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Abstract—Networks of the future have been forecast as being
increasingly heterogeneous. Heterogeneous networks, in general,
display a high degree of spatial randomness which is a result of
the deployment of a variety of smaller base stations (BSs) along
with macro BSs wherever and whenever it is deemed necessary.
An important aspect of analyzing, improving, and deploying
heterogeneous networks involves understanding the interference
that users in such a network encounter. This paper documents
a part of our work towards such an analysis of the efficiency
of heterogeneous networks. The work delineated in this paper
discerns the interference experienced in a heterogeneous network
consisting of macro- and micro- BSs which are considered to
be points of a Poisson cluster process in the Euclidean plane.
This paper has two main contributions: the first is an expression
for the generating functional of the interference (akin to its
density function) and the second is a proof that shows that
the interference in any given area can be approximated to be
completely described by a Gaussian distribution with zero mean
and a variance that is dependent on the number of BSs in
the area, along with the functionals that represent the pathloss,
transmit power, fading, etc. which are ascribed to each BS.

I. INTRODUCTION

A general consensus, as evinced by numerous papers from
academia and the industry alike, has emerged wherein Hetero-
geneous Networks (HetNets) are considered to be the networks
of the future. HetNets, in general, consist of different types of
BSs (like macro, micro, pico, femto, etc.) which are deployed
with a fairly irregular topology. The deployment is generally
based on user densities and user demands in a given part of
the area, i.e. micro BSs are deployed in locations where the
macro BSs are unable to satisfy user demands. Initial efforts
to understand HetNets involved running extensive simulations
by fixing macro BSs on a hexagonal grid and randomly
distributing micro BSs within the cell areas of the macro BSs.
A completely theoretic examination has been a fairly recent
endeavor.

Mathematical analysis of such scenarios is a very compli-
cated task, and simplified system level models have been used
to understand the relationship between different parameters
of interest such as probability of coverage (or outage), or
spectral efficiency, etc. with the overall efficiency or optimality
of the network. One of the many methods used for the analysis
of a system is stochastic geometry where BSs and users are
considered to be points of a point process. Various functionals
describing network (or BS) attributes such as fading, path loss,

transmit power, etc. are ascribed to each point of these point
processes. This method of mathematical scrutiny has been
used to achieve some very insightful results for homogeneous
networks as elucidated in [1]-[3]. H.S.Dhillon, et.al., in [4],
extend this approach of analysis of homogeneous networks
to HetNets by considering HetNets as networks consisting of
multiple layers of homogeneous networks to underscore some
very important insights regarding the probability of coverage
in such networks.

Our approach considers the HetNet to be a clustered point
process where the micro BSs are clustered around the macro
BS. The way the micro BSs are clustered is determined by a
simple distribution such as a uniform distribution or Gaussian
distribution which, in turn, reflects the distribution of users
within a particular sub-area. The distribution of the micro
BSs around the macro BSs is driven by (or dependent on)
the user density in the area. Simply put, the intensity of
micro BSs can be assumed to be a function of the user
intensity. Throughout this work, we consider the distribution
of the micro BSs around the macro BS to be as generic as
possible and it is frequently denoted by f(-). The macro BSs
(centers of the clusters) are treated as points of a Poisson Point
Process (PPP). Such processes are generally known as Poisson
Clustered Processes (PCPs). For the first main contribution of
this paper, in Sections II-A and II-B, we consider the PCPs to
be Neyman-Scott processes which result from homogeneous
independent clustering applied to a stationary Poisson process.
Therefore, as discussed in [5] and [6], the PCPs considered in
this paper are special cases of doubly stochastic processes or
Cox processes.

A Cox process is driven by a random field; in our ex-
aminations, the random field is considered to be stationary
which results in a stationary clustered process. Further details
about the consequences of this assumption are given in the
beginning of Section II. The differences between the two
processes mentioned here can be observed in Figures 1 and 2.
The Figure 1 shows a realization of a homogeneous PPP which
has been used in [1]-[4]. Note that all the points realized are
of the same type, which implies that there is only one type of
BS considered per layer. This work uses PCPs, a realization
of which is illustrated in Figure 2, where two types of BSs
can be considered per layer. A PCP allows clustering of one
type of points around a point of another type. This implies,



a more realistic representation of a real world network which
can mimic the clustered deployment of micro BSs around a
macro BS can be realized using this method. We use this
framework to assess the efficiency of a HetNet based on a
capacity constraint. A task that is essential for achieving this
target is that of understanding the behavior of the interference
within such a framework. The main results of this paper are
dedicated to understanding the behavior of the interference
experienced by a user in a network that is exemplified by this
framework.
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Fig. 1. Homogeneous PPP with intensity A = 25
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Fig. 2. PCP with A = 25 and 10 cluster points per parent

This paper is organized as follows: The opening paragraphs
of Section II contain the system model. The system model
described in Section II (below) forms the basis for our initial
goal of trying to estimate the energy consumption of a het-
erogeneous network based on a capacity constraint and led to
the findings documented in this paper. Section II-A illustrates
how the density function of the interference can be described.

This is then used in Section II-B where the expression for
the generating functional of the interference (or the density
function of the interference) is derived and this is one of
the two main findings of our paper. Section II-C describes
the asymptotic behavior of the generating functional of the
interference and contains a theorem which is the other salient
find. Lastly, Section III contains the conclusion and future
work of the authors.

II. DOWNLINK SYSTEM MODEL

The downlink system model considers macro- and micro-
BSs as points of a stationary Poisson cluster process (a special
case of a doubly stochastic or Cox process). The assumption
of stationarity results in a fixed number of points per cluster
and a fixed normalized kernel “bandwidth”!. This implies
that, the average number of micro BSs per cluster, though
scattered according to a particular distribution, are fixed. This
assumption also implies that the spread of the cluster (or the
maximum radius up to which micro BSs are present around
a particular macro BS) is fixed. The single antenna macro
BSs are distributed according to a homogeneous Poisson point
process (PPP) ®. with density A, around which the single
antenna micro BSs are clustered based on a given distribution
f(-). Throughout this work, the cluster intensity is denoted by
Am and is assumed to be fixed. This stems from the assumption
of stationarity and implies that the average number of micro
BSs distributed around a particular macro BS in any realization
is fixed. For a point process ®, the Voronoi cell determines
the area covered by a particular BS and is given by

Cx, = {z € R?:SINR; > T}
={2€R*: L(z,2;) >T (I3 (2) + W)},

where X, = {z;} € R? is the set of BS locations, T is a
threshold, and SINR, is the Signal-to-Interference-plus-Noise
ratio at point z € R2. L(z, z;) is power received at point z, W
is the noise power, and Ig (z) is the interference at point z.
The noise power is assumed to be additive and constant with
o2, and no assumptions are made about its distribution. The
interference and the received power are given by

Ph
To () = 37 Lizag), and L(z20) = ;s
;€D
J#i

respectively; where P is the transmit power, h is a fading
parameter defined as an exponential random variable with
a mean p, and [ (|z; — z|) is the path loss function usually
considered to be in a power law form such as ||z; — z||?,
or (14 ||lz; — z||)®. Here, 3 is the path loss exponent and
is considered to be greater than 2 ( i.e. § > 2). This model
assumes that the user at a given location z € R? connects
to the BS (macro or micro BS) closest to it. It should be
noted that, for mathematical simplicity, an identical pathloss

INote: “bandwidth” is a term from mathematical literature (for ex: in [7]
and references therein) which defines the spread of the cluster points around
the parent point and shouldn’t be confused with the definition of bandwidth
in communications engineering.



model is assumed for macro and micro BSs. The transmit
power, P, can be described by a two point distribution to
account for different transmit powers of macro and micro BSs.
However, the description of the transmit power P isn’t central
to the results obtained in this paper. It should be stressed that
altering the assumptions (the identical pathloss model or a two
point distribution for the transmit power) would not change
the results documented in this paper in anyway. The spatially
averaged rate for a point process with intensity A, as seen in
[2], [3] for the homogeneous case, can then be given by

oo o0
Re = / / 2mAr exp (—mAr?) Lw (s) L1, (s) drdy,

o Jo 0
where r is the radial distance between the user location and
the BS, 7 is the threshold, s = p(e¥ — 1) 77, Ly (s) is the
Laplace functional of the noise, and Ly, (s) is the Laplace
functional of the interference. Repeated differentiation of the
Laplace functional (or equivalently the Laplace transform) can
be used to find the moments of the interference. Therefore, the
Laplace functional of the interference can be considered to be
equivalent to the distribution of the interference. Hence, the
rest of this work focuses on attempts to obtain the Laplace
functional of the interference.

A. Laplace Functional of the Interference

The Laplace functional of the interference can be written as

exp <th/z T -2z )]

zed

£I<I> (S) = ]El)

=E, H exp (—sh/l(z — Z))]
Lzed

= ]E:) H Ly (s/l(x — Z))‘| )
Lxed

where Ly, (s/l(xz — z)) is the Laplace functional of the receive
power and E! [] is the Palm expectation with respect to
the reduced Palm distribution conditioned on the fact that
there is a point of the point process at the origin. Let
Ly (s/l(x — z)) = v(z — z), where V is a family of functions
such that v € V and 0 < v(z) < 1,V z, which implies

L1, (s) =E} { 11 } For PCPs
zed

v(r —2) 2 we have

L, (s)= [Hvx—z

zed

=E, lex—z], 2)

zed

where E, [-] is the Palm expectation with respect to the Palm
distribution. Since the Laplace functional of a PCP is difficult
to compute, the generating functional is used instead.

2 [6] and [8] show that the reduced Palm expectation of a PCP is equivalent
to the Palm expectation of the PCP.

B. Generating Functional of the Interference

Let M be a set of all locally finite counting measures ¢
on RY with a o-algebra of Borel sets, B, Let M be the o-
algebra generated by the sets {¢ : ¢ € M, ¢o(B) = k},Vk =
0,1,2,---and B € BY, where B¢ is the system of bounded
sets in B¢. From [6], the generating functional for a PCP is
given by

G@(B) [H vx

zed

for t € [0,1] and B € B¢, with v(x) = 1+ (t — 1)15(z) as
per the definition in Section II-A above.

For a stationary PCP & with distribution P, denote the
parent points (process of cluster centers) as ®, with distri-
bution P, intensity A, and intensity measure A.. Denote the
process of cluster members ®,,, with distribution P,,. Each
point x € &, triggers a cluster member process @gﬁ) ~ Pf{f )
which is independent of ®. and @Lﬁ’), if y # x. This implies
Pr(Y) = P,(T,Y) for Y € M, where for any set defined
as ¢: (Tpp)(B) = ¢(B + ). In this scenario, ¢(B + x) is
the counting measure on translated sets. From [6], the reduced
Palm distribution of a PCP is given by P§ = P x PO where
P is the KLM measure [9] and = is the convolution operator.
For a stationary PCP, we know that

T — (50) ( ),VY e M,

a:Ego

where §,(B) = 1g(z) is the Dirac measure and )\, is the
mean number of points of the representative cluster (cluster
intensity). For all non-negative (B%)* ® M-measurable map-
pings, q : (Rd)k x M — RL, such that

k
Z *q<x171‘27“.’xk’®_zgzl>_
x1,L9, €D =1
k
> X DD DD

=1 K1jU--UK;=K y1,,4y1€Pc k1E€Pm (y1) ki1 €@ (y71)
k1€Ky k€K,
l
P SR NS ol P o R R
Z€<I>u75yl»-»76yl j=1 k€K, !

P — a.s. (P—almost surely), for all £ =

the sum >
KiU---UK; =K

K ={1,---,k} into ‘I’ disjoint non-empty subsets K;. The

sum S>> " is taken over all k-tuples of pairwise distinct

Y1, Y1 €Pe )
Y1, -,y € RY with o({y;}) >0,j=1,---

Theorem 1 in [10],

Z *q <x1’_.. Tl — Z(sﬂm) =

Ty, , LpEP

/ / Ih : xkvcp)P 1y

(Rd)E M

1,2,--- where
(+) is taken over all partitions of the set

, k. Then, from

o (d0)as) (d (1, @),

3)



where agf) (B) = Cl(gk) (B xY) is the k-th order reduced

Campbell measure given by
k
<90 - Z 6wz> P(dL)O)
1=1

The equations in the lines above that culminate in equation
(3) show that the n-fold Palm distributions which describe a
PCP can be seen as a natural generalization of the “usual”
Palm distributions (or the first order Palm distributions).
The first order Palm distribution is defined as the density
of the Campbell measure of ® with respect to the intensity
measure. According to Campbell’s Theorem [8], for a
P01sson process @, distributed as P. with intensity measure
A, aP = A x Ao+ x A, and P! (Y) = P(Y),
VY € M.

cH(BxY)=

*
> gy, ,m)ly

i L TREP

15 %k

Theorem 1 from [11] states: If A, is o-finite and

E [(®,,(R%))*] < oo then

g (@1, 2, 9) Py (dp)al) (d (@, )
Rk M
k
=1 KU UK=K gay (gayixyl (gaylil Mt
q| *1, xkﬂ/)'i‘z% dw)
j=1
l l (1K;1)
(y5) ) j L. .
jl;ll (Pmyj ) )<wkj:kjez<j> 7:1_[10[135,?;) (o, 1k € 1))
X ACXAC 'XAC)(d(yh"'vyl))? (4)

where 1 is the finite representative cluster process whose
reduced Palm distribution is given by 150I and ¢, = ¢ +y.
|K;| in equation (4) stands for the cardinality of the set K.
The equation given above is a generalization of the main
result from [12], where Mecke shows that a doubly stochastic
Poisson process can be represented as a mixture of Poisson
processes.

Using the above result for the special case of £ = 1
and the set K = Y(z,r) = {p:p € M,p(b(z,r)) =0},
where b(z,7) = {y : y € R%, ||z — y|| < r}, the mapping g is
now representative of the family of functions V' described by
v € V,0 <w(z) <1 (Va)in equation (2). Therefore, the
generating functional is then given by

0= [TLmmo

xEP

) Ac(dip) x

;) aly) (de),

/ n(:c)

where a (dx) is the first order reduced Campbell measure.
By definition, a PCP is a process where in the parent points
are driven by a Poisson process. This implies

G(v) = exp —/\C/[l — Py, (Y(z,7))]dx p x

R2

1
» / Pl (Y (2,7)) oD (da)
R2

Considering a Neyman-Scott process [6], where ®,,, consists
of points which are independently and identically distributed
about the origin according to some distribution f(z) with a
cluster size N, which has the probability generating functional

gla) = > P(N =n)a" So we have
n>0

P (Y(2,7)) =) P(N =&, (b°(x,

= (F (0%, 1)),
Bl (Y (7)) = (B(N) ' (F
oY) (dz) = E(N)F(B),

7)) =n)
(b°(z,7))),
VB e B?

= R2\ b(z,r),
dz. Substituting the above results in a

where ¢'(-) is the derivative of g(-), b°(z,r)
and F(B) = [ f(z)

B
generating functional of the form

G(v) = exp —)\c/ [1—g(F (x,r)))]dx p x

*/

The generating functional for a Poisson point process is
g (F (b°(x,r))) = exp{=Am [l — F (b°(z,7))]}, which im-
plies g’ (F (b(2,7))) = A [exp {~Am [1 — F (b°(z,7)]}].
Hence the generating functional is given by

F (b°(x,r))) f(z)dx.

G(v) =exp{ —Ac / 1—exp{-An[l—

R2

X /exp{f/\m [1-—

R2

F (b2, )]} da

F (2, )]} f(2)de

= G(v) =exp —Ac

/ [1 —exp{—AnF (b(z,r))} dx

R2

y / exp {=AmF (b(z, 1))} f(z)dz

R‘Z

Substitution of the series approximation of exp(—y) as



exp(—y) = 1 —y + O(y?), and simplification results in

G(v) ~exp —)\c/)\mF (b(z,7)) p drx

R2

1- )\m/F (b(z,m)) f(x)dz| . (5)
R2

In the case of a heterogeneous network that is represented by
a PCP, then

F (b(z,r) = / L (s/1(x — ) F(v)dy.
RQ

If the fading h is considered to be exponentially distributed

with mean p, the Laplace transformation of the receive power

is L (s/l(x—y)) = % where the radial distance
SO

between the user location and a point of PCP to which it is
connected is 7. This substitution in equation (5) results in

AA//

R2 R2

R A=

R2 R2

G (v) ~ exp t,l(x y) f(y)dydz

,,m )

Therefore,>

1
Lr, (s) ~ exp >\c)\m// mf(y)dyd:c
R? R2 T+ =
[1

X

[ [ g ot

R? R2
(6)

Hence, equation (6) gives a complete description of the inter-
ference in a heterogeneous network that consists of micro BSs
clustered around macro BSs. The expression derived above
comprises of the interference experienced by a user at a given
point from all BSs within (except from the BS that it is
connected to) and outside the cluster to which it is connected
to. Inter-cluster interference is the interference experienced at
a given location from all the BSs in the area. Intra-cluster
interference is the interference experienced at a given location
from other BSs within the cluster. The first term of the product
on the RHS of equation (6), the exponential term, describes the
inter-cluster interference and the second term of the product
describes the intra-cluster interference.

Since equation (6) essentially involves a few convolution
operations, obtaining a closed form solution is unlikely in most
cases. Our aim is to be able to characterize the interference as
succinctly as possible. Therefore, it is essential to use other

3Note: L1, (s) = G(v(z—2)). Equation (6) is obtained after ‘s” has been
substituted with its original value (i.e u(e¥ — 1)rP). ‘(¢¥ — 1)’ has been
replaced by ‘t” for brevity.

methods to understand the behavior of the interference. Our
method of choice is to observe the asymptotic behavior of

ELp (S) .
C. Asymptotic Behavior of Ly, (s)

Let (W,),,~, be a sequence of compact sampling windows

in R?. Let the eroded sets, D,, := () (W, +z),n>1
x€eb(0,r)
satisfy the Regularity Condition *

Regularity Condition: There exists a sequence of d-
dimensional rectangles, A, = [0, a(l)} X [O,agld)] and
constants C'1, Cy > 0 such that:

(@ v(A

n) —> 00, and min agv) > (Y,
1<i<d

(b) D, C A,, and v(D,,) > Cyv(A,,) for every n > 1,
where v(-) is the Lebesgue measure.

Let S(r) be the unbiased estimator of L, (s). Define
S(r) = AMG(v(z — z)), where 0 < A, < oo and A, =
E [® ([0,1]9)] is the intensity of the PCP @ in the closed
interval considered. For stationary PCPs, A\, = AcAp,. Over
the eroded sets, S (r) is defined by

S, (r) ZlD

J,E@

1Y(x r)(q) 0 )

where v(D,,) is the Lebesgue measure of D,,. The asymp-
totic behavior and unbiasedness of a class of estimators for
stationary PCPs under a strong mixing > condition known
as the Brillinger mixing or B-mixing ¢ is shown in [13]. If
the B-mixing condition is satisfied, a random variable can
be constructed from an unbiased estimator (for ex: S, (r) as

. defined above). This condition has been shown to be true

n [13]. Therefore, a centered random variable Z,,(r) can be
defined as

Zn(r) = (A(Dn))'? (Su(r) = E[S(r)])
Theorem. For a radius v > 0, if lim Var[Z,(r)] =

n—oo
0/2\17 (r) > 0, then

Zn(r) —— N(0,03 () @)

n—oo

where N (0, U?\p (r)) is a Gaussian distribution.

Proof: The assertion in equation (7) can be proved along
the lines of Theorem 4 in [11]. Introduce a truncated PCP, ®,
whose cluster center process is still ®, ~ P, but the process

“This condition needs to be satisfied in order for us to be able to obtain
a Lebesgue measure on R?. The regularity condition enables treating the
Lebesgue measure on R? as a product measure which is constructed from
premeasures defined on the rectangles in R%. The premeasures help obtain an
outer measure on R? and Carathéodory’s Theorem is then used to obtain the
Lebesgue measure.

Strong mixing implies that for any two realizations of the random
variable, given a sufficient amount of time between the two realizations, their
occurrence is independent.

A brief definition, along with the sufficient conditions for point processes
to be B-mixing, is also given in [13].



of cluster members ®,,,, consists of atoms of ®,, which are
located in the sphere b(0, p), where p > r; ie. ®,,,({z}) > 0
if ®,,,({x}) > 0 and ||z|| < p. For A € B4,

1
Spp(r, A) = N ; Lanp, () 1y (e (P, — 0z)
TeLp

1
= I/(D ) Z Z lAmD,,mb(y—p)(x)lY(z,r)(q)%_536)

"y pealy)

X H 1Y(z,r)(¢)1(7fzb)p)a
ZEDP.—0dy

which implies that the centered random variable can be written
1/2

as Znp(r) = ((Dn))'"* (Sp(r, Dn) = E[Sy,(r, Dy)]). By

the definition of ®,, the random variables S,,(r, A) and

Snp(r,B) are independent if the sets A and B are sep-

arated greater than 2(p + r). Define a set E, = [z1 —

1,21) X -+« X [zg — 1,24) for any {z eU, C Zd} where

74 = {z= (21, ,2q) 1 2 =0, %1, 42, - :i=1,--- ,d}
d )

and U, = X {1,2,~~~ ,[agf)] + 1}. Consider a family of
i=1

1=

random variables

(W(Du)"? (Snp(r, Bz) — E [Sny(r, E2))
Var [Zp, (1))

Xn(r) =
_ an(r)
Var [Z,,,(r)]

Consequently, X,,.(r) form an m-dependent random field.
Therefore, as in Theorem 1 of [14], it can be proven that

an (7‘) D
Var (2, ()] oo

since X,,, satisfies the following conditions for every fixed
€ > 0:

@) Y P(Xn:| =€) —=0,

N(0,1), ®)

ol n—oo
(i) 3 E[X2.(9] < C(0) < oo,
zeU,
(732) E [Sn(e)] —ac R and Var [S,, (€)] — o2,

where C(e€) is a positive constant that changes with ¢ and
o > 0. The above conditions are shown to be true in [14] and
the references therein. Then it remains to be shown that

lim sup Var (Z,(r) — Z,,(r)) =0, Yr>0. (9)

p—r 00 n>1
By definition,
Var (Z, (1) = Znp(r)) = E(Zn(1)) (Zn(r) = Znp(r)) —
E(an(r)) (Zn(r) — an(r)) .
From the equation above, it can then be shown that
lim sup E(Z,(r)) (Zn(r) = Znp(r)) =0,
p—r00 n>1

and
lim sup E(Z,,(1)) (Zn(r) — Znp(r)) =0

pP—r00 n>1

as in [11]. For the functional limit theorem to hold, the
tightness of Z,, must be proven; i.e. to prove the convergence
of Z, =(Z,(r),0<r < R)withn=1,2,--- as a sequence
of D[0, R]-valued random elements, the fourth moments of
the increments Z,(t) — Z,(s),0 < s < ¢t < R need to
be bounded. This can be done by determining bounds on
E (Zn(t) — Zy(s))* by means of the fourth- and second-order
cumulants’ of (1/(Dn))1/2 (Sn(t) — Sn(s)) as in Lemma 2 of
[11]. The bounds are given by

E(Zu(t) — Zu(5))" < Cy [(t — ) /v(Dy) + (t — 5)?] ,

for a constant C; > 0. Therefore, from equations (8) and (9),

Zy(r) —2— N(0,03 (r)).

n— oo

|

Therefore, the estimator of the interference over a
normalized area can be approximated by a Gaussian random
variable with zero mean and variance J/z\p (r). Since the
estimator is a linear function of the generating functional of
the interference, the interference itself can be approximated
by a Gaussian random variable with zero mean and variance

o, (r)/ A5

Significance of the findings: The above proof shows that
the interference for heterogeneous networks can be assumed
to have a Gaussian distribution. A salient feature of this result
is that it holds irrespective of the deployment topology (i.e. it
is independent of the location of macro BSs and micro BSs in
the area). It is also important to note that the description of the
interference as a Gaussian random variable remains unchanged
based on the definition of functionals such as transmit power,
fading, pathloss, etc. that are attributed to these points. This
result, therefore, implicitly holds for all pathloss exponents
B > 2. The influence of the functionals can be observed
only in the variance of interference. Hence, well behaved
functionals that can describe the pathloss, fading, etc. can
assist in achieving a complete and accurate description of the
interference.

ITIT. CONCLUSIONS AND FUTURE WORK

This work examines the interference in a HetNet consisting
of macro BSs and micro BSs. The formulation consists of
micro BSs clustered around a macro BS according to a given
distribution dependent on the user density in a given area.
Functionals representing various system specifications such as
transmit power, fading, etc. act on every point of the point
process. There are two main results that have been expounded
in this paper. The first is an expression for the generating
functional of the interference, which is analogous to finding
the density function of the interference, and hence completely
describes its behavior in a given area. The second is a proof
that examines the asymptotic behavior, and shows that the

"The cumulant is a quantity that provides an alternative to the moments
of a function. The cumulant generating functional can be expressed as the
logarithm of the moment generating functional.



interference can be described by a Gaussian random variable
whose variance is dependent on the functionals acting on each
point of the point process.

It should be emphasized that the results chronicled in this
paper are independent of the network topology (or the precise
locations of macro BSs and micro BSs). While the first result
(the generating functional) is dependent on the distribution
of micro BSs around the macro BS, the second result (the
theorem) is independent of the distribution. The convergence
of the distribution of the interference to a Gaussian distribution
is also independent of the functionals acting on points of
the point process. However, this does not imply that the
functionals do not have any impact on the distribution of
the interference. It is worth reiterating that, the variance of
the distribution of the interference depends on the functionals
chosen to describe transmit power, fading, pathloss, etc. These
results form a significant step towards improving the authors’
understanding of HetNets.

As mentioned in the latter part of Section I, this work
is a part of the authors’ endeavors to estimate the energy
consumption of a heterogeneous network based on a capacity
constraint. Our future work consists of efforts to achieve this
goal. The first step would be to find an expression for the
variance of the distribution to which the convergence of the
interference has been demonstrated. Once this is achieved, we
also intend to corroborate these findings using simulations. A
comparison of our theoretic frame work with simulations will
indubitably help improve and refine our models.
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