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Abstract—We study a multiple input multiple output (MIMO)
cellular system where each base-station (BS) is equipped with
a large antenna array and serves some single antenna mobile
stations (MSs). With the same setup as in [1], the influence of
orthogonal and non-orthogonal pilot sequences on the system
performance is analytically characterized when each BS has
infinitely many antennas. Using stochastic geometric modeling
of the BS and MS locations, closed-form expressions are derived
for the distribution of signal-to-interference-ratio (SIR) for both
uplink and downlink. Moreover, they are shown to be equivalent
for the orthogonal pilots case. Further, it is shown that the
downlink SIR is greatly influenced by the correlations between
the pilot sequences in the non-orthogonal pilots case. Finally, the
mathematical tools can be used to study system performances
with other general channel estimation methods and transmission-
reception schemes.

Index Terms—Massive MIMO, Poisson point process, Channel
estimation, SIR, Achievable rate, Interference analysis.

I. INTRODUCTION

M
ASSIVE multiple input multiple output (MIMO) sys-

tems are multiuser MIMO cellular systems where each

base-station (BS) is equipped with a large number of antennas

compared to the number of mobile stations (MSs) it serves.

The study of such systems has gained immense attention due

to their potential for achieving high data rates and throughput

gains while ensuring a low transmission powers in both the

forward link and reverse link [1]–[3].

In [1], a low complexity transmission-reception scheme is

studied for the uplink and downlink performance of such

a system. All BSs reuse the same set of orthogonal pilot

sequences that they assign to the MSs for reverse link pilot

signaling. Using these pilot sequences, the BSs estimate the

reverse link channel to the corresponding MS, and extract

the subsequent data symbols via maximum ratio combining.

Further, due to channel reciprocity enforced by time division

duplexing (TDD) operation, the BS also has an estimate of the

forward channel, using which the BS does linear precoding

prior to downlink data transmission. In the limit as the the

number of BS antennas tend towards infinity, in both the uplink

and downlink, it was observed that the effect of uncorrelated

noise and fast fading is completely eliminated and the desired

signal is only corrupted by the interferences caused by a

phenomena termed ‘pilot contamination’, which is due to the

reuse of the same set of pilot sequences by all the BSs.

Consequently, the distributions of signal-to-interference ratio

(SIR) and rate achievable for a given BS-MS pair in both

uplink and downlink is studied for the ideal hexagonal cellular

system using Monte-Carlo simulations. Further studies in this

topic have analyzed different precoder/detector designs with

the goal of minimizing the pilot contamination to as low as

possible and to analyze the resulting SIR and rate expressions

obtained in the uplink and the downlink [4]–[6].

In this paper, we study the massive MIMO system of

[1] under stochastic geometric settings and demonstrate that

the uplink and downlink performance can be analytically

characterized in terms of the key system parameters. Towards

this goal, the BS arrangement is modeled according to a

homogeneous Poisson point process on the plane, the MSs

served by a given BS are uniformly distributed within a circle

of a certain fixed radius centered at the BS location and the

number of MSs served by each BS is an i.i.d. Poisson random

variable with a given mean. This system is depicted in Fig. 1.

The stochastic geometric modeling and analysis of wire-

less networks has gained increased popularity since they

are amenable to rigorous analytical studies [7]–[13]. For the

cellular network, a strong motivation for viewing the BS

arrangement as a homogeneous Poisson point process can

be drawn from the study of the cellular systems in [14]–

[16] which suggests that significant insights can be gained

by bounding the downlink cellular performance between the

ideal hexagonal grid model and the homogeneous Poisson

point process based model. More interestingly, in [15, Fig.

2.], it is shown with the help of Monte-Carlo simulations

that in the limit of strong log-normal shadow fading (standard

deviation of the fading coefficient σ →∞), the downlink SIR

distribution of an ideal hexagonal cellular system approaches

that of a cellular system with BSs deployed according to a

homogeneous Poisson point process.

Recently, the above convergence has been analytically

proved in [17, Theorem 3]. It is shown that the downlink

performance of a cellular network with any deterministic

arrangement of BSs (not just the ideal hexagonal grid model)

converges to that of a Poisson point process based model as

σ →∞, and moreover even for realistic values of σ (i.e. 8 dB)

that are observed in cluttered environments, the latter model

is a good approximation for the deterministic model. In the

massive MIMO system, the uplink-downlink performance is

completely determined by the shadow fading coefficients and

the location of the BSs and the MSs in the cellular system, thus

making a strong case for a rigorous study of these performance

metrics using stochastic geometric models.

The contributions of this paper are briefly described here.

Note that the transmission-reception schemes studied in [1]
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are restricted to the case where all the pilot sequences were

orthogonal to each other. In practice, orthogonality between

pilot sequences is hard to ensure in the uplink (downlink) as

the MS (BS) transmissions are never perfectly synchronized.

In Section III, we have extended it to the more practical case

when the pilot sequences have a small correlation with each

other, and derived the expressions for the SIR and the achiev-

able rate in both the uplink and downlink for an arbitrary BS-

MS pair. Next, in Section IV, closed-form expressions for the

distribution of SIR and rate are derived based on the stochastic

geometric model. Further, when all the pilot sequences are

orthogonal to each other, it is shown that the distribution

of SIR and rate in the uplink and downlink are identical.

This analytical result is consistent with [2, Fig. 4-7] where

the uplink and downlink SIR and rate have nearly identical

behavior (see Section IV-A). For the non-orthogonal pilot

sequence case (see Section IV-B), closed form expressions

for the distribution of the downlink SIR and rate are derived

and simple approximations are derived for the corresponding

uplink performance. It is shown that the downlink SIR is

strictly upper-bounded by the inverse of total pilots correlation.

Next, we introduce the system model.

II. SYSTEM MODEL

The cellular system is composed of BSs distributed accord-

ing to a homogeneous Poisson point process on the plane with

BS density λb. The BSs employ ∆-frequency reuse (∆ =1,

3, 4, 7 etc.) where each BS is randomly assigned one of the

{1, 2, · · · , ∆} frequency bands with equal probability and

the BSs in different bands do not interfere with each other

[18]. Further, the MSs served by a BS are assumed to be

uniformly distributed in a circle of radius R centered at the

BS and independent of the other MS or BS arrangements. The

number of MSs served by a given BS is a Poisson random

variable with mean λuπR
2, where λu is the average number

of MSs per cell area. Each MS has a single antenna and each

BS is equipped with M antennas (M →∞). Fig. 1 illustrates

the scenario.

All the BSs in the system share the same set of P pilot

sequences and can serve at most P MSs simultaneously. Each

pilot sequence is a K length unit-norm vector denoted as

ai ∈ C
K×1, i = 1, 2, · · · , P , and the correlation between two

pilot sequences ai, aj is a
†
iaj = αij , such that 0 ≤ |αij | ≤ 1

and αii = 1, ∀ i = 1, · · · , P . The pilots are said to be orthog-

onal if the correlation is zero for i 6= j and non-orthogonal

otherwise. The BSs and the MSs communicate with each other

via time division duplexing (TDD) such that the in-band uplink

and downlink transmissions are sufficiently separated in time

and do not cause interference to one another. Further, the TDD

operation induces channel reciprocity causing the forward and

reverse-link channels for a given BS-MS pair to be identical.

III. TRANSMISSION-RECEPTION SCHEMES

This section generalizes the results in [1] to the case

when the pilot sequences are non-orthogonal and when the

number of MSs in each cell is an independent and identically

distributed (i.i.d.) random variable as mentioned in Section II.
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Fig. 1. User distribution and pilots assignments. BSs in the circles with
different background patterns operate in different frequency bands. The
different pilot sequences assigned to MSs are indicated by different line
patterns. Solid line represents desired signal while dotted line represents
interference to others.

1) Pilot signaling and channel estimation: The communi-

cation begins with the training phase when all the MSs in the

cell transmit their respective pilot sequences to the serving

BS. The BSs utilize the reverse-link pilot transmissions to

estimate the reverse-link channel to each of its MSs. We denote

the kth BS by BSk and its nth MS by MSkn. The received

signal at BSk corresponding to one pilot sequence transmission

period (consisting of K symbols) may be represented by

Yk ∈ C
M×K :

Yk =
√
ρP

∞
∑

l=1

P
∑

n=1

bklhklna
†
nI (n, l) +Wk (1)

where M is the number of BS antennas, K is the length of a

pilot sequence, bkl = 1 if BSl operates in the same frequency

band as BSk and bkl = 0 otherwise, hkln ∈ C
M×1 is the

channel corresponding to the wireless link from MSln to BSk,

ρP is the pilot signal-to-noise ratio (SNR), Wk is the i.i.d.

zero-mean noise at BSk, and I (n, l) is the indicator function

I(n, l) =
{

1, nth pilot is used in lth cell

0, otherwise
.

Further, hkln = β
1
2

klnR
− ε

2

klngkln, gkln ∈ C
M×1 represents the

fast fading coefficients between the MSln and the antennas of

BSk with i.i.d. zero mean and unit variance entries, βkln is the

shadow fading coefficient, generally modeled as a log-normal

random variable with 0 mean and variance σ2 dB, Rkln is the

distance between MSln and BSk and ǫ (ǫ > 2) is the path-loss

exponent of the power-law path-loss model.

From the received signal in (1), BSk estimates the channel
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to the MS transmitting the mth pilot sequence as

ĥkkm =
Ykam√

ρP
= hkkm +

P
∑

n=1, n 6=m

αnmhkknI (n, k)

+
∞
∑

l=1

P
∑

n=1
l 6=k

αnmbklhklnI (n, l) +
Wkam√

ρP
, (2)

where m = 1, 2, · · · , P , the first term is the desired channel,

the second term is the contamination due to non-orthogonal

pilots used by other MSs served by BSk, the third term is

the contamination due to the pilot transmissions of the MSs

belonging to the other cells and the last term corresponds

to the background noise. Next, we focus on the uplink data

transmission and decoding scheme used by each BS to recover

the data transmitted by each of its MSs.

2) Uplink Data Transmission and Maximum Ratio Combin-

ing: Following the pilot signaling stage is the reverse link data

transmission stage, when all the MSs transmit data symbols to

their corresponding BS, and the composite signal as received

by BSk is given by

yk =
√
ρU

∞
∑

l=1

P
∑

n=1

bklhklndlnI (n, l) +wk, (3)

where ρU is the uplink SNR, dln is the data symbol transmitted

by MSln, and wk is the i.i.d. zero mean and unit variance

background noise at BSk’s antennas and all other symbols

are the same as in (1). From the above received signal, BSk

recovers the symbols corresponding to each of its MSs using

maximum-ratio combining, by left-multiplying the received

signal by the conjugate-transpose of the channel estimate of

the corresponding MS. Further, in the limit as M → ∞, the

recovered data symbol d̂km corresponding to MSkm takes a

relatively simple form as shown below.

d̂km = lim
M→∞

ĥ
†
kkmyk

M
√
ρU

(a)
= lim

M→∞

1

M

( ∞
∑

l=1

P
∑

n=1

α∗
nmbklh

†
klnI (n, l) +

a†mW
†
k√

ρP

)

·
( ∞
∑

s=1

P
∑

t=1

hkstbksdstI (t, s) +
wk√
ρU

)

(b)
=

βkkmdkm
Rǫ

kkm

+

P
∑

n=1, n 6=m

α∗
nmβkkndkn
Rǫ

kkn

I (n, k)

+

∞
∑

l=1, l 6=k

P
∑

n=1

α∗
nmbklβklndln

Rǫ
kln

I (n, l) , (4)

where m = 1, 2, · · · , P , (a) is obtained by substituting for

ĥkkm and yk from (2) and (3), respectively, and (b) is obtained

by noting that lim
M→∞

h
†
kln

hkst

M
=
√

βklnβkst

R
ǫ
2
kln

R
ǫ
2
kst

lim
M→∞

g
†
kln

gkst

M

= bklβklnR
−ǫ
klnδ (l = s, n = t), limM→∞

h
†
kln

wk

M
= 0,

limM→∞
W

†
k
hkst

M
= 0, and limM→∞

W
†
k
wk

M
= 0 by applying

the law of large numbers, since gkln, wk, Wk all contain

i.i.d. zero mean unit variance entries. Further, the first term

in (b) is the desired data symbol, the second is the intra-cell

interference term and the third is the inter-cell interference

term. Next, we study the downlink transmission scheme in

detail.

3) Precoding and Downlink Data Transmission: In the

downlink, the BS precodes the data symbol intended for each

MS with the channel estimate of the corresponding wireless

link, and transmits the sum of the precoded signals of all its

MSs through the M antennas. The received signal at MSkm is

ykm =
√
ρD

∞
∑

l=1

bklh
†
lkmxl + wkm,

where ρD is the downlink SNR, xl =
∑P

n=1 ĥllndlnI (n, l)
is the signal transmitted by BSl, dln is the data symbol

intended to MSln and is precoded by the corresponding

channel estimate ĥlln. Due to channel reciprocity induced by

the TDD operation, the channel between BSl and MSkm is

h
†
lkm, and lastly, wkm is a zero mean, unit variance random

variable representing the background noise. Each MS performs

a relatively simple processing to recover the data symbol

transmitted by the serving BS. The recovered data symbol in

the downlink is

d̂km = lim
M→∞

ykm
M
√
ρD

= lim
M→∞

1

M

∞
∑

l=1

h
†
lkm

P
∑

n=1

ĥllndlnI (n, l) +
wkm

M
√
ρD

=

∞
∑

l=1

(

P
∑

n=1

α∗
nmdlnI (n, l)

)

bklβlkmR−ǫ
lkm, (5)

where m = 1, 2, · · · , M , lim
M→∞

h
†
lkm

ĥlln

M
= αmnβlkmR−ǫ

lkm,

αmn = α∗
nm, and lim

M→∞
wkm

M
√
ρD

= 0. Notice that the resultant

system is again interference-limited and the following lemma

provides the expressions for the uplink and downlink SIR for

a given BS-MS pair.

Lemma 1. The uplink and downlink SIRs are

SIR
(UL)
km =

β2
kkmR−2ǫ

kkm

I
(UL)
km

and SIR
(DL)
km =

β2
kkmR−2ǫ

kkm

I
(DL)
km

, (6)

where I
(UL)
km =

∑∞
l=1

∑P
n=1

(l,n)6=(k,m)

bkl |αnm|2 β2
klnR

−2ǫ
kln I (n, l) and

I
(DL)
km =

∑∞
l=1

(· ∑P
n=1

(l,n)6=(k,m)

|αnm|2 I (n, l)
)

bklβ
2
lkmR−2ǫ

lkm are

the corresponding interference powers.

Notice that, when each BS serves a fixed number of user

equal to P using a set of P orthogonal pilot sequences, the

resultant expressions for SIR
(UL)
km and SIR

(DL)
km are identical

to those obtained in [1].

In the following section, we systematically evaluate the

system performance in the uplink and downlink.

IV. INTERFERENCE CHARACTERISTICS AND SIR

In this section, we derive closed-form expressions for the

Laplace transform of interference and the SIR distribution for



4

both uplink and downlink. We first consider the case when

all the P pilot sequences are orthogonal to each other. Since

each pilot sequence is of length K, at most K orthogonal pilot

sequences can be designed, and hence P ≤ K.

A. Case of orthogonal pilot sequences

In this case, the pilot sequences a1, · · · , aP are such that

the correlation αij = 1, if i = j and 0 otherwise. From Lemma

1, it can be seen that the intra-cell interference is completely

eliminated and the inter-cell interference is only due to the

transmissions corresponding to the same pilot sequence as the

desired signal.

Theorem 2. With orthogonal pilot sequences, the Laplace

transform of the interference in the uplink and downlink are

L
I
(UL)
km

= L
I
(DL)
km

(s) = exp



−
λbπηE

[

β
2
ǫ

]

s
1
ǫ

Γ
(

1 + 1
ε

)

∆sinc
(

π
ǫ

)



 ,

(7)

where Γ (·) is the Gamma function, I
(UL)
km and I

(DL)
km are

obtained from Lemma 1, η =
∑P−1

n=1
n
P

(λuπR
2)

n

n! e−λuπR
2

+
∑∞

n=P

(λuπR
2)

n

n! e−λuπR
2

is the probability that two BSs in the

system use the same pilot sequence, β is the random variable

with the same distribution as the set of i.i.d. random variables

{βklm}∞l=1, E
[

β
2
ǫ

]

<∞, ∆ is the frequency reuse factor and

sinc (x) = sin(x)
x

. Also,

SIR
(UL)
km =st SIR

(DL)
km , (8)

where =st is the equivalence in distribution. Further, in the

special case when {βklm}∞l=1 is a set of i.i.d. unit mean

exponential random variables, the complementary cumulative

density function (c.c.d.f.) of SIR is

P

({

SIR
(UL)
km > γ

})

= P

({

SIR
(DL)
km > γ

})

=
1− e−T

T
,

(9)

where γ ≥ 0 and T = ηλbπR
2γ

1
ǫ

∆sinc(π
ǫ )

.

Proof: See Appendix A.

Further, when the number of users in each cell is equal to

K at all times, all P = K orthogonal pilot sequences are

used by each BS, η (defined in Theorem 2) is 1 and hence

the c.c.d.f. of SIR is obtained using (9) with η = 1. Note that

the above is exactly the scenario considered in [1] where the

uplink and downlink SIRs could only be analyzed via Monte-

Carlo simulations. Here, with the help of stochastic geometry,

we are able to obtain closed form expressions for the relevant

performance metrics in terms of the critical system parameters.

In Section V, we further demonstrate its significance with

numerical examples.

B. Case of non-orthogonal pilot sequences

Now, we consider the case when the pilot sequences are

not orthogonal to each other. Such a scenario arises under

two conditions. Firstly, when the pilot signaling by various

transmitters are not perfectly synchronized. Secondly, in an

overloaded system where the BS serves a large number of

users. Particularly when P > K, all P pilot sequences of

length K cannot be orthogonal to each other. In this section,

we consider an extreme case when all the P pilot sequences

are used by each BS. The uplink and downlink interferences

ar

I
(UL)
km =

∞
∑

l=1

P
∑

n=1

(l,n) 6=(k,m)

bkl |αnm|2 β2
klnR

−2ǫ
kln , (10)

I
(DL)
km =

ᾱmβ2
kkm

R2ǫ
kkm

+ (ᾱm + 1)

∞
∑

l=1, l6=k

bklβ
2
lkm

R2ǫ
lkm

, (11)

where ᾱm ,
∑P

n = 1
n 6= m

|αnm|2. By substituting in (6),

we obtain the corresponding SIR expressions. The following

theorem derives the Laplace transform of interference and the

distribution of SIR in the downlink.

Theorem 3. When all BSs in the system serve P MSs using

the P non-orthogonal pilot sequences, the Laplace transform

of the I
(DL)
km is

L
I
(DL)
km

(s) = Eβ





(

sᾱmβ2
)

1
ǫ Γ
(

− 1
ǫ
, sᾱmβ2

R2ǫ

)

ǫR2



×

exp



−
λbπE

[

β
2
ǫ

]

s
1
ǫ (ᾱm + 1)

1
ǫ

Γ
(

1 + 1
ε

)

∆sinc
(

π
ǫ

)



 , (12)

where Γ (·, ·) is the incomplete Gamma function, Γ (·) is the

Gamma function, β is a random variable with the same

distribution as the i.i.d. random variables βklm’s in (11), ∆
and sinc (·) are as in Theorem 2.

When {βklm}∞l=1 is a set of i.i.d. unit mean exponential

random variables, the c.c.d.f. of downlink SIR is

P

({

SIR
(DL)
km > γ

})

=
∆sinc

(

π
ǫ

)

λbπR2γ̄
1
ǫ



1− e
−λbπR2γ̄

1
ǫ

∆sinc(π
ǫ )



 ,

(13)

∀ 0 ≤ γ ≤ ᾱ−1
m and γ̄ = γ(1+ᾱm)

1−ᾱmγ
.

Proof: See Appendix B.

An important implication of Theorem 3 is that the downlink

SIR in the non-orthogonal case cannot exceed 1
ᾱm

as can be

seen from (19), and hence shows how the design of the set of

pilot sequences determines the system performance.

Next, we characterize the uplink performance with non-

orthogonal pilot sequences. Accurate closed-form character-

izations of the performance metrics in the uplink is not

possible, and hence, we consider the following approximations

to (10) that make the analysis tractable.

1) Replace the instantaneous correlation between the pilot

sequences with the average of the correlations with all

pilot sequences, i.e. replace |αnm|2 of the intra-cell

interference terms with ᾱm

P−1 and |αnm|2 of the inter-

cell interference terms with ᾱm+1
P

.
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2) Upper bound the distance between MSln and BSk,

Rkln with Rkl + R, for (l, n) 6= (k,m), where Rkl is

the radial distance between BSk and BSl. By doing so,

it can be shown that the point process of the resultant

inter-cell interferer is a homogeneous Poisson point

process in the entire plane except the circle of radius R
about the origin. Further, the resultant interference after

this operation is a lower bound for the actual uplink

interference.

3) In order to achieve a mathematically tractable approxi-

mation, we extend the interferer point process obtained

by the previous operation to the entire plane.

With the above three modifications, a reasonable estimate for

the uplink interference is obtained as

Î
(UL)
km =

ᾱmR−2ǫ

P − 1

P
∑

n=1, n 6=m

β2
kkn +

(ᾱm + 1)

P

∞
∑

l=1, l 6=k

bkl

(

P
∑

n=1

β2
kln

)

R−2ǫ
kl , (14)

where Rkkn’s are i.i.d. random variables with a probability

density function (p.d.f.) fRkkn
(r) = 2r

R2 , 0 ≤ r ≤ R, Rkl’s

are from the homogeneous Poisson point process on the plane

with density λb and βkln’s are i.i.d. random shadow fading

factors, and the corresponding uplink SIR is

ˆSIR
(UL)

km =
β2
kkmR−ε

kkm

Î
(UL)
km

. (15)

Using (14) and (15), next we derive analytical expressions for

the uplink performance metrics.

Theorem 4. The Laplace transform of Î
(UL)
km is

L
Î
(UL)
km

(s) =

(

Eβ

[

e−
sᾱmR−2ǫβ2

P−1

])P−1

×

exp









−
λbE

[

(

∑P
n=1 β

2
n

)
1
ǫ

]

s
1
ǫ (ᾱm + 1)

1
ǫ

P
1
εΓ
(

1 + 1
ε

)

∆sinc
(

π
ǫ

)









, (16)

where β, {βn}Pn=1 are i.i.d. random variables with the same

distribution as βkln’s in (14), ∆ and sinc (·) are as in

Theorem 2. When {βklm}∞l=1 is a set of i.i.d. unit mean

exponential random variables, the c.c.d.f. of uplink SIR using

the approximation (14) is

P

({

ˆSIR
(UL)

km > γ
})

= ERkkm

[

L
Î
(UL)
km

(

γR2ǫ
kkm

)

]

.(17)

Proof: Equation (16) can be obtained by following the

same steps as for the derivation of (12), and (17) is obtained

by substituting for ˆSIR
(UL)

km from (15) and then evaluating the

probability w.r.t. β2
kkm, given all other random variables.

Next, the per-user achievable rate (in bits/secs/user) in the

uplink and downlink are

R
(UL)
km =

Bρ

∆
log2

(

1 + SIR
(UL)
km

)

and

R
(DL)
km =

Bρ

∆
log2

(

1 + SIR
(DL)
km

)

,
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Fig. 2. Cumulative distribution for the effective signal-to-interference ratio
in fully loaded MS case with orthogonal pilots.

respectively, where B is the entire allocated bandwidth, ρ
is the scaling factor for the rate-loss from training, guard

interval, etc. and ∆ is the frequency reuse factor. The above

are the uplink and downlink Shannon rates obtained by treating

interference as noise.

The c.c.d.f. of R
(UL)
km and R

(DL)
km for both the orthogonal and

non-orthogonal pilots cases can be obtained from Theorems

2-4 by replacing γ in equations (9), (13) and (17) with

exp
(

γ∆
Bρ

)

− 1.

Next, we provide some numerical examples that further

demonstrate the utility of the analytical study carried out in

this section.

V. NUMERICAL RESULTS

In order to facilitate a fair comparison between the analyti-

cal results obtained in the previous section with the empirical

results in [1, Section VI], we restrict our attention to the

orthogonal pilots case (Section IV-A) and assume the same

system parameters as in [1, Section VI]. From Theorem 2, the

uplink and downlink performances are identical and the hence

the conclusions drawn in this section hold true for both.

Simulation setting: The cellular area of interest is a circle

with a radius 50 kilometers with the radius of each cell

R = 1600 meters and BSs distributed according to a homoge-

neous Poisson point process with density λb =
1

πR2 . The total

system bandwidth B = 20 MHz, and the rate scaling factor

ρ = (3/7)× (66.7/71.4) ≈ 0.4. Three different values for the

frequency reuse factors are considered, ∆ = 1, 3 and 7, and

all the BSs reuse K = 42 orthogonal pilot sequences among

themselves. For the shadow-fading, two cases are considered:

(a) βklm’s follow i.i.d. log-normal distribution with 8.0 dB

standard deviation as in [1], and (b) β2
klm’s follow i.i.d.

unit mean exponential distribution, and finally the path-loss

exponent ǫ = 3.8.

Fully loaded case: Fig. 2 and Fig. 3 show the cumulative

distributions for the SIR (8) and the average achievable rate per

user, respectively, when every cell is fully loaded and serving
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Fig. 3. Cumulative distribution for the net achievable rate per terminal in
fully loaded MS case with orthogonal pilots.
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Fig. 4. Cumulative distribution for the effective signal-to-interference ratio
in random MS case with orthogonal pilots.

its maximum capacity of P users. Note that the analytical

results obtained from (9) with η = 1 fits the simulation result

perfectly. Further, the performance characteristics of the the

exponential and the log-normal fading cases are similar. The

SIR performance strictly improves as ∆ increases because

the average interferer distance increases with ∆. The net

achievable rate per terminal doesn’t necessarily increase as

shown in Fig. 3 since larger ∆ means smaller effective

bandwidth per cell. Hence, ∆ should be accordingly chosen

based on the minimum or average rate and SIR requirements.

Further, comparing Figs. 3 - 5 with [1, Figs. 2-5], we

see that the performances in the hexagonal grid model and

the stochastic geometric model are very close to each other.

Hence, stochastic geometry based model can provides accu-

rate analytical performance characterizations for these cellular

systems.

Random MS case with orthogonal pilots: Now, consider

the case when the number of MSs in each cell is a Poisson

random variable with mean P . When there are more than P
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Fig. 5. Cumulative distribution for the net achievable rate per terminal in
random MS case with orthogonal pilots.

MSs in the cell, only P of them are served. Thus, the desired

BS will only receive interference from the cells that are using

the same pilot as the desired MS.

Fig. 4 and Fig. 5 show the cumulative distributions for the

SIR and the average achievable rate per user, respectively.

Again, the analytical results using (9) fits the simulation

perfectly. Also noticed that although the average number of

MSs in the cell are same for both cases, the average served

MS number is smaller for the random MS case since we can

only serve at most P MSs at the same time. Therefore, the

overall performance of this case is better than the fully loaded

case considered previously.

VI. CONCLUSION AND FUTURE WORKS

Massive MIMO system in which base stations are equipped

with large numbers of antennas has the potential to deliver

enhanced throughput and reliably on both the uplink and

downlink in a fast-changing propagation environments [1].

As the number of antennas in the BS tends to infinity, one

BS can serve an arbitrary number of MSs at arbitrary high

rate as long as accurate channel state information is available.

The capacity of the massive MIMO system is highly limited

by the accuracy of channel state information and hence the

channel estimation method plays a key role. Trade-offs such

as total number of pilots vs their correlations between each

other need to be thoroughly understood to achieve the best

overall performance. Good mathematical tools are necessary

to evaluate the system performance with different settings and

schemes.

We adopt stochastic geometry to model the BS and MS

locations in the cellular system and derive analytical charac-

terizations for the cellular performance in terms of the key

system parameters. When using orthogonal pilots, the closed-

form expressions for the Laplace transform of interference and

the distributions of SIR and achievable rates are obtained and

a duality between the distributions of uplink and downlink

SIR is revealed. For non-orthogonal pilots case, it is shown

that downlink SIR is strictly limited by the inverse of the
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total pilot correlation and a reasonable estimates for the uplink

performance are derived.

Finally, note that the uplink-downlink performance is

mainly determined by the interference caused to the link

due to pilot contamination. The mathematical tools developed

here can be used to study the system performance under

other different channel estimation methods and transmission-

reception schemes, such as those studied in [4]–[6].
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APPENDIX

A. Proof for Theorem 2

In the orthogonal pilots case, αij =

{

1, i = j

0, i 6= j
.

By substituting for αij in Lemma 1, we get

I
(UL)
km =

∑∞
l=1, l 6=k

bklβ
2
klmR−2ǫ

klmI (m, l), I
(DL)
km =

∑∞
l=1, l6=k

bklβ
2
lkmR−2ǫ

lkmI (m, l) and by substituting these

into (6), the uplink and downlink SIR expressions are

obtained. Note that I
(DL)
km is the interference at MSkm due

to BSl transmissions (l 6= k) to MSlm. Using Slivnyak’s

theorem [19], the Palm distribution of all the BSs conditioned

on the location of BSk serving MSkm is also a Poisson

point process and using Campbell’s theorem [20, Page 57],

the Laplace transform of I
(DL)
km is equal to (7).

On the other hand, I
(UL)
km is the interference at BSk

(assumed to be at the origin) from MSs using the mth

pilot sequence served by other BSs that operate in the same

frequency band as BSk. Using the same argument as before, all

the other BSs in the cellular system given BSk is at the origin

is also a homogeneous Poisson point process with BS density

λb. Hence, the Laplace transform of I
(UL)
km can be expressed as

L
I
(UL)
km

(s)

(a)
= E





∞
∏

l=1, l 6=k

e−sbklβ
2
klm‖Xl+Ylm‖−2εI(m,l)





(b)
= exp

(

−λbη

∆

ˆ

x∈R2

Eβ,Y

[

1− e−sβ2‖x+Y ‖−2ε
]

dx

)

(c)
= exp

(

−λbη

∆
Eβ,Y1,Y2

[
¨ x1=∞, x2=∞

x1=−∞, x2=−∞
(

1− e−sβ2[(x1+Y1)
2+(x2+Y2)

2]
−ε
)

dx1dx2

])

(d)
= e

−λbη

∆ Eβ

[

´

∞
r=0

(

1−e−sbkβ2r−2ǫI(m,l)
)

2πrdr
]

(e)
= exp

(

−πηλb

∆
s

1
ǫ · E

[

β
2
ǫ

]

·
ˆ ∞

0

(

e−t−ǫ − 1
)

dt

)

,(18)

where (a) is obtained by rewriting I
(UL)
km in terms of the

locations of BSl denoted by Xl ∈ R
2, and the location of

MSlm around BSl denoted by {Ylm}∞l=1 ∈ R
2 which is

i.i.d. uniformly distributed in the circle of radius R around

the origin, (b) is obtained by first evaluating the expectation

w.r.t. bkl’s that are i.i.d. Bernoulli
(

1
∆

)

random variables and

the indicator functions I (m, l) such that E [I (m, l)] = η =
∑P−1

n=1
n
P

(λuπR
2)

n

n! e−λuπR
2

+
∑∞

n=P

(λuπR
2)

n

n! e−λuπR
2

is the

probability that BSl is currently using the mth pilot sequence

∀ l 6= k and then applying Campbell’s theorem [20, Page

57] to the Poisson point process of the BS arrangement

where the expectation operator is w.r.t. the random variable

β which has the same distribution as βklm’s, (c) is obtained

by exchanging the order of expectation and integration and

expressing the integral over R
2 in the Cartesian coordinate

system, (d) is obtained by the following variable changes:

x1 ← x1 + Y1 and x2 ← x2 + Y2 and rewriting the integrals

in the polar coordinate system, (e) is obtained by a variable

change t ← β− 2
ǫ r2 and then evaluating the expectation w.r.t.
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β, and finally, (7) is obtained by rewriting the integral in (e)
in terms of sinc (·).

Now, since L
I
(UL)
km

(s) = L
I
(DL)
km

(s), the I
(UL)
km and I

(DL)
km

have the same distribution. Further, since the numerator and

denominator in the SIR expressions in (6) are independent of

each other, it is clear that the distribution of SIR in the uplink

and downlink are also identical, and hence we have (8).

Next, if
{

β2
klm

}∞
l=1

is a set of i.i.d. unit mean exponential

random variables, the c.c.d.f. of SIR
(DL)
km is

P

({

SIR
(DL)
km > γ

})

(a)
= E

[

e
−γR2ǫ

kkm

∑∞

l=1, l 6=k
bklβ

2
klmR

−2ǫ
klm

I(m,l)
]

(b)
= ERkkm

[

e
−λbη

∆

´

∞
0

(

1−Eβ2

[

e−γR2ǫ
kkm

β2r−2ǫ
])

2πrdr

]

(c)
= ERkkm

[

exp

(

−ηγ
1
ǫ λbπR

2
kkm

∆sinc
(

π
ǫ

)

)]

,

where γ ≥ 0, (a) is obtained by evaluating the probability

w.r.t. the unit mean exponential random variable β2
kkm condi-

tioned on all other random variables, (b) is similar to (18-(b)),
(c) is obtained by evaluating the expectation w.r.t. β2 which is

a unit mean exponential random variable and then evaluating

the integral in (b) and finally, (9) is obtained by evaluating the

expectation w.r.t. Rkkmwith the probability density function

fRkkm
(r) =

{

2r
R2 0 ≤ r ≤ R

0 otherwise
. From (8), the above is also

the c.c.d.f. of SIR
(UL)
km .

B. Proof for Theorem 3

The Laplace transform of the downlink interference I
(DL)
km

is derive below.

L
I
(DL)
km

(s) = E

[

e−sᾱmβ2
kkmR

−2ǫ
kkm

]

×

E





∞
∏

l=1, l 6=k

e−s(ᾱm+1)bklβ
2
lkmR

−2ǫ
lkm



 ,

is obtained by noting that the two terms in (11) are independent

of each other. Further, (12) is obtained by evaluating the

expectation w.r.t. Rkkm in the first term of the above product,

and then using the Campbell’s theorem to evaluate the second

theorem. Now, notice that the downlink SIR can be expressed

as

SIR(DL)
km =

1

ᾱm + ᾱm+1
SIRkm

, (19)

where SIRkm denotes the SIR for the orthogonal pilots case

studied in Section IV-A. Hence, the c.c.d.f. of SIR(DL)
km is

P

({

SIR(DL)
km > γ

})

= P

(

{SIRkm > γ̄} ∩
{

γ <
1

ᾱm

})

(20)

where γ̄ =
(

γ(1+ᾱm)
1−ᾱmγ

)

, and using the c.c.d.f. of SIRkm is

obtained from (9) with η = 1.


