = ai.
2) Let z′ be identical to ζ(ρi) for all users and cells except

setting z′c(u) = 1 for the selected c, u.
3) Find ρi+1 such that (ρi+1, ai+1) maximizes U(·) over
S0ai+1

(z′) (e.g. using the gradient-based scheduler).
4) Set zi+1 = ζ(ρi+1).

Operation 2 takes (ρi, ai) to (ρi+1, ai+1) improving the
muting proportion while staying consistent with the cell as-
signment, as follows.

1) Set

ai+1 =
ai

1−ai

(∑
c is ABS vc,i

) 1
α

ai
1−ai

(∑
c is ABS vc,i

) 1
α +

(∑
c is non-ABS vc,i

) 1
α

(20)
2) Set ρi+1 such that (ρi+1, ai+1) maximizes U(·) over
S0ai+1

(zi) (e.g. using the gradient-based scheduler).
3) Set zi+1 = ζ(ρi+1).

Note that with the above iteration steps, for each i, by
construction, (ρi, ai) is optimal over S0ai(zi).

Proposition 7: The iteration {(ρi, ai)}converges to (ρ, a)
which maximizes U over S. �

Proof: The key steps are as follows. The sequence of
utilities {U(ρi, ai)} is monotonic increasing by construction,
since the operation at each iteration improves the utility.
Further {U(ρi, ai)} is bounded above by the global maximum
and thus converges, say to U . Now the set S is compact, so
sequence (ρi, ai) in compact set S has at least one convergent
subsequence (ρik , aik), and its limit point (ρ, a) ∈ S since S
is closed. By the continuity of U , we must have U(ρ, a) = U .
Now we can show that if the limit point (ρ, a) of the
convergent subsequence (ρik , aik) does not optimize U over
Sa (respectively S0(z̃), where z̃ = ζ(ρ)), then Operation 1
(respectively Operation 2) would give an improvement in the
utility that does not asymptotically vanish, contradicting the
fact that the sequence of utilities is convergent. Thus the limit
point of any convergent subsequence, (ρ, a), must optimize
U over both Sa as well as S0(z̃). By Proposition 1, (ρ, a)
is optimal over S. Since the utility functions (6) are strictly
concave, (ρ, a) must be the unique global maximum. Finally
we show that every subsequence is convergent, so that the
whole iteration sequence converges to (ρ, a).

VI. SUMMARY

In this paper, we have addressed the problem jointly
optimal load-balancing and resource partitioning for eICIC,
using a utility-maximization formulation for optimizing the
assignment of users to macro and pico cells and the muting
proportion. Proposition 1 decomposes the joint optimization
problem by showing that it suffices to find the optimal cell
assignment for a given muting proportion, and the optimal
muting proportion for a given cell assignment - a solution
which simultaneously optimizes both of these will also be
globally optimal. Proposition 2 characterizes optimal load-
balancing for a given muting proportion with the conditions
for optimality of a cell assignment of users. It further helps us
identify a criterion for improving the utility by modifying the
cell assignment one user at a time while keeping the muting
proportion constant. Proposition 5 characterizes the optimal
resource partitioning for a given assignment of users to cells
with the conditions for optimality of a muting proportion.
Proposition 6 provides a criterion for improving the utility by



modifying the muting proportion while remaining consistent
with the assignment of users to cells. We have proposed
an an iterative procedure that successively uses these utility
improvement operations and converges to the global optimum.

Along the way we have also identified several key proper-
ties. One is the characterization of the rule by which a cell
is considered preferable for a given user over another cell.
Proposition 4 shows that this behaves like a threshold rule,
comparing the ratio of a user’s achievable spectral efficiencies
in the two cells to a certain threshold. We have shown a graph-
ical interpretation wherein the threshold point is identified
as the intersection of a certain step function F1 (constructed
using the ratios of the users’ spectral efficiencies in the two
cells) with another monotonically decreasing function F2.
This graphical interpretation also illustrates the case where
the optimal resource allocation for some user may consist
of allocations from multiple cells, depending on whether the
interesection F1 and F2 occurs on a rise or a flat or a rise of
F1. We pointed out a special case of this for two macro cells
(without ABS), and another for the threshold rule between the
non-ABS and ABS resources within a pico cell.

In the formulation in this paper, we restricted the muting
proportion to [εa, 1 − εa], where εa > 0 can be chosen
arbitrarily small. We plan to address the case of εa = 0 in
a future paper. We assumed that all macro cells employ the
same muting proportion, but we note that the formulation
also encompasses typical scenarios where different macros
can use different muting proportions. For example, in many
deployments a pico cell may be largely overlapped only by a
single macro, with only mild interference from other macros.
Our results can then be applied considering the set of relevant
cells to consist of just a given macro and its underlay picos, al-
lowing each macro to determine its optimal muting proportion
separately from other macros. To mitigate residual interference
when the macros choose different muting proportions, the set
of allowed muting patterns can be designed to have maximal
alignment and minimize the mismatch. We have also assumed
that the spectral efficiencies of a user relative to each cell are
constant and not time-varying. In practice, this is suitable for
either slow-time-scale adaptation of the muting proportion and
cell assignment by using long-term average measurements, or
for fast time-scale adaptation using short-term measurements
if facilitated by the network architecture. A time-varying
channel can also yield multi-user diversity gain, which was not
considered in this paper. Stochastic analysis of our algorithm
with time-varying channels is left to future work.
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