
Optimal Sleep-Wake Scheduling for Energy
Harvesting Smart Mobile Devices

Longbo Huang
Institute for Interdisciplinary Information Sciences, Tsinghua University

longbohuang@tsinghua.edu.cn

Abstract—In this paper, we develop optimal sleep/wake
scheduling algorithms for smart mobile devices that are powered
by finite capacity batteries and are capable of harvesting energy
from the environment. Using a novel combination of the two-
timescale Lyapunov optimization approach and the weight per-
turbation technique, we design the Optimal Sleep/wake schedul-
ing Algorithm (OSA), which does not require any statistical
knowledge of the harvestable energy process. We prove that OSA
is able to achieve any system performance that is within O(ε)
of the optimal, and explicitly compute the required battery size,
which is O(1/ε).

I. INTRODUCTION

According to a recent report [1], the number of smart
mobile devices will soon exceed the world’s population. With
the rapidly increasing computing power, these mobile smart
devices will become a very important component of our daily
computing resource. However, battery life has been one of
the most constrained resources of these new powerful devices
[2]. To resolve this problem, efforts have been made to enable
the devices to “harvest” energy from the environment. For
instance, by converting ambient radio power into energy [3],
by converting mechanical vibration into energy [4], or by using
solar panels [5]. These newly developed energy harvesting
technologies can likely be a remedy for the poor battery
performance of the smart devices and greatly improve user
experience.

However, to take full advantage of the energy harvesting
capability, efficient energy management algorithms for such
smart mobile devices must be developed. In this paper, we
consider the problem of constructing utility optimal sleep/wake
scheduling algorithms for a single smart mobile device system.
The system operates in frames, each consists of multiple
time slots. In every frame, the device may receive external
requests for performing computing tasks, e.g., from the device
user or software applications. Besides fulfilling computing
demand, the system also supports data transmission (or delay-
tolerant workload processing). Every frame, the first decision
the device has to make is to decide whether to enter the sleep
mode or to stay awake during the frame. If it stays awake,
then in every time slot of the frame, it determines how much
computing task demand to fulfill, how much traffic to admit
for the flows it supports, and how much power to spend for
packet delivery. If instead the node enters the sleep mode,
it turns off the transmission module and does not respond to
the external requests. The system receives utility by delivering

data but may suffer from disutility due to partial fulfillment
of the computing task demand. The objective of the system
is to maximize the aggregate flow utility minus disutility,
subject to the constraint that the average data backlog is
finite, and that the “energy-availability” constraint is met at
all time, i.e., the energy consumed is no more than the
energy stored. This “energy-availability” constraint greatly
complicates the design of an efficient scheduling algorithm,
as the current energy expenditure decision can cause energy
outage in the future and affect future decisions. Such problems
can in principle be formulated as dynamic programs (DP)
and solved optimally. However, the DP approach requires
substantial statistical knowledge of the system dynamics, and
often runs into the “curse-of-dimensionality” problem when
the system size is large.

There have been many previous works developing algo-
rithms for such energy harvesting systems. [6] develops al-
gorithms for a single sensor node for achieving maximum
capacity and minimum delay when the rate-power curve is
linear. [7] considers the problem of optimal power manage-
ment for sensor nodes, under the assumption that the harvested
energy satisfies a leaky-bucket type property. [8] looks at the
problem of designing energy-efficient schemes for maximiz-
ing the decay exponent of the queue length. [9] develops
scheduling algorithms to achieve close-to-optimal utility for
energy harvesting networks with time varying channels. [10]
develops an energy-aware routing scheme that approaches
optimal as the network size increases. [11] designs optimal
control schemes for general multihop energy harvesting net-
works. [12] constructs optimal sleep/wake schemes for a single
node system. [13] considers balancing energy and latency in
a sensor network under Markovian system models. However,
most of the aforementioned works assume that the nodes in the
system always remain “on” and only make power allocation
decisions, whereas in practice, nodes typically go through
sleep/wake cycles [14]. Hence, the previous results do not
consider this two-timescale operation pattern of the network
nodes and are not directly applicable.

We tackle this problem using a novel combination of the
two-timescale Lyapunov optimization technique developed in
[15] and the idea of weight perturbation developed in [16]
and [17]. The idea of this approach is to construct the
algorithm based on a multi-slot quadratic Lyapunov function,
but carefully perturb the weights used for decision making, so

as to “push” the target energy levels towards certain nonzero
values to avoid energy outage. Based on this approach,
we construct the Optimal Sleep/wake scheduling Algorithm
(OSA) for achieving optimal utility for smart mobile devices
with energy harvesting capabilities and are powered by finite
capacity energy batteries. OSA is an online algorithm which
makes greedy decisions every frame and does not require any
statistical information of the harvestable energy process. We
show that the OSA algorithm is able to achieve an average
utility that is within O(ε) of the optimal for any ε > 0, and
only requires energy storage devices that are of O(1/ε) sizes.
We also explicitly compute the required storage capacity and
show that OSA also guarantees that the data traffic congestion
in the system is deterministically bounded by O(1/ε). Such
an explicit characterization is particularly useful for practical
implementations.

Our paper is mostly related to the recent works [11] and
[9], which use a similar Lyapunov optimization approach for
algorithm design. However, the problems there do not consider
the sleep/wake operation pattern of the nodes in the system.
Hence, the problem considered in this paper can be viewed as
a generalization of the problems studied in [9] and [11]. Also,
since our algorithm is constructed based on a two-timescale
approach, it is very different from the previous algorithms in
[9] and [11].

Our paper is organized as follows. In Section II we state our
system model and the objective. Section III presents the OSA
algorithm design procedure. The [O(ε), O(1/ε)] performance
results of the OSA algorithm are presented in Section IV.
Simulation results are presented in Section V. We conclude
the paper in Section VI.

Smart Mobile
Device

Computing Communication

Fig. 1. The system model. The smart mobile device provides computing and
communication services to its users or software applications.

II. THE SYSTEM MODEL

We consider a system consists of a single smart mobile
device (called the node in the following), which provides com-
puting and communication services to its users and software
applications (Fig. 1). The node is powered by a finite capacity
energy battery and is capable of harvesting energy from the
environment. Time is slotted, i.e., t ∈ {0, 1, 2, ...} and is
divided into frames of size T . Fig. 2 shows the time structure.
For notational convenience, we use Tm to denote the set of
slots in frame m, i.e., Tm , [mT, ..., (m+ 1)T − 1].

Time
0 T 2T

Fig. 2. The time slot and frame structure.

A. The Demand State and the Sleep/Wake Model

In each frame, the node can choose to either stay awake,
or enter the sleep mode. We model the sleep/wake decision
by 1w(mt), where mt = bt/T c. That is, 1w(mt) = 1 if the
node stays awake during the frame slot t belongs to, otherwise
1w(mt) = 0. However, in some frames, the node may receive
external requests to perform certain tasks, e.g., a smartphone
user wants to perform some computing task or a software
application requires some processing power. To model such
situations, we define a demand state χ(m), where χ(m) = 1
means that the node receives external requests to process jobs
in frame m, and χ(m) = 0 otherwise.

If χ(m) = 1, then in every time slot t ∈ Tm, the node
receives an external power demand 0 ≤ d(t) ≤ dmax. 1 The
node then decides how much power to allocate to fulfill the
request. We model this by using 0 ≤ b(t) ≤ d(t) to denote the
fulfilled amount. If the node decides to enter the sleep mode,
then b(t) = 0 for all t ∈ Tmt

. 2 Finally, we use
D(t) = D(1w(mt)b(t), d(t), χ(mt)) (1)

to denote the disutility incurred due to partial fulfillment of
the demand, which measures the “unhappiness” of the entity
requesting power. An example of D(t) can be:

D(t) = aχ(mt)(1w(mt)b(t)− d(t))2. (2)
Here a > 0 is a constant. We assume that d(t) = 0 and
D(t) = 0 if χ(m) = 0, i.e., if there is no external demand,
then there is no disutility due to partial fulfillment. We also
assume that for any 0 ≤ b1, b2 ≤ d, there exists a constant
α > 0 such that:

sup
d,χ
|D′(b1, d, χ)−D′(b2, d, χ)| ≤ α|b2 − b1|. (3)

That is, the disutility growth rate is no larger than α, which
indicates the degree of elasticity of the user or the software re-
questing power. A larger α implies that the user is less willing
to accept partial fulfillment. Note that such partial fulfillment
can be viewed as the node is performing demand response
[18]. Similar scenarios already exist in today’s smartphones,
where the phone reminds the user about the energy level when
receiving computing requests.

In the following, we assume for simplicity that χ(m) is i.i.d.
every frame and let πχ = Pr

{
χ(m) = 1

}
. We also assume

that d(t) is i.i.d. every time slot in a frame and is independent
of everything else conditioning on χ(m).

B. The Traffic Utility Model

Besides satisfying external power demands, the node also
provides data delivery service to a set of flows (called com-
modities) denoted by C, e.g., file transfer for different software

1Without loss of generality, here we model all the external tasks purely by
the power they consume.

2This can be done in the case when external demands are from users trying
to use the device. In this case, the node enters the sleep mode by having a
short “decision phase” at the beginning of every frame. During the decision
phase, the device negotiates with the demand requesting entity, e.g., users, to
perform demand response according to the battery level.

applications. 3 Then, in frames when the node stays awake,
the node decides how many commodity c ∈ C packets
to admit in every time slot. We use R(c)(t) to denote the
amount of new commodity c data admitted at time t. We
assume that 0 ≤ R(c)(t) ≤ Rmax for all c with some
finite Rmax at all time. Each commodity is associated with
a utility function U (c)(rc), where rc is the time average rate
of the commodity c traffic admitted into node n, defined as
rc = limt→∞

1
t

∑t−1
τ=0 E

{
R(c)(τ)

}
. 4 Each U (c)(r) function

is assumed to be increasing, continuously differentiable, and
strictly concave in r with a bounded first derivative and
U (c)(0) = 0. We use βc to denote the maximum first derivative
of U (c)(r), i.e., βc = (U (c))′(0) and denote

β = max
c
βc. (4)

During frames when the node is in the sleep mode, we have
R(c)(t) = 0 for all time.

C. The Transmission Power Consumption Model

If the node stays awake in a frame, in order to deliver the
data to their destinations, the node allocates power for data
transmission over a wireless link, e.g., to the base station. To
capture the time-varying nature of the wireless link, we denote
S(t) the channel state of the node, e.g., fading coefficient.
We assume that S(t) takes values in some finite set S =
(s1, ..., sMs), and assume in the following that the pair of
energy state (defined later) and S(t) is i.i.d. every slot. At
every time slot, if S(t) = si and the node stays awake, then it
chooses a power allocation value P (t) from a feasible power
allocation set P(si)

awake. We assume that P(si)
awake is compact for all

si, and that every feasible power allocation in P(si)
awake satisfies

the constraint Pmin ≤ P (t) ≤ Pmax for some Pmin > 0 and
Pmax <∞. Here the Pmin constraint is to capture the fact that
the node will spend a considerable amount of power compared
to the sleep mode, even if it simply stays idle. On the other
hand, if the node decides to enter the sleep mode, then P (t) =
0 for all t ∈ Tm.

Given the channel state S(t) and the power allocation value
P (t), the transmission rate is given by the rate-power function
µ(t) = µ(S(t), P (t)). For each si, we assume that the function
µ(si, P (t)) satisfies the following property.

Property 1: For any si and any P , we have for some finite
constant δ > 0 that:

µ(si, P) ≤ δP. (5)
Property 1 states that the rate obtained over the link is upper
bounded by some linear function of the power allocated to it.
Such a property can be satisfied by most rate-power functions,
e.g., when the rate function is differentiable and has finite
directional derivatives with respect to power [19].

We also assume that there exists some finite constant µmax

such that µ(t) ≤ µmax for all time under any P (t) and any
channel state S(t). In the following, we use µ(c)(t) to denote

3Here we only consider the case when the other major responsibility of the
node is serving traffic flows. These flows can also be used to model computing
workload that are delay tolerant.

4Throughout the paper, we assume that all limits exist.

the rate allocated to the commodity c data at time t. It is easy
to see that at any time t, we have:∑

c

µ(c)(t) ≤ µ(t). (6)

D. The Energy Queue Model

The node is assumed to be powered by a finite capacity
energy battery. We model the battery using an energy queue,
denoted by E(t), which measures the amount of the energy
left in the battery at time t. We assume the node can ob-
serve its remaining energy level E(t). In any time slot t,
the power consumption actions must satisfy the following
“energy-availability” constraint for all time: 5

b(t) + P (t) ≤ E(t). (7)
That is, the consumed power must be no more than what is
available.

The node is also assumed to be capable of harvesting energy
from the environment, for instance, using solar panels [6]. To
model the dynamic nature of the harvestable energy, we use
h(t) to denote the amount of harvestable energy at time t, and
call it the energy state. We assume that h(t) takes values in
some finite set H = {h1, ..., hMh

}. We assume that the pair
[h(t), S(t)] is i.i.d. over slots (possibly correlated in the same
slot), with distribution π(hi, sj) and marginals π(hi), π(sj),
respectively.

We assume that there exists hmax < ∞ such that 0 ≤
h(t) ≤ hmax for all t. In the following, it is convenient for
us to assume that each energy queue has infinite capacity, and
that each node can decide whether or not to harvest energy
in each slot. 6 We model this harvesting decision by using
e(t) ∈ [0, h(t)] to denote the amount of energy that is actually
harvested at time t. We will show later that our algorithm
results in a deterministic energy storage bound, hence can
easily be implemented with finite capacity batteries. Note here
we assume that the energy harvesting action is not affected by
the sleep/wake mode of the node.
E. Queueing Dynamics

Let Q(t) = (Q(c)(t), c ∈ C), t = 0, 1, 2, ... be the data
queue backlog vector in the node, where Q(c)(t) is the amount
of commodity c data. We assume the following queueing
dynamics:

Q(c)(t+ 1) (8)

=
[
Q(c)(t)− 1w(mt)µ

(c)(t)
]+

+ 1w(mt)R
(c)(t),

with Q(c)(0) = 0 for all c ∈ C and [x]+ = max[x, 0]. In this
paper, we say that the system is stable if the following holds:

Q , lim sup
t→∞

1

t

t−1∑
τ=0

∑
c

E
{
Q(c)(τ)

}
<∞. (9)

Similarly, E(t) denotes the energy queue size. Due to the
energy availability constraint (7), we see that the energy queue
E(t) evolves according to the following:

E(t+ 1) = E(t)− 1w(mt)[b(t) + P (t)] + e(t), (10)

5This condition assumes that the energy harvested at time t is assumed to
be available for use in time t + 1. Our results extend easily to allow using
the energy harvested in the same slot.

6We will discuss the implementation of our algorithm in Section III-A.

with E(0) = 0. 7 By using the queueing dynamic (10), we
start by assuming that each energy queue has infinite capacity.
Later, we will show that under our algorithm, the energy level
E(t) is deterministically upper bounded, thus we only need a
finite energy capacity for algorithm implementation.
F. Utility Maximization with Energy Management

The goal of the network is thus to design a joint sleep/wake
management, flow control, routing and scheduling, and power
allocation algorithm, which first chooses the right sleep/wake
decision at the beginning of each frame. Then, at every time
slot, admits the right amount of data R(c)(t), fulfills the power
demand 0 ≤ b(t) ≤ d(t) and chooses power allocation value
P (t) subject to (7), and transmits packets accordingly, so as to
maximize φ, the aggregate flow utility minus the time average
disutility, i.e.,

φ(r, D) =
∑
c

U (c)(rc)−D, (11)

subject to the system stability constraint (9). Here r =
(rc,∀ c ∈ C) is the vector of the average expected admitted
rates, and D is the time average disutility incurred due to
partial fulfillment of the external power demand, i.e.,

D , lim
t→∞

1

t

t−1∑
τ=0

E
{
D(τ)

}
. (12)

Below, we call a control policy that chooses 0 ≤ b(t) ≤ d(t),
and P (t) ∈ PS(t)

awake when 1w(t) = 1 and P (t) = 0 otherwise a
feasible policy. A feasible policy that ensures (9) is called a
stabilizing policy. We then use φ∗ to denote the optimal value
of φ(r, D) over all stabilizing policies and let r∗ = (rc∗,∀ c ∈
C) to denote the optimal rate vector.
G. Discussion of the Model

Although our model looks similar to the utility maximiza-
tion model considered in [11], [15], and [20], the problem
considered in this paper is more complicated. The main
complication is imposed by the constraint (7) and the two-
timescale operation mode of the node. Specifically, the con-
straint (7) couples the current power allocation action and
the future actions, and the two-timescale operation mode
couples the sleep/wake decisions and the power allocation
actions during the frames. Though [11] resolves the energy-
availabilty problem with a perturbed max-weight approach, it
assumes that each network node is always active and focuses
on designing power allocation algorithms.

III. ENGINEERING THE QUEUES

In this section, we present the Optimal Sleep/wake schedul-
ing Algorithm (OSA) for our problem. OSA is designed
based on the two-timescale Lyapunov optimization technique
developed in [15], combined with weight perturbation [16].
Thus, it can be viewed as extending the ESA algorithm
developed in [11]. The idea of OSA is to construct a multi-slot
Lyapunov scheduling algorithm with perturbed weights for
determining the sleep/wake control, energy harvesting, power
allocation, routing and scheduling decisions.

7E(0) = 0 means that we start with a zero energy level. We can also
pre-store energy in the energy queue and initialize E(0) to any finite positive
value up to its capacity. The results in the paper will not be affected.

A. The OSA Algorithm

To start, we first choose a perturbation value θ (to be spec-
ified later). Then, we define a perturbed Lyapunov function
as follows:

L(t) ,
1

2

∑
c∈C

[
Q(c)(t)

]2
+

1

2

[
E(t)− θ

]2
. (13)

The intuition behind the use of the θ value is that by keeping
the Lyapunov function value small, we indeed “push” the E(t)
value towards θ. Thus, by carefully choosing the value of θ,
we can ensure that the energy queue always has enough energy
when the node is awake.

Now denote Z(t) = (Q(t), E(t)) and define a T -slot
conditional Lyapunov drift as follows:

∆T (t) , E
{
L(t+ T)− L(t) | Z(t)

}
. (14)

Here the expectation is taken over the randomness of the
demand state, the channel state and the energy state, as
well as the possible randomness in choosing the sleep/wake
decisions, the data admission action, the power allocation
action, the scheduling action, and the energy harvesting action.
For notation simplicity, we define the instantaneous utility:

f(t) ,
∑
c

U (c)(1w(mt)R
(c)(t)) (15)

−D(1w(mt)b(t), d(t), χ(mt)),

and the drift-plus-utility as:

∆T,V (t) , ∆T (t)−
t+T−1∑
τ=t

E
{
V f(τ) | Z(t)

}
. (16)

Here in (16), the V parameter is used to control the utility per-
formance of the algorithm. As we will see, V also determines
the required capacity of the energy battery.

We now first have the following lemma regarding the drift:
Lemma 1: Let t = mT , m ∈ {0, 1, 2, ...}. Under any

feasible sleep/wake action, data admission action, power al-
location action that satisfies the energy availability constraint
(7), scheduling action, and energy harvesting action that can
be implemented in [t, t+ T − 1], we have:

∆T,V (t) ≤ TB +

t+T−1∑
τ=t

E
{

(E(t)− θ)e(τ) | Z(t)
}

(17)

−
t+T−1∑
τ=t

E
{∑

c

[
V U (c)(1w(mt)R

(c)(τ))

−Q(c)(t)1w(mt)R
(c)(τ)

]
| Z(t)

}
−
t+T−1∑
τ=t

E
{∑

c

1w(mt)µ
(c)(τ)Q(c)(t)

+(E(t)− θ)1w(mt)P (τ) | Z(t)
}

+

t+T−1∑
τ=t

E
{[
V D(τ)− 1w(mt)(E(t)− θ)b(τ)

]
| Z(t)

}
.

Here B = Θ(T) is a constant defined in (33), which is
independent of the control parameter V . 2

Proof: See Appendix A.
We now present the OSA algorithm. The idea of the algo-

rithm is to minimize the right-hand-side (RHS) of (17) subject
to the energy-availability constraint (7). In our algorithm

presentation, we use the following metric for determining the
sleep/wake decision in each frame:
Dtot(mt) (18)

,
t+T−1∑
τ=t

[∑
c

[
V U (c)(R(c)(τ))−Q(c)(t)R(c)(τ)

]

+

t+T−1∑
τ=t

[∑
c

µ(c)(τ)Q(c)(t) + (E(t)− θ)P (τ)

]

−
t+T−1∑
τ=t

[
V D(b(τ), d(τ), χ(mt))− (E(t)− θ)b(τ)

]
.

Optimal Sleep/wake scheduling Algorithm (OSA): Ini-
tialize θ. In frame m, perform the following:
• Sleep/Wake Decision: Observe χ(mt), Q(c)(t) and E(t),

solve:
max : E

{
Dtot(mt)

}
(19)

s.t. 0 ≤ R(c)(τ) ≤ Rmax, τ ∈ Tmt
,

P (τ) ∈ P(S(τ))
awake , 0 ≤ b(τ) ≤ d(τ), τ ∈ Tmt

,

Here the expectation is taken over d(t) and S(t). Denote
the optimal solution by D∗tot. Then, if

D∗tot > −E
{ t+T−1∑

τ=t

V D(0, d(τ), χ(mt))
}
, (20)

the node enters the awake mode, i.e., 1w(mt) = 1.
Otherwise it sets 1w(mt) = 0 and enters the sleep mode.
If the node enters the sleep mode, it sets R(c)(τ) =
P (τ) = b(τ) = 0 for all τ ∈ Tmt

. Else if it enters the
awake mode, it does the following for traffic admission,
power expenditure, and scheduling for every τ ∈ Tmt :

– Data Admission: Choose R(c)(τ) to be the optimal
solution of the following optimization problem:

max : V U (c)(r)−Q(c)(t)r, s.t. 0 ≤ r ≤ Rmax. (21)
– Power expenditure: Choose 0 ≤ b(τ) ≤ d(τ) to

minimize:
W (b(τ)) , V D(b(τ), d(τ), χ(mt))− (E(t)− θ)b(τ).

Define Q∗(t) , maxcQ
(c)(t). Then, choose P (τ) ∈

P(si)
awake to maximize:
G(P (τ)) , µ(τ)Q∗(t) + (E(t)− θ)P (τ), (22)

subject to the energy availability constraint (7).
– Scheduling: Let c∗ ∈ {c : Q(c)(t) = Q∗(t)}.

Transmit commodity c∗ packets with rate µ(τ), use
idle fill if needed.

Note that the data admission action, the power expendi-
ture action, and the scheduling action are the actions that
maximize (19) given d(τ) and S(τ) for all τ ∈ Tmt

.
• Energy Harvesting: If E(t) − θ < 0, perform energy

harvesting and store the harvested energy during that
frame, i.e., e(τ) = h(τ) for all τ ∈ Tmt

. Else set
e(τ) = 0 for τ ∈ Tmt

.
• Queue Update: Update Q(c)(τ) and E(τ) according to

the dynamics (8) and (10), respectively. 3
Note that in the energy harvesting step of OSA, the

node will always perform energy harvesting when the energy
volume is less than θ, and rejects the harvestable energy

otherwise. Hence, E(t) ≤ θ + Thmax for all t. This is an
important feature. It allows us to implement OSA with finite
energy storage capacity, i.e., use an energy storage size of
θ + Thmax (below we will assume that OSA is implemented
with this energy capacity). In practice, the node will always
harvest energy when possible. In this case, one can introduce
a virtual process E′(t) to keep track of the energy level
under OSA for decision making. It can be shown that this
implementation gets a performance that is no worse than OSA.

We also note that OSA does not require any knowledge of
the energy state process h(t). This is very useful in practice
when knowledge of the energy source may be difficult to
obtain. However, we note that OSA does require estimation
of the channel state statistics and external demand statistics in
order to maximize (19).

IV. PERFORMANCE ANALYSIS

We now present the performance results of the OSA algo-
rithm. Below, recall that the parameter β is the largest first
derivative of the utility functions defined in (4) and α is the
maximum growth rate of the disutility. The parameter θ is
defined to be:

θ , V (βδ +
β|C|Rmax

Pmin
+
αdmax

Pmin
) + δTRmax (23)

+T (Pmax + dmax).

We note that the value θ can easily be determined. It only
requires knowledge of the maximum derivatives of the utility
functions and the power-rate curve, and the maximum power
expenditure, and requires no statistical knowledge of the
harvestable energy process. As we will show later, (23) also
provides us with an easy way to size our energy storage
devices for achieving a utility that is within O(ε) of the
optimal, i.e., use energy storage devices of size O(1/ε). The
sizing rule also demonstrates the relationship between the
energy storage capacity and the elasticity of the external
demand. Finally, note that the value θ depends on Rmax

Pmin
and

α
Pmin

. This is because if the node enters the sleep mode to
avoid energy outage (saving at least TPmin power), it will
risk losing flow utility and suffer from disutility (at most
β|C|Rmax+αdmax). Hence, the energy storage capacity should
be chosen to compensate the risk.

Theorem 1: Under the OSA algorithm with β and θ defined
in (4) and (23), we have the following:

(a) The data queues and the energy queue satisfy the fol-
lowing for all time:

0 ≤ Q(c)(t) ≤ βV + TRmax, ∀ c, (24)
0 ≤ E(t) ≤ θ + Thmax. (25)

Moreover, if at any time t, the node enters the awake
state, we must have E(t) ≥ T (dmax + Pmax).

(b) Let r = (rc,∀ c) and D be the time average admitted
rate vector and time average disutility achieved by OSA.
Then, we have:

φ(r, D) ≥ φ∗ − B

V
. (26)

Here φ∗ is the optimal time average utility of our
problem, and B = Θ(T) is defined in Lemma 1. 2

Here we present the proof for Part (a). The proof for Part (b)
will be given in Appendix B.

Proof: (Part (a)) First we see that Q(c)(0) = 0 for all
c ∈ C satisfies the bounds in (24). Suppose the bound holds for
Q(c)(t). We want to show that they also hold for Q(c)(t+ 1).
In the first case, suppose Q(c)(t) ≤ βV . Then, Q(c)(τ) ≤
V β+TRmax for all τ ∈ [t, t+T−1]. This is so because Rmax

is the maximum arrival rate in any time slot. Now suppose
βV < Q(c)(t) ≤ βV + TRmax. From the data admission rule
of OSA, we see that R(c)(τ) = 0 for all τ ∈ [t, t + T − 1].
Thus, Q(c)(τ) ≤ Q(c)(t) ≤ V β + TRmax.

Similarly, we see that whenever E(t) > θ, OSA will choose
e(τ) = 0 for τ ∈ Tmt . Hence, E(t) ≤ θ+Thmax for all t.

Two remarks on Theorem 1: (I) By taking ε = 1/V , Part (a)
implies that the average data queue size is O(1/ε). Combining
this with Part (b), we see that OSA achieves an [O(ε), O(1/ε)]
utility-backlog tradeoff for our problem. (II) Part (a) shows
that the energy queue size is deterministically upper bounded
by a constant of size O(1/ε). This provides an explicit
characterization of the size of the energy storage device needed
for achieving the desired utility performance. Such explicit
bounds are very useful in algorithm implementation.

V. SIMULATION

In this section, we simulate the OSA algorithm. We consider
each frame consists of T = 10 slots. In each frame, χ(m) =
1 with probability 0.6. When χ(mt) = 1, d(t) takes value
uniformly in {0, 1, 2, 3} every time. When χ(mt) = 0, d(t) =
0 for all t ∈ Tmt

. The disutility is assumed to take the form
(2) with a = 1

9 , i.e.,

D(b(t), d(t), χ(mt)) =
1

9
χ(mt)(d(t)− b(t))2, (27)

which means α = 2/3. The channel state S(t) takes value
in {0, 1} equally likely. Then, when the node stays awake,
we have PONawake = POFFawake = {1, 2, 3}. Thus, Pmin = 1 and
Pmax = 3. µ(t) = log(1 + 2S(t)(P (t) − Pmin). Hence we
see that δ = 2. We assume that h(t) is also a Bernoulli
random variable, which takes value 2 with probability 0.5 and
0 otherwise. We assume there is only one commodity and
U(r) = log(1 + 2r), which means β = 2. Also, R(t) ∈ [0, 2]
and Rmax = 2.

With the above parameters, we set θ = 10V + 100.
We simulate OSA for V ∈ {10, 20, 40, 80, 100, 150, 200}.
The results are plotted in Fig. 3. We see that as the V
parameter increases, the average utility performance increases
and quickly converges to the optimal. On the other hand, the
average data queue size and the average energy level increases
linear in V as per Theorem 1.

Fig. 4 shows a sample path energy level process under
the OSA algorithm. We see that the energy level will never
go below zero and hence all the power expenditure actions
are feasible. It can also be verified that the energy level
never exceeds the bound in (25). Fig. 5 also shows how the
sleep/wake decision changes in reaction to the energy level
change. We see that OSA is able to adaptively decide its
sleep/wake action without any statistical knowledge of the
harvestable energy process.

0 50 100 150 200
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

V
0 50 100 150 200

0

20

40

60

80

100

120

140

160

V
0 50 100 150 200

0

500

1000

1500

2000

2500

V

Energy QueueData QueueAverage Utility

Fig. 3. Average utility, average data queue size and average energy queue
size under OSA.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

600

Time

Energy Level

Fig. 4. A sample path energy level process from time 1 to 10000 under
V = 40.

VI. CONCLUSION

In this paper, we develop the Optimal Sleep/wake schedul-
ing Algorithm (OSA) for achieving optimal system utility
for energy harvesting smart mobile devices powered by finite
batteries. OSA is an online algorithm and does not require
any knowledge of the harvestable energy processes. We show
that OSA achieves an average utility that is within O(ε) of the
optimal for any ε > 0 using energy batteries of O(1/ε) sizes,
while guaranteeing that the time average traffic congestion is
O(1/ε).

VII. ACKNOWLEDGEMENT

This work was supported in part by one or more of the
following: the National Basic Research Program of China
Grant 2011CBA00300, 2011CBA00301, the National Natural
Science Foundation of China Grant 61033001, 61061130540,
61073174.

APPENDIX A – PROOF OF LEMMA 1

Here we prove Lemma 1.
Proof: Squaring both sides of (8), summing over c ∈ C,

and multiplying both sides by 1
2 , we obtain:

1

2

∑
c

(
[Q(c)(τ + 1)]2 − [Q(c)(τ)]2

)
(28)

≤ 1

2

∑
c

(
[(R(c)(τ)]2 + [µ(c)(τ))]2

)
−1w(mτ)

∑
c

Q(c)(τ)
[
µ(c)(τ)−R(c)(τ)

]
.

Similarly, using (10), we have:
1

2

(
[E(τ + 1)− θ]2 − [E(τ)− θ]2

)
(29)

≤ 1

2
[b(τ) + P (τ)]2 +

1

2
[e(τ)]2

−(E(τ)− θ)[1w(mτ)(b(τ) + P (τ))− e(τ)].

1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500
450

460

470

480

490

500

510

Time

1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500
−0.5

0

0.5

1

1.5

Time

Sleep/Wake Decision

Energy Level

Fig. 5. A sample path energy level process and a sample path sleep/wake
decision process under V = 40 from time 1000 to 1500.

Now define:

B1 ,
1

2

[
|C|(R2

max + µ2
max) + (dmax + Pmax)2 + h2

max

]
. (30)

Then, by summing (28) and (29), summing over τ ∈ [t, t +
T−1], taking expectations on both sides conditioning on Z(t),
and using the definition of ∆T (t), we have:

∆T (t) ≤ B1T (31)

−E
{ t+T−1∑

τ=t

∑
c

Q(c)(τ)1w(mt)[µ
(c)(τ)−R(c)(τ)] | Z(t)

}
−E
{ t+T−1∑

τ=t

E(τ)
[
1w(mt)[b(τ) + P (τ)]− e(τ)

]
| Z(t)

}
.

Since all the queues in the system have bounded arrival and
service rates, for any t1 ≤ t2, we have:

Q(c)(t2) ≤ Q(c)(t1) + (t2 − t1)Rmax,

Q(c)(t2) ≥ Q(c)(t1)− (t2 − t1)µmax,

E(t2) ≤ E(t1) + (t2 − t1)hmax,

E(t2) ≥ E(t1)− (t2 − t1)(dmax + Pmax).

Using these inequalities in (31), we obtain that:
∆T (t) ≤ BT (32)

−E
{ t+T−1∑

τ=t

∑
c

Q(c)(t)1w(mt)[µ
(c)(τ)−R(c)(τ)] | Z(t)

}
−E
{ t+T−1∑

τ=t

E(t)
[
1w(mt)[b(τ) + P (τ)]− e(τ)

]
| Z(t)

}
.

Here

B , B1 +
|C|(T − 1)

2

[
µ2

max +R2
max (33)

+h2
max + (dmax + Pmax)2

]
.

Adding to both sides the term
∑t+T−1
τ=t E

{
V f(τ) | Z(t)

}
, we

obtain:

∆T (t)−
t+T−1∑
τ=t

E
{
V f(τ) | Z(t)

}
(34)

≤ BT −
t+T−1∑
τ=t

E
{
V f(τ) | Z(t)

}
−E
{ t+T−1∑

τ=t

∑
c

Q(c)(t)1w(mt)[µ
(c)(τ)−R(c)(τ)] | Z(t)

}
−E
{ t+T−1∑

τ=t

E(t)
[
1w(mt)[b(τ) + P (τ)]− e(τ)

]
| Z(t)

}
.

Now using the definition of ∆V,T (t) and f(t), and rearranging
the terms, we see that the lemma follows.

APPENDIX B – PROOF OF THEOREM 1

In this section, we prove Part (b) of Theorem 1. We will
use the following theorem, which states that there exists a
stationary and randomized policy (and does not take into ac-
count the energy-availability constraint) that makes sleep/wake
decisions, allocates power and achieves optimal utility.

Theorem 2: [15] There exists a stationary and randomized
policy Π that has the following structure: During each frame
m, Π keeps the node awake with certain probability. Then,
the node admits traffic, harvests energy, allocates power and
schedules packets purely according to some random functions
of the χ(mt), d(t), h(t), S(t) state. Finally, Π achieves the
following for all t = mT,m = 0, 1, ...

E
{ t+T−1∑

τ=t

fΠ(τ)
}

= Tφ∗,(35)

E
{

1Π
w (mt)

t+T−1∑
τ=t

[
µ(c)Π(τ)−R(c)Π(τ)

]}
≥ 0, (36)

E
{ t+T−1∑

τ=t

[
1Π

w (mt)[b
Π(τ) + PΠ(τ)]− eΠ(τ)

]}
= 0.2 (37)

However, different from previous Lyapunov algorithm analy-
sis, we cannot directly compare the drift value under OSA with
that under the above policy. This is because the above policy
does not take into account the energy-available constraint
when making decisions, while OSA explicitly considers the
constraint and hence there may be correlations among actions.
Thus, our first step in the proof is to show that the energy-
availability constraint is indeed redundant under the OSA
algorithm. This step is critical for our analysis and allows
us to apply the Lyapunov drift analysis approach [15]. We
also note that the analysis here is different from the one in
[11]. This is because whenever the node stays awake, it will
consume at least TPmin power over a frame. Also, when
making the sleep/wake decision, the node actually does not
take into account the energy-availability constraint.

Proof: (Part (b)) We first show that whenever E(t) <
T (Pmax + dmax), OSA will put the node into the sleep
mode. This claim will allow us to compare our algorithm
with alternative algorithms that choose control actions without
taking into account the energy-availability constraint.

To prove the claim, consider a time t = mT and assume
that E(t) < T (Pmax + dmax). Let R(c)∗(τ), µ(c)∗(τ), P ∗(τ)
and b∗(τ), where τ ∈ Tmt , be the optimal solution of (19) for
the given E(t) and Q(c)(t). 8 Then, using (4), (5) and (24),
we have:
Dtot(mt) ≤ T |C|V βRmax (38)

+

t+T−1∑
τ=t

[
(V β + TRmax)δP ∗(τ) + (E(t)− θ)P ∗(τ)

]
8Note that they may not be the implemented actions.

−
t+T−1∑
τ=t

V D(0, d(τ), χ(mt)) +

t+T−1∑
τ=t

(E(t)− θ)b∗(τ)

+

t+T−1∑
τ=t

V
[
D(0, d(τ), χ(mt))−D(b(τ)∗, d(τ), χ(mt))

]
.

Using the definition of θ in (23), we see that
E(t)− θ + (V β + TRmax)δ < 0.

Hence, P ∗(τ) = Pmin for all τ ∈ Tmt
. Now since the

disutility increases no faster than α, i.e., (3), we get that:
t+T−1∑
τ=t

V
[
D(0, d(τ), χ(mt))−D(b(τ)∗, d(τ), χ(mt))

]
≤ V Tαdmax.

Using this and the fact that
∑t+T−1
τ=t (E(t) − θ)b(τ) ≤ 0 in

(38), we obtain:

Dtot(mt) ≤ −
t+T−1∑
τ=t

V D(0, d(τ), χ(mt))

+T |C|V βRmax + V Tαdmax + TPmin(V β + TRmax)δ

−TPmin

[
V βδ +

V β|C|Rmax

Pmin
+
V αdmax

Pmin
+ δTRmax

]
≤ −

t+T−1∑
τ=t

V D(0, d(τ), χ(mt)).

Hence, the node will enter the sleep mode according to OSA.
This shows that whenever the node stays awake, it has enough
energy for the whole frame. Thus, the energy-availability
constraint is indeed redundant in the OSA algorithm. Hence,
though OSA explicit considers the constraint (7) in the power
expenditure step, it remains the same even if the constraint
is removed. Having established this property, we see from
the control rules of OSA that the RHS of the drift inequality
(17) is indeed minimized under OSA, even over policies that
do not consider the energy-availability constraint. Hence, the
inequality remains valid if we plug in any alternative control
policies that make two-stage decisions. In particular, we plug
in the policy Π in Theorem 2 into (34) to have:

∆T (t)−
t+T−1∑
τ=t

E
{
V fOSA(τ) | Z(t)

}
≤ BT − V Tφ∗. (39)

Taking expectations over Z(t) on both sides, and taking a
telescoping sum over t = mT,m = 0, ...,K − 1, we have:

E
{
L(KT)− L(0)

}
−
KT−1∑
τ=0

E
{
V fOSA(τ)

}
(40)

≤ BKT − V KTφ∗.
Dividing both sides by KTV , taking a limit as K →∞, and
using the fact that E

{
L(0)

}
<∞, we have:

lim
K→∞

1

KT

KT−1∑
τ=0

E
{
fOSA(τ)

}
≥ φ∗ − B

V
.

Using the definition of f(τ), we get:

lim
K→∞

1

KT

KT−1∑
τ=0

E
{∑

c

V U (c)(R(c)(τ))−D(τ)
}
≥ φ∗ − B

V
.

Using Jensen’s inequality, we conclude that:

φOSA =
∑
c

V U (c)(r(c))−D ≥ φ∗ − B

V
.

This completes the proof of Part (b).

REFERENCES

[1] S. Perez. The number of mobile devices will exceed worlds population
by 2012 (and other shocking figures). TechCrunch Article, available
at http://techcrunch.com/2012/02/14/the-number-of-mobile-devices-will-
exceed-worlds-population-by-2012-other-shocking-figures, February 14,
2012.

[2] D. Etherington. Android phones and tablets ranked by battery life:
Longest lasting smartphones arent top-tier devices. TechCrunch Article,
available at http://techcrunch.com/2012/12/18/android-phones-and-
tablets-ranked-by-battery-life-longest-lasting-smartphones-arent-top-
tier-devices, December 18, 2012.

[3] M. Gorlatova, P. Kinget, I. Kymissis, D. Rubenstein, X. Wang, and
G. Zussman. Challenge: Ultra-low-power energy-harvesting active
networked tags (EnHANTs). Proceedings of MobiCom, Sept. 2009.

[4] S. Meninger, J. O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan,
and J. H. Lang. Vibration-to-eletric energy conversion. IEEE Trans. on
VLSI, Vol. 9, No.1, Feb. 2001.

[5] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. B. Srivastava.
Design considerations for solar energy harvesting wireless embedded
systems. Proc. of IEEE IPSN, April 2005.

[6] V. Sharma, U. Mukherji, V. Joseph, and S. Gupta. Optimal energy
management policies for energy harvesting sensor nodes. IEEE Trans.
on Wireless Communication, Vol.9, Issue 4., April 2010.

[7] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava. Power management
in energy harvesting sensor networks. ACM Trans. on Embedded
Computing Systems, Vol.6, Issue 4, Sept. 2007.

[8] R. Srivastava and C. E. Koksal. Basic tradeoffs for energy management
in rechargeable sensor networks. ArXiv Techreport arXiv: 1009.0569v1,
Sept. 2010.

[9] M. Gatzianas, L. Georgiadis, and L. Tassiulas. Control of wireless
networks with rechargeable batteries. IEEE Trans. on Wireless Com-
munications, Vol. 9, No. 2, Feb. 2010.

[10] L. Lin, N. B. Shroff, and R. Srikant. Asymptotically optimal power-
aware routing for multihop wireless networks with renewable energy
sources. Proceedings of INFOCOM, 2005.

[11] L. Huang and M. J. Neely. Utility optimal scheduling in energy
harvesting networks. Proceedings of ACM International Symposium on
Mobile Ad Hoc Networking and Computing (MOBIHOC), May 2011.

[12] V. Joseph, V. Sharma, and U. Mukherji. Optimal sleep-wake policies for
an energy harvesting sensor node. Proceedings of IEEE International
Conference on Communications, June 2009.

[13] W. Lai and I. C. Paschalidis. Optimally balancing energy consumption
versus latency in sensor network routing. ACM Transactions on Sensor
Networks, Vol. 4, No. 4, Article 21, August 2008.

[14] S. Fahmy Y. Wu and N. B. Shroff. Optimal sleep/wake scheduling
for time-synchronized sensor networks with qos guarantees. IEEE/ACM
Trans. on Networking, vol. 17, Issue 5, pp. 1508-1521., October 2009.

[15] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource Allocation and
Cross-Layer Control in Wireless Networks. Foundations and Trends in
Networking Vol. 1, no. 1, pp. 1-144, 2006.

[16] L. Huang and M. J. Neely. Utility optimal scheduling in processing
networks. Proceedings of IFIP Performance, 2011.

[17] M. J. Neely and L. Huang. Dynamic product assembly and inventory
control for maximum profit. IEEE Conference on Decision and Control
(CDC), Atlanta, Georgia, Dec. 2010.

[18] L. Huang, J. Walrand, and K. Ramchandran. Optimal demand response
with energy storage management. Proceedings of IEEE International
Conference on Smart Grid Communications (SmartGridComm), Novem-
ber 2012.

[19] M. J. Neely. Energy optimal control for time-varying wireless networks.
IEEE Transactions on Information Theory 52(7): 2915-2934, July 2006.

[20] L. Huang and M. J. Neely. Delay reduction via Lagrange multipliers
in stochastic network optimization. IEEE Transactions on Automatic
Control, Volume 56, Issue 4, pp. 842-857, April 2011.

