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Abstract—Motivated by recent work on improving the effi-

ciency of the IEEE 802.11 protocol at high speeds, we consider

an OFDMA system in which the users make reservations requests

over a collision channel. The controller schedules from only

amongst the successful requests using an alpha-fair scheduler

that balances the network throughput and fairness to nodes.

We first analyze the performance of the alpha-fair scheduler

when used with an Aloha reservation channel. We then assume
that the network prescribes reservation rates to active nodes

but that nodes may attempt reservations more aggressively so as

to be scheduled more frequently (and unfairly). A simple game

theoretic analysis of interaction between the Aloha reservation

channel and the scheduler shows that in the presence of other

cooperative users, a node attempting at a rate higher than

that prescribed indeed obtains a larger (unfair) throughput.

For such a network we propose a robust alpha-fair scheduler

that penalizes aggressive users. This scheduler along with the

prescribed reservation rates forms a Nash equilibrium.

I. INTRODUCTION

Orthogonal frequency division multiple access (OFDMA) is

being used for most of the current and emerging high speed

networking technologies including IEEE 802.11 WLANs, LTE

and WiMax. In OFDMA, the available spectrum is divided into

a number of narrow subbands, or subchannels. The subbands

can be dynamically allocated in different combinations to

different users. This allows networks to use sophisticated

opportunistic allocation mechanisms to provide high spectral

efficiency. There is also significant interest in developing

scheduling algorithms that achieve additional objectives like

stabilizing queues (e.g., [2]), minimizing delays (e.g., [2], [3]),

and providing fairness (e.g., [4]).

An OFDMA scheduling algorithm essentially allocates dif-

ferent combinations of resources—subchannels, transmission

rate (by prescribing the modulation scheme) and transmission

power to achieve an objective. In a typical scheme time is

divided into frames. At the beginning of each frame, the

active users provide ‘local state’ information e.g., channel

state, queue length, battery state, etc.). The controller uses

this information to allocate resources to achieve a network

objective. The schemes in, among others, [2]–[4] have this

structure. Clearly, such a system can lead to selfish behavior

by the nodes and this has led to the design and analysis of

OFDMA systems for non cooperative nodes, e.g., [4], [5].

An interesting recent use of OFDMA has been to reduce

PHY inefficiency of 802.11 MAC. Use of CSMA/CA in

802.11 MAC makes it increasingly inefficient with increasing

PHY data rates because the overheads remain fixed while data

transmission times shrink. This has led to several schemes that

improve the efficiency. Some of these reduce the overhead with

clever changes to PHY e.g., [6], [7] while some amortize the

fixed overheads by exploiting features of OFDMA, e.g., the

fine grained channel (FICA) scheme of [8]. FICA works as

follows. Time is divided into frames and OFDM subcarriers

are divided into D groups called subchannels. R subcarriers

of each group are allocated for sending RTS by the nodes to

the access point (AP). Depending on the channel gains, each

node can choose to transmit in any of the subchannels. For the

chosen subchannel(s), the node randomly selects a subcarrier

to signal an RTS. If more than one subcarrier is successful

in a subchannel the AP performs a collision resolution and

allocates the subchannel to one of the nodes using a colli-

sion resolution mechanism. Thus FICA improves efficiency

by stretching the data transmission time (by simultaneously

allocating smaller portions of the bandwidth to a larger number

of users) while keeping the overheads constant.

The FICA scheme, omitting protocol details, can be seen

to be an OFDMA channel in which the user-to-controller

signaling is through a slotted-Aloha collision channel. The

nodes send their requests for allocation of the OFDMA carriers

and the controller allocates according to some criterion. Taking

a cue from this scheme, we consider networks in which nodes

are non cooperative in both the reporting of their local state

and in using the signalling channel unfairly.

Systems in which nodes report better than actual channel

conditions have been extensively studied under the assumption

of an ideal signalling channel and fair scheduling algorithms

have been proposed (e.g., [9]–[11]). These correspond to pure

scheduling problems; this paper is not about pure scheduling.

Note that the nodes could be non cooperative in the use of

the Aloha signalling channel by attempting aggressively and

drowning out the other requests. This results in fewer legiti-

mate competing requests at the controller. The non-cooperative

model of the slotted Aloha is also well investigated; but this

work is also not about non cooperative Aloha. This work is

about the use of Aloha in a non cooperative manner to signal

to the controller about a resource (bandwidth) requirement in a

possibly non cooperative manner. In the system of interest, the

channel can lose signalling messages (or resource requests) via

collisions on the Aloha signalling channel, and the probability

of this loss can be influenced by other nodes.



In keeping with the terminology of OFDMA literature, the

controller or the access point will be called the base station

(BS) and the user node will be called mobile station (MS).

The rest of the paper is organized as follows. The notation,

system details and some preliminary results are presented in

the next section. In Section III we develop the game theoretic

description of a system of non cooperative nodes interacting

with an alpha-fair scheduler. In Section IV we describe and an-

alyze the robust scheduler that will lead to a Nash equilibrium

in which the nodes request reservations at the prescribed rate

and the controller performs alpha-fair scheduling. We present

extensive numerical results in Section V and conclude with

a discussion in which we compare our system with related

OFDMA systems and preview some future work. The proofs

are omitted due to space constraints but are available in [1].

II. NOTATION AND SYSTEM PRELIMINARIES

In this section, we first introduce the basic notations used

in the paper. This is followed by a detailed description of

the Aloha reservation channel. We then describe an alpha-fair

scheduler that will be implemented at the base station which

will allocate channel to the mobile stations based on some

fairness criteria. We will also consider the packet arrival model

describing the nature of data packet arrival at the mobiles.

Much like other OFDMA systems in the literature, time

is divided into frames and each frame has two phases—

reservation and data phases. In the reservation phase, the M
mobiles in the system transmit RTS (request to send) to the

BS (base station) according to a randomized algorithm over

the Aloha reservation channel. The BS decodes the successful

RTS’s and applies its scheduling algorithm to grant channel

access to a subset of the successful nodes. This schedule is

conveyed via a common CTS (clear to send) signal. The data

phase consists of D, D ≥ 1, parallel data channels and the

mobiles that are scheduled will transmit in these channels.

The following notational convention is used. Lower case

letters will represent flags or state indicators (some of which

are random) while the corresponding bold letters (in lower

case) represent the respective vectors. X{·} will be the indica-

tor of the event in the subscript. The positive part of a variable

is represented by (·)+, i.e., (x)+ = max{x, 0}. Mobiles are

indexed by m and i, data channels by j and frames by t.

The state of channel j for MS (mobile station) m is denoted

by hm,j with hm := [hm,1, · · · , hm,D] denoting the channel

state vector for MS m. The channel states h := [h1, · · · ,hM ]

are assumed to be independent processes across mobiles and

across time frames. Like in other such OFDMA systems, MS

m will send hm to the BS (base station) in the RTS.

The indicator that MS m has transmitted an RTS signal in

the frame will be denoted by am with a := [a1, a2, · · · , aM ]

being the corresponding vector. Following conventional game

theoretic notation, a−m := [a1, · · · am−1, am+1, · · · , aM ] ,

i.e., a after excluding the m-th component.
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Fig. 1. Frequency-time diagram of a frame with aggregated Aloha reservation

scheme. DIFS (DCF interframe space) and SIFS (Short interframe space)

durations are specified by the protocol.

A. The Aloha Reservation Channel

For convenience, we will use an aggregated Aloha reserva-

tion channel that works as follows. Each frame has a single

reservation phase and MSm transmits an RTS with probability

pm. If the total number of nodes transmitting an RTS is

less than or equal to R, then all those that transmitted will

be deemed successful1. If more than R mobiles transmit an

RTS, then the BS cannot decode any of the RTS’s and a

collision is said to occur. In this case the corresponding data

channel is wasted because it cannot be assigned to any MS.

Recall that am is the indicator that MS m transmitted an

RTS; thus pm = Pr (am = 1) . Let p := [pm] be called

the reservation rate vector. Let bm be the indicator that MS

m had a successful RTS. The probability of successful RTS,

psuccm := Pr (bm = 1) , is easy to calculate. For example, with

pm = p for all m, this will be the same for all m and is

psucc = p

R−1
∑

i=0

(

N − 1

i

)

pi(1− p)N−1−i.

psuccm can be easily obtained even for asymmetric p albeit with

slightly messier expressions.

Refer Fig. 1 for detailed frequency v/s time diagram of

a frame in the aggregated reservation scheme. A reservation

scheme that resembles FICA more closely is given in [1]. Our

analysis will also hold for that scheme.

B. Scheduler

In each frame, a set of mobiles will have submitted a

reservation request via a successful RTS. The scheduler at

the BS schedules a subset of these mobiles and sends CTS

to the scheduled set. The scheduler could choose an MS

with maximum utility, in which case network efficiency is

maximized; the allocation may not be fair to the mobiles. It

could also choose to allocate such that the minimum utility

of the scheduled nodes is maximized, i.e., use a max-min

fair schedule. The latter is of course not very efficient. An

1This model is appropriate when the reception depends on the SINR, which

in turn depends on the number simultaneously attempting the RTS.



alpha-fair scheduler helps achieve a desired trade-off between

fairness and network efficiency via a suitable choice of the

tuning parameter α, 0 ≤ α ≤ ∞. Specifically, we define and

use the following alpha-fair scheduler described in, among

others, [9], [11].

Recall that bm := X{successful RTS by m}; Define

ĥm,j := hm,jbm, i.e., ĥm,j is the effective state of channel

j for MS m after accounting for RTS. Define ĥ := [[ĥm,j ]].

Let f(h) be the utility from a channel with channel state h

with f(h) > 0 if h 6= 0 and f(0) = 0. f could, for example,

indicate the number of bits per frame per channel that the

MS can transmit when the channel state is h. The utility that

MS m achieves on being scheduled for transmission in data

channel j is f(ĥm,j).

A scheduler β maps every channel state ĥ to decisions

[[βm,j ]] where βm,j ∈ [0, 1] is the probability with which MS

m is allocated data channel j. Let

um,j := E

[

f(ĥm,j)βm,j

]

; um :=
∑

j

um,j , (1)

Γα(u) =
u1−α

1− α
X{α6=1} + log(u) X{α=1}. (2)

Define u = [u1, u2, · · · , uM ] . Assume that utilities are

additive, i.e., if MS m is allocated more than one data channel

in a frame, then the total utility is the sum of the utilities from

each data channel. The alpha-fair scheduler will send CTS to

a subset of MS selected according to (see [9], [11])

argmax
β

∑

m

Γα (um) . (3)

The efficient scheduler maximizes the sum throughput and is

obtained by using α = 0 in (3); for this case we have

β0
m,j = X{m=argmaxi f(ĥm,j) ai}

for all m, j

= X{m=argmaxi f(hi,j) ai}bm. (4)

The max-min fair scheduler maximizes minimum of all utili-

ties and is obtained with α = ∞ in (3); intermediate levels of

fairness-throughput trade-offs are obtained with α ∈ (0,∞).

Unlike for α = 0, for α > 0 we do not have a closed form

for the scheduler. However, using the concavity of Γα(u) and

the linear dependence of u on the scheduler, we obtain a fixed

point structure for the alpha-fair scheduler as described in the

following theorem, with proof in Appendix.

Theorem 1: Assume the channel states hm,j are indepen-

dent across mobiles m, data channels j, and time frames.

(1) Consider , Λ(·) := [Λm(·)]m, defined component wise by

Λm(u) =
∑

j

E





f(hm,j)
∣

∣

∣
argmaxi

f(ĥi,j)
uα
i

∣

∣

∣

X{

m∈argmaxi

f(ĥi,j)

uα
i

}



 ,

(5)

with |A| denoting the cardinality of set A. If there exists a fixed

point u∗ of the above function, then an alpha-fair scheduler

maximizing (3) can be defined using this fixed point u∗ :=

[u∗
1, · · · , u

∗
m] as

βα
m,j =

X{

m∈argmaxi

f(ĥi,j)

(u∗
i )

α

}

∣

∣

∣

∣

argmaxi
f(ĥi,j)

(u∗
i )

α

∣

∣

∣

∣

for all m, j. (6)

(2) Assume for each m and j that hm,j is a continuous

random variable with continuous density gm,j(·), and that f

is integrable, i.e., that E[f(hm,j)] < ∞. Then there exists a

fixed point u∗ of the function (5). �

The theorem says that if a fixed point for Λm(·) exists and

if the scheduler given by (6) is used, then the corresponding

average utility is indeed Λm(·). In (6), before making a

scheduling decision the instantaneous utilities are scaled by

weights that are inversely proportional to the time average of

the utilities obtained by the MS. Thus users with lower utility

obtain better allocations and hence increasing fairness. Also

note that the weights (u∗
i )

α are such that the fairness increases

with α. This structure will be used in further analysis as well

as in constructing practical policies.

The case with D = 1 and with ideal reservation chan-

nel is considered in [9] where an iterative algorithm that

asymptotically maximizes the alpha-fair utility (3) is proposed.

This algorithm implements the fixed point equation of the

preceding theorem (see [11] for more details). We now define

the following iterative algorithm which obtains the fixed point

of the above theorem for general D and for Aloha reservation

channel. For any time frame t+1, any MS m and for the j-th
data channel, the iteration in the t-th time step is

um,j,t+1 = um,j,t + µ
(

f(hm,j,t+1)β
α
m,j,t − um,j,t

)

(7)

βα
m,j,t := X{m=argmaxi f(ĥi,j,t+1)(ui,t+di)−α} (8)

um,t =

D
∑

j=1

um,j,t.

Here the constant µ > 0 is the step size and [di] are small

stabilizing constants.

C. Packet Arrival Model

The assumption of saturated nodes where every departing

packet is replaced by a new packet at the source has been

extensively used to provide tractability to the performance

models. We also take recourse to this model and all our

analyses will be for this saturated model. This is also a good

model when the sources have only elastic traffic and the active

nodes will want to send data at the best available rate. Of

course, this is not very realistic and systems are operated in

non saturated (or stable regime,) with arrival rates less than

departure rates with queues becoming empty infinitely often.

The non-saturated users with load factor (ratio of the arrival



to the departure rate) close to one, have empty buffers with

a very small probability almost as in a saturated case. In this

paper we analyze the saturated case; using numerical analysis

it is demonstrated in [1], that the non-saturated case with a

reasonable load factor also behaves similarly.

III. SELFISH MOBILES: TOWARDS A GAME

We begin by showing that MS has incentive to be selfish—it

can improve its utility by choosing a higher RTS reservation

rate. This motivates a game theoretic problem formulation.

The system that we consider has two parts—the Aloha

reservation channel and the data channel scheduled by an

alpha-fair scheduler. While the literature on Aloha is extensive,

a game theoretic understanding is emerging, e.g. [12] for an

early survey, and [11], [13] for some recent work. Also, there

is significant literature on OFDMA scheduling some of which

were pointed out in Section I. Our interest in this paper is to

analyze the interaction between the success probability in the

Aloha channel and the long term average scheduled throughput

obtained on the data channel. More specifically, recall that MS

m obtains a utility

um(p, β) =
∑

j

E [f(hm,j)βm,j ]

=
∑

j

∑

a

E [f(hm,j)βm,j |a]Pr (a) .

Note that this utility is a function of p. The MS attempt RTS

independent of one another and hence the joint probability of

attempting is Pr (a) = ΠmPr (am) . Hence,

um(p, β) =
∑

j

∑

a

E [f(hm,j)βm,j |a]
∏

i

Pr (ai)

= pm
∑

j

∑

a−m

E [f(hm,j)βm,j |a−m, am = 1]
∏

i6=m

Pr (ai) . (9)

The BS derives the scheduling decision in each frame by

maximizing the utility according to (3). Thus following [11],

we can define a natural utility function for the BS to be

uBS(p, β) =
∑

m

Γα(um(p)). (10)

We call uBS as the network utility.

The utility of MS m can be split as um = ur
m + ub

m where

ur
m := pmΠi6=m(1− pi)

∑

j

E [f(hm,j)]

ub
m := pm

∑

j,a−m 6=(0,··· ,0)

E [f(hm,j)βm,j |a−m, am = 1]Pr (a−m) .

In the above, ur
m is the utility obtained by MS m, when no

other MS attempts RTS. In such a situation, there is only one

MS contending and hence the MS is always scheduled. Thus

ur
m is the utility which cannot be changed or controlled by the

scheduler and we call this the private utility of MS m. ub
m is

a function of the parameter of the scheduler and we call this

the public utility of mobile m. Note that private utility can

also influence total utility of other mobiles, e.g when an MS

attempts RTS more aggressively than the prescribed rate.

A. The Game

A game theoretic setting is clear from the preceding

discussion—the mobiles can choose pm to maximize individ-

ual utility while the BS can choose a scheduling scheme to

desirably trade-off the network utility and fairness.

Consider a system where the mobiles are assigned reserva-

tion attempt rates, say prefm for MS m; denote pref :=
[

prefm

]

.

Clearly, pref determines the long term average utility that each

of MS can obtain. The data channel is only granted to an MS

with a successful RTS. Thus the MS have an incentive to

attempt at a rate pm > prefm to improve their utility. We thus

have the following non cooperative game that arises naturally.

Players = {1, 2, · · · , M, BS},
Utilities = {u1, u2, · · · , uM , uBS},
Actions = {p1, p2, · · · , pM , β}.

(11)

Observe that (9) suggests that um increases linearly with

the reservation rate pm. Indeed this is true for α = 0 i.e., for

the efficient scheduler of (4) um increases linearly with pm.
One can use continuity arguments to show that this behavior

is true even for small values of α > 0. Using an example

with finite channel states, we will now show that, a mobile

can cheat even at high values of α.

B. An Example

We illustrate the preceding discussions, with the help of

a simple example. Assume D = 1, M = 3. Two mobiles

are far from the BS and have similar random variations in

their channel states. Both can communicate with the BS at

one of two rates 5 and 3 units with probability 0.2 and

0.8 respectively. A third MS is close to the BS and can

communicate with the BS at one of two rates 12 and 10

units with probability 0.8 and 0.2 respectively. Assume that

prefi = p for all i.

When an efficient scheduler (4) is used at BS, MS 3 obtains

a higher utility than the other two. However as α increases,

higher priority is given to fairness. Maximum fairness is

obtained when MS 3 is scheduled only when there are no

other MS with successful RTS. If such a fair scheduler exists,

then the three mobiles would obtain the following utilities:

u3 = p(1− p)2(0.8 ∗ 12 + 0.2 ∗ 10) = 11.6p(1− p)2,

u1 = u2 = (p(1− p)2 + p2(1− p))(0.8 ∗ 3 + 0.2 ∗ 5)

+p2(1− p)(0.8 ∗ 0.2 ∗ 5 + 0.2 ∗ 0.2 ∗
5

2
+ 0.8 ∗ 0.8 ∗

3

2
)

= 3.4p(1− p)2 + 5.86p2(1− p).

Using part 1 of Theorem 1 (6), such a scheduling is im-

plemented by an alpha-fair scheduler maximizing (3) for all



those values of α which satisfy 12/uα
3 < 1/uα

1 , i.e., when

121/α
(

3.4p(1− p)2 + 5.86p2(1− p)
)

< 11.6p(1 − p)2. The

above inequality is satisfied for all α > 2.63 when the common

RTS reservation rate p = .45. Fig. 2 plots the utility for the

three mobiles as a function of α for different combinations of

p. We see that MS 3 indeed has a nearly constant utility, close

to minimum, for all α > 2.6. Also observe that the utility of

the MS 3 when it increases it’s p = 0.75. Clearly, MS 3 has

a higher utility when it uses a higher p. The remaining two

have reduced, unfair utilities.

We now make the following observations.

• Utility of MS 3 is highest when α = 0 and decreases

monotonically as α → ∞; see Fig. 2.

• For α > 2.6, u3 does not change with α; this is the best

that the scheduler can do towards fairness. For α > 2.6,
MS 1 or 2 are scheduled whenever their RTS succeeds.

• Private utility of MS 1, 2 is 3.4p(1−p)2 and is 11.6p(1−

p)2 for MS 3. This cannot be changed by a scheduler.

• MS 3 can increase its utility even at high alpha through

its private utility by using p3 > p. Also, the cooperating

MS receive lower utilities than their fair share. And this

is true even for higher α.

IV. A ROBUST SCHEDULING POLICY

We now focus on constructing robust scheduling policies

that use additional information to penalize aggressive mobiles.

Robustness is shown by arguing that the scheduling policy and

pref form a Nash equilibrium of an equivalent game.

A. Construction of the Robust Policy

The BS can observe bt := {bm,t}, the time sequence of the

RTS success flags and estimate their time average. Since time

average equals the ensemble average, the BS can estimate the

reservation rates {p̂m} using p̂m = b̂m/cm where b̂m is the

time average of the rate of successful RTS from MS m and

cm is obtained below. It can then estimate the extent of any

non-cooperation by observing and penalize MSm when (p̂m−

prefm ) > 0. This should force the MS to be cooperative. For the

case of saturated mobiles and aggregated reservations, we have

bm = amX{
∑

i 6=m ai<R}. By independence, Pr (bm = 1) =

pmcm where cm = Pr

(

∑

i6=m ai < R
)

.We can thus estimate

pm. The estimates, henceforth, are represented without ˆ to
avoid messy equations.

Robust Scheduler: The robust modification of the iterative

scheduling algorithms (7) is:

pm,t+1 = pm,t + µt (bm,t/cm − pm,t) (12)

um,j,t+1 = um,j,t + µt

(

f(hm,j,t)

1 + ρm,t
βm,j,t − um,j,t

)

(13)

ωm,t = ρm,t + um,t, ρm,t = ∆
(

pm,t − prefm

)+

βm,j,t = ∩i6=mX{

f(ĥm,j,t)

(1+ρm,t)(ωm,t)
α ≥

f(ĥi,j,t)

(1+ρm,t)(ωi,t)
α

}. (14)

In the above, the BS estimates the actual reservation rates

used by the MS iteratively using (12). It then identifies the

selfish MS as the ones with pm,t > prefm . It makes robust

scheduling decisions {βm,j,t} by weighing down um for the

selfish MS using a larger punitive term (1 + ρm,t)(ωm,t)
α

instead of the original (um,t)
α as in (8). It further reduces the

instantaneous utilities f(ĥm,j,t) by an extra factor 1 + ρ, to

ensure that the private utilities are also punished (whenever

the MS is non-cooperative).

B. Analysis

We analyze the proposed robust scheduler, using ODE

analysis for the case with saturated packet arrivals. Let Θ :=

[{pm}m, {um,j}m,j ] represent a vector of all the components

related to the robust algorithm. We will show that the trajectory

of the robust scheduler (12)–(14) can be approximated by the

solution Θ(t) of the following ODE for all m ≤ M and j:

�

pm (t) =
Pr (bm = 1)

cm
− pm(t) (15)

�

um,j (t) = E

[

f(hm,j)

1 + ρm(t)
βm,j(t)

]

− um,j(t) (16)

ωm(t) := um(t) + ρm(t), ρm(t) = ∆(pm(t)− prefm )+

βm,j(t) = Πi6=mX{

f(ĥm,j)

(1+ρm,t)(ωm(t))α
≥

f(ĥi,j)

(1+ρm,t)(ωi(t))
α

}.

We consider a slight modification of the non-cooperative game

(11) to show the robustness of the proposed algorithm. We

replace the utilities defined in the game (11) by the asymptotic

time limits of the robust algorithm (12)–(14) and show that the

robust algorithm and the assigned reservation rate vector form

a Nash equilibrium.

ODE Approximation: We begin by discussing the existence

of solutions of the above ODEs. The ODE (15) and (16) have

a unique solution as will be established below:

Lemma 1: The ODE (16) has unique bounded solution for

any initial condition in A with A := [0, 1]M ×RMD
+ and it is

bounded as below where η := supm,j E[|f(hm,j)|].

|um,j(t)| ≤ η − (η − |um,j,0|)e
−t for all t.

Proof: The proof is along lines of Lemma 1 in [10]. See

[1] for details. �

We now define the limit set of the ODEs (15)–(16) and its

δ-neighborhood:

L
ODE := lim

t→∞
∪Θ∈A{Θ(s) : s ≥ t and Θ(0) = Θ}.

Bδ(L
ODE) :=

{

Θ : |Θ− Θ̃| ≤ δ for some Θ̃ ∈ L
ODE

}

.

The following theorem now establishes that the trajectory

{Θt; t} with Θt := {{pm,t}m, {um,j,t}m,j}, ultimately

spends time in the limit set defined above (Proof in [1]).

Theorem 2: Assume the following:
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Fig. 2. Discrete channel states: A non-cooperative MS gains at the cost
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• There exists a sequence ǫk → ∞ with

limk sup0≤l≤ǫk
µk+l/µk = 0.

• The channel state {hk} is an independent and identically

distributed (IID) sequence with finite mean and variance.

• The average rates are bounded by the same constant, i.e.,

|f(hm,j)| ≤ B for all m, j.

• {hk} has continuous and bounded density.

Then for every δ > 0, the fraction of time the tail of the

algorithm {Θτ}τ≥t for any initial condition Θ0 ∈ A spends

in the δ-neighborhood of the limit set Bδ(L
ODE) tends to one

as t → ∞. �

Further analysis is obtained by studying the limit set of the

above ODEs. The first ODE (15) has a unique solution and a

unique attractor:

pm(t) = p∗m − (p∗m − pm,0) e
−t, p∗m =

E [bm]

cm
. (17)

That means, the BS via iteration (12) estimates the RTS

reservation rates [pm] used by all the MS’s. And as we will

see below for any MS m, it uses only the excess (w.r.t. the

assigned reservation rate) given by (p∗m− prefm )+ to punish it.

When one MS becomes non cooperative, the cm of the other

MS’s actually should decrease, however the BS uses the larger

one corresponding to all cooperative case. As seen from (17)

this results in a reduced estimate for the reservation rates of

the other MS’s. Since one uses only the positive part of the

excess this would not alter the analysis.

We now study the limit set of the second ODE (16). In

particular we study its equilibrium points. Any equilibrium

point of the ODE (16) satisfies the following fixed point

equation:

u∗
m =

∑

j

E

[

f(hm,j)

1 + ρ∗m
βm,j

]

, (18)

ωm := u∗
m + ρ∗m, ρ∗m = ∆(p∗m − prefm )+,

βm,j = ∩i6=mX{

f(ĥm,j)

(1+ρ∗m)(ωm)α
≥

f(ĥi,j)

(1+ρ∗
i
)(ωi)

α

}. (19)

Existence of a fixed point for the above equation can be

established as in Theorem 1. We further have the following:

Lemma 2: (19) has a unique fixed point i.e., the ODE (16)

has an unique equilibrium point.

Proof: The proof is in [1]. �

One still needs to show that the above unique equilibrium

is indeed a limit point. This is given by [9, Theorem 2.2] for

the case with α ≤ 1 and without aloha reservation. The proof

of [9, Theorem 2.2] can easily be imitated for the cooperative

case, i.e., when pm,0 = prefm for all m. Note that, with pm,0 =

prefm for all m, from (17) that pm(t) = p∗m = prefm for all t

and m and hence one can treat ω, ρ like constants and then

[9, Theorem 2.2] can be extended. One need to show that

the unique equilibrium point of Lemma 2 is a limit point for

general case and this is work in progress.

Nash Equilibrium: By Theorem 2, the robust algorithm

converges weakly to the limit set of the ODEs (15)–(16) as

discussed earlier. The analysis of the robust algorithm (12)–14

can be obtained by further studying these equilibrium points

and it is easy to verify the following result:

Lemma 3: At any rate vector p = [p1, · · · , pM ], the unique

equilibrium point is upper bounded for all m by:

u∗
m ≤

∑

j E[f(hm,j)

1 + ∆(p∗m − prefm )+
.

Proof: The proof is immediate from the fixed point

equation (18). �



So, one can chose ∆ large enough such that

u∗
m < uref

m for all m with p∗m > prefm ,

where uref
m is the limit when all the MS are cooperative, i.e., the

fixed point of Lemma 2 with pref . With this ∆, the algorithm

(12)–14 converges weakly (for any MS m with w representing

weak convergence) to:

lim
t→∞

um,t
w
= u∗

m < uref
m when p∗m > prefm .

Thus any MS m obtains a smaller um when it deviates

unilaterally from its designated reservation rate p∗m > prefm .

In other words, any MS obtains a smaller utility if it attempts

more aggressively. Hence the reservation rates pref and the

robust policy β given by (12)–(14) form a Nash Equilibrium

for a game with utilities defined by the weak time limits:

Utilities

=

{

lim
t→∞

u1,t, · · · , lim
t→∞

uM,t,
∑

m

Γα

(

lim
t→∞

um,t

)

}

.

V. NUMERICAL EXAMPLES

We now consider numerical examples illustrating different

scheduling algorithms considered in this work. The objective

is to demonstrate how quickly convergence occurs and to get

a sense of the penalty incurred by non cooperative nodes.

Example 1 We begin with the discrete channel example

of Section III-B when the common assigned reservation rate

equals 0.45. We consider the case when MS 3, is selfish and

uses an increased RTS reservation rate p3 = 0.75. We plot

the asymptotic utilities limk um,k as a function of α. These

limits are plotted for the non robust, (7), as well as the robust

scheduler, (14), respectively in figures 2 and 3. Both the figures

also show the limits corresponding to the cooperative case,

referred to as cooperative shares.

While the utility of MS 3 increases with increased reser-

vation rate, it however reduces the utility of the other two

MS’s resulting in unfair allocations (see Fig. 2). When the

scheduler is replaced with the proposed robust algorithm, MS

3 is penalized while the utilities of other MS’s are improved.

Note that the utility curves for MS 1 and 2 overlap (due to

identical channel statistics) while MS 3 has almost 0 utility in

Fig. 3 with robust scheduler.

Example 2: We now consider continuous channel states.

Fig. 4 shows the convergence of the scheduling algorithm for

the case with α = 0,M = 3 and with 2 data channels. The MS

have asymmetric channel states and the hm,j’s are truncated

Rayleigh distributed with parameter σm (as in [10], [11]). Here

σ1 = 60, σ2 = 30 and σ3 = 10. The MS’s are again assigned

equal reservation rates, i.e., prefm = 0.45 for all m and µ = 4×

10−5. MS 1 is a non-cooperative node and uses an increased

reservation rate p1 = 0.65 > pref1 .

The first plot in Fig. 4 shows the convergence of estimates

pm,k for the 3 users; p1,k converges to 0.65 while p2,k and
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Fig. 5. Continuous channel states: comparison of non robust and robust

schedulers

p3,k converge to 0.45. The second part of Fig. 4 shows

the convergence of estimated utilities um,k. In summary, the

trajectories converge to their corresponding limits, even when

started from an unknown initial point different from the limit,

reaffirming the stochastic approximation Theorem 2.

Example 3 : We continue with Example 2. As in Example

1, we compare the two scheduling algorithms (7) with (14).

The asymptotic limits ({limk um,k}m) are plotted for the non

robust (blue curves) as well as the robust scheduler (black

curves) in Fig. 5. Orange curves represent the cooperative

shares. From Fig. 5 near α = 0, the selfish behavior of MS 1

increases limk u1,k corresponding to non robust scheduler

(continuous blue curve), which is at the cost of the same

for other users (other two blue curves). There is a significant

improvement in MS 1 utility for all the values of α. Such
a behavior is not seen in the corresponding black curves,

wherein the robust algorithm actually penalizes the selfish user.

Note actually that the utility of MS 1 is almost equal to 0.

Further, it improves the utility of the cooperative users.

In all the above examples, we observe that the robust

algorithm not only punishes non-cooperative MS but also

improves the utilities of the cooperative MS (see Fig. 3 and

5). Thus it exhibits anti jamming property, whenever the



noncooperation is within manageable limits.

VI. DISCUSSION

We have considered and analyzed a combined system with

collision based reservation requests and a scheduler that trades-

off the system efficiency with desired level of fairness. That

the system is prone to noncooperation is established. We have

proposed a scheduling mechanism in which users violating a

prescribed reservation rates are penalized. However we have

not addressed the choice of reservation rates. Two possible

criteria to determine this choice are immediate – (a) choosing a

reservation rate vector that optimizes a network utility and (b)

a reservation rate vector to simultaneously achieve the assigned

utility for each MS. This is part of the future work. While the

initial numerical analysis of the non-saturated packet arrivals

is established in [1], an extensive analysis is being carried out.
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APPENDIX A

Proof of Theorem 1: We first prove the second part. We

fix the reservation rates p and neglect them in the rest of the

proof. Consider the function defined component wise by:

Θm(u) :=
∑

j

E

[

f(hm,j)Πi6=mX{

f(ĥm,j)

uα
m

>
f(ĥi,j)

uα
i

}

]

(20)

Under the theorem hypothesis, Θm is continuous in u because:

a) for any sequence u(n) → u, the term inside the expecta-

tion:

Πi6=mX{

f(ĥm,j)

(u(n)
m )

α >
f(ĥi,j)

(u(n)
i )

α

} → Πi6=mX{

f(ĥm,j)

(um)α
>

f(ĥi,j)

(ui)
α

}

at all h which are the points of continuity and hence for

almost all h and this true for all j.
b) It is easy to see that,

|Θm(u)| ≤
∑

j

E[f(hm,j)] < ∞ for any u. (21)

Thus the expected value Θm(u(n)) → Θm(u) by Domi-

nated Convergence theorem.

c) Sequential continuity implies continuity in a finite dimen-

sion space, hence Θ := [Θ1, · · · ,ΘM ] is continuous in u.

From (21) Θ is bounded and hence by Brouwer’s fixed point

theorem, there exist a fixed point u∗ = [u∗
1, · · · , u

∗
M ] for the

map Θ and hence for Λ proving the second part of the theorem.

Fair scheduler using the fixed point: If there exists a fixed

point of Λ, then define βα by (6) and define,

Gα(β) =
∑

m

Γα(um(β)).

Since Γα is a concave function of u and hence for any β,

Gα(β)−Gα(βα) ≤
∑

m

[um(β)− um(βα)] dΓα(um(βα)).

(22)

Consider the following function:

β 7→
∑

m

um(β)dΓα(um(βα))

= Eh





∑

m

∑

j

f(ĥm, j)dΓα(um(βα))β(m, j)



 . (23)

From (6) for every m, j and channel state h and for any

scheduler β with β(m, j) ∈ [0, 1] and dΓα(u) = 1/uα,

f(ĥm, j)dΓα(um(βα))β(m, j) ≤ f(ĥm, j)dΓα(um(βα))βα(m, j).

Hence βα maximizes the function (23) and so

∑

m

[um(β)− um(βα)] dΓα(um(βα)). ≤ 0

Hence from (22) Gα(β)−Gα(βα) ≤ 0. Hence βα maximizes

Gα among all the schedulers and hence is an alpha-fair

scheduler. �


