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Abstract—We propose a robust beamforming design for un-
derlay cognitive radio networks where multiple secondary trans-
mitters communicate with corresponding secondary receivers
and coexist with a primary network. The main focus is to
design the optimal transmit beamforming vectors for secondary
transmitters that maximize the minimum of the received signal-
to-interference-plus-noise ratios of the cognitive users. We con-
sider a scenario where all transmitters have multiple antennas
and all primary and secondary receivers are equipped with a
single antenna. Individual transmit powers of the transmitters
are limited and interference power constraints to the primary
receivers guarantee the performance of the primary network.
Imperfect channel state information (CSI) in all relevant channels
are considered and bounded ellipsoidal uncertainty model is used
to model the CSI errors. We recast the problem in the form of
semi-definite program and an iterative algorithm is proposed to
achieve the optimal solution. Numerical simulation are conducted
to show the effectiveness of the proposed method against the non-
robust design.

Index Terms—cognitive radio network, robust beamforming,
imperfect channel state information, convex optimization, second

order cone programming (SOCP).

I. INTRODUCTION

Cognitive radio networks (CRNs) [1]–[3] operate on the

idea of the secondary usage of spectrum. Here the secondary

network is allowed to opportunistically accesses the spectrum

owned by the primary network provided that it does not

degrade the performance of the primary network. Hence, there

are two major challenges that should be addressed by a CRN.

The first is to guarantee the performance or the quality of

service (QoS) of the primary network. The second is to meet

the QoS requirements of the users in the CRN as much

as possible. Specifically, in underlay CRNs the maximum

interference power to the primary users (PUs) should remain

below a threshold [3] while maintaining QoS for the secondary

(cognitive) users.

Resource allocation problems for underlay CRNs has been

studied recently in [4]–[6], assuming that perfect channel

state information (CSI) knowledge for all relevant links are

available for the design. Beamformer design for multiple-

input-multiple-output (MIMO) ad hoc CRN is presented in [4].

The weighted sum-rate of the CRN is maximized in [4] subject

to the individual power constraints and interference constraints

to the primary network. A semi-distributed algorithms is
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proposed to achieve local optimum solution for multi user

CRN co-exists with a single PU. A game theoretic approach

for the same problem with multiple PUs is presented in [5].

However, the channel vectors are estimated with error from

training sequences in practice. These imperfect estimation and

errors in the channels can greatly affect the performance of the

network, resulting in degradation in users’ QoS. Such channel

errors can be modeled either by a bounded uncertainty model

such as D-norm, polyhedron, ellipsoidal [7] or a stochastic

error model [8].

Robust beamformer design over imperfect CSI has received

considerable attention recently. Usually, this problem is tackled

by either worst-case optimization [9]–[18] or stochastic opti-

mization [17], [19]. In worst-case optimization (or maximin

optimization), the uncertain parameters can take some given

set of possible values, but without any known distribution.

Then the optimization variables are designed such a way

that an objective value is maximized while guaranteeing the

feasibility of the constraints over the given set of possible

values of the parameters. Hence, for bounded CSI error model,

the worst-case optimization method is more suitable. This

method has been applied to design the robust beamforming

vectors for underlay CRNs in [13]–[18], where the channel

errors are either norm bound or bounded by ellipsoids. With

the exception of [17] and [18], most of the above mentioned

work consider a CRN where a single secondary transmitter

(TX) co-exist in a primary network. Various different problems

has been studied and the problem of maximizing the minimum

SINR in an underlay CRN, where the transmitter communi-

cates with multiple secondary receivers (RXs) is studied in

[14]. An iterative solution has been proposed based on semi-

definite relaxation, and if the solution is not rank-one, rank-one

approximations have to be used to achieve the beamforming

vectors.

The sum mean square error is minimized in [17] for an

underlay MIMO ad hoc CRN constrained to individual power

budgets of secondary TXs, where the channel errors are

bounded by Euclidean balls. There the authors have cast

the problem as a semi-definite program (SDP) and solved

iteratively via standard interior point methods. In [18], the

same problem has been considered and a distributed solution

is proposed under the assumption that secondary TXs have

perfect CSI knowledge of the channels to secondary RXs.

The focus of this paper is to design the optimal beamformer

vectors for secondary TXs in a CRN that maximize the worst



SINR of any secondary user subject to interference constraints

to primary network and individual power constraints. Further,

we assume that the network controller has imperfect CSI

knowledge of all relevant links and the possible channel

errors vary in bounded uncertainty ellipsoids [7], [10], [11].

An equivalent reformulation of the problem is obtained and

then the S-procedure [20], [21] is used to handle the non-

convex quadratic constraints due to channel uncertainties. In

particular, each quadratic constraint pair due to channel errors

can be reformulated as a linear matrix inequality (LMI) for

a fixed objective value by means of the S-lemma [12], [14],

which leads to a SDP that can be solved iteratively. Finally, by

introducing an objective function to the feasibility check step

of the iterative algorithm, we show that the optimal solution

for the original problem can be achieved since this objective

function guarantees that the solution of the SDP is always

rank-one.

Organization: Section II describe the network model and

the channel uncertainty model use in this paper. The prob-

lem formulation for the worst-case scenario and a suitable

equivalent reformulation is presented in Section III. In Section

IV, the SDP based solution is presented and an iterative

algorithm is proposed to obtain the optimal beamforming

vectors. Simulation results are presented in Section V. Finally,

we concludes the paper with Section VI.

Notations: Throughout this paper, Cn, Hn and R denotes

the set of n-dimensional complex vectors, the set of n-
dimensional complex hermitian matrices and the set of real

values respectively. Further, the complex column vectors and

matrices are represented by the boldfaced lowercase and

uppercase letters respectively, e.g. w and W, and a real

scalar by a lower case letter. The superscript (·)H denotes

the hermitian (conjugate transpose) operation for a vector or

a matrix. W � 0 and W ≻ 0 means that W is positive

semi-definite and positive definite, respectively. Rank and the

trace of a matrix are represented by Rank(W) and Trace(W)
respectively. Modulus of a scalar is denoted by | · | and ‖ · ‖
denotes the Euclidean norm of a vector. The expectation of a

random variable is denoted by E{·}. In addition, In denotes

the n-dimensional identity matrix while 0 denotes an all-zero

vector or matrix with appropriate dimensions. Finally, in an

optimization problem if w is a variable then w∗ denotes the

optimal value or the optimal solution of the problem for the

corresponding variable.

II. SYSTEM MODEL

In this section we provide the detailed description of the

considered network and the ellipsoidal channel uncertainty

model.

A. Network Model

The system model is shown in Fig. 1, where an underlay

CRN made up of multiple transmitter receiver pairs coexists

with a primary network. The set of secondary TXs is denoted

by N and we label them as i = 1, . . . , N . We consider that

the secondary TX nodes are equipped with nt antennas to

communicate with their RXs. We represent the set of all PUs

by K and label them as k = 1, . . . ,K . Further, we assume

that all the primary and secondary RXs are equipped with a

single antenna.

We assume that the secondary network operates in a cen-

tralized manner and a network controller decides the resource

allocation for each secondary TX. All secondary TXs operate

in the same frequency band as the primary network and use

transmit beamforming to communicate with their correspond-

ing receivers.
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Fig. 1. System model (Straight arrows show the desired channels and
the dashed arrows show the interfering channels)

The signal transmitted by ith secondary TX is given by,

xi = widi, (1)

where di denotes the transmitted (complex) information sym-
bol from ith secondary TX and wi is its associated beam-

forming vector. We assume that the information symbols are

independent, i.e. E{didHj } = 0 for all j 6= i, i, j ∈ N , and

normalized such that E{|di|2} = 1 for all i ∈ N . Therefore

the transmit power of secondary TX i is given by ‖wi‖2 and

is limited by Pmax, the maximum available transmit power,

for all i ∈ N .

We denote the channel vector from jth secondary TX to

ith secondary RX by gji ∈ Cnt . The interfering channel from

ith secondary TX to kth primary RX is denoted by hik ∈
Cnt . Then the received signal, yi, at ith secondary RX can be

written as,

yi = gH
iiwidi +

N
∑

j=1
j 6=i

gH
jiwjdj + zi, (2)

where the first term is the signal of interest, the second term

represents the interference from the secondary network and

zi ∈ C is the experienced additive noise at ith secondary

RX. The term zi includes the receiver’s thermal noise and

the interference from the primary network with power σ2
i .

Therefore, the instantaneous SINR at the ith secondary RX

can be expressed as,

SINRi =
|gH

iiwi|2
∑N

j=1
j 6=i

|gH
jiwj |2 + σ2

i

. (3)



The total interference power, Ik, cause by the secondary

network on kth primary RX can be written as,

Ik =
N
∑

i=1

|hH
ikwi|2, (4)

which should be limited by the interference threshold Ith in

order to guarantee the QoS of the primary network.

B. Channel Uncertainty Model

We assume that the channels are uncertain at the network

controller, but they belong to a known compact sets of possible

values. Specifically, we assume that the channel vectors, gji

and hik for all i, j ∈ N and k ∈ K, belong to known

ellipsoidal uncertainty sets.

We model the channel vector, gji, from jth secondary TX

to ith secondary RX as the sum of two components, i.e.,

gji = ĝji + eji, (5)

where ĝji ∈ Cnt denotes the estimated value at the network

controller and eji represents the corresponding channel esti-

mation error. It is assumed that eji can take any value inside

a nt-dimensional complex ellipsoid described by,

eHjiQjieji ≤ 1, (6)

where Qji is a complex Hermitian positive definite matrix

(Qji ≻ 0), assumed to be known, which specifies the size and
shape of the ellipsoid. For example, when Qji = (1/ξ2ji)I, the
ellipsoidal channel error model (6) reduces to ‖eji‖2 ≤ ξ2ji the
popular Frobenious norm bound (ball) error model [22] with

uncertainty ball radius ξji. The CSI knowledge change from
perfect to worst can be model using this model as ξ varies

from zero to infinity [14].

We use the same uncertainty model for the channel vector,

hik, from ith secondary TX to kth primary RX, i.e.,

hik = ĥik + ẽik, (7)

where ĥik ∈ Cnt is the estimated value at the network con-

troller and ẽik denotes the corresponding channel estimation

error. The nt-dimensional complex ellipsoid that the error ẽik
can vary is defined as,

ẽHikQ̃ikẽik ≤ 1, (8)

where (Q̃ik ≻ 0) specifies the size and shape of the ellipsoid.

III. PROBLEM FORMULATION

Our objective is to maximize the performance of the CRN

while satisfying the QoS requirements of the primary net-

work. We consider the minimum SINR among all secondary

receivers as the performance indicator of the CRN and interfer-

ence received from CRN as the QoS measurement for primary

network. Then the solution of the problem will guarantee a

certain SINR for all secondary RXs while the interference

to all the users in the primary network will be lower than

a predefined threshold Ith. Mathematical formulation of the

mentioned problem and a suitable reformulation is presented

in this section.

A. Worst-case Problem Formulation

Now, with the channel uncertainty model, we can re-write

the instantaneous SINR at ith secondary RX as,

SINRi =
|(ĝii + eii)

Hwi|2
∑N

j=1
j 6=i

|(ĝji + eji)Hwj |2 + σ2
i

(9)

and the interference power, Ik, cause by the secondary network
on kth primary RX as,

Ik =

N
∑

i=1

|(ĥik + ẽik)
Hwi|2. (10)

Specifically the resource allocation problem we address in

this work is to optimize the transmit beamforming vectors

in CRN, {wi}Ni=1, to maximize the minimum SINR of the

secondary RXs for given parameters Pmax and Ith. Due to

uncertain knowledge in CSIs, the beamfomer design should

guarantee a certain SINR for all secondary RXs for any

channel error that is inside the given uncertainty region.

Further, the design should keep the interference to the primary

RXs below the threshold for all channel errors inside the

uncertainty region to guarantee the performance of the primary

network. This problem can be mathematically expressed as,

maximize mini=1,...,N infeji|eH
ji
Qjieji≤1,j∈N SINRi

subject to supẽik|ẽH
ik

Q̃ikẽik≤1,i∈N Ik ≤ Ith, k ∈ K
‖wi‖22 ≤ Pmax i ∈ N ,

(11)

where the optimization variables are wi, eji, ẽik for i, j ∈
N , k ∈ K. Note that SINRi depends on eji for all i, j ∈ N
(see (9)) and Ik depends on ẽik for all i ∈ N (see (10)). In

problem (11) the infimum in the objective function and supre-

mum in the first constraint are taken over all possible channel

errors contained in the given uncertainty region. Hence the

solution should satisfy the constraints eHjiQjieji ≤ 1, i, j ∈ N
and ẽHikQ̃ikẽik ≤ 1, i ∈ N , k ∈ K.

B. An Equivalent reformulation

Since the minimization in the objective function of problem

(11) is over all secondary RXs, the optimal value should be

less than or equal to any SINR value that can be achieved by

a secondary RX for the optimal beamformer design.

Therefore, the optimization problem (11), using the epi-

graph form (strictly speaking this is a hypograph form, as

problem (11) is a maximization), can be equivalently written

as,

maximize γ

subject to γ ≤ |(ĝii + eii)
Hwi|2

∑N
j=1
j 6=i

|(ĝji + eji)Hwj |2 + σ2
i

, i ∈ N

eHjiQjieji ≤ 1, i, j ∈ N
∑N

i=1 |(ĥik + ẽik)
Hwi|2 ≤ Ith, k ∈ K

ẽHikQ̃ikẽik ≤ 1, i ∈ N , k ∈ K
‖wi‖22 ≤ Pmax, i ∈ N ,

(12)



where the optimization variables are wi, eji, ẽik for i, j ∈
N , k ∈ K and γ.
We introduce the variables,

sji = |(ĝji + eji)
Hwj|2, j ∈ N\{i}, i ∈ N (13)

Iik = |(ĥik + ẽik)
Hwi|2, i ∈ N , k ∈ K. (14)

Then, problem (12) can be recast as follows,

maximize γ (15a)

subject to (ĝii + eii)
Hwiw

H
i (ĝii + eii) ≥

γ









N
∑

j=1
j 6=i

sji + σ2
i









, i ∈ N (15b)

eHiiQiieii ≤ 1, i ∈ N (15c)

(ĝji + eji)
Hwjw

H
j (ĝji + eji) ≤ sji,

j ∈ N\{i}, i ∈ N (15d)

eHjiQjieji ≤ 1, j ∈ N\{i}, i ∈ N (15e)

N
∑

i=1

Iik ≤ Ith, k ∈ K (15f)

(ĥik + ẽik)
Hwiw

H
i (ĥik + ẽik) ≤ Iik,

i ∈ N , k ∈ K (15g)

ẽHjiQ̃ikẽik ≤ 1, i ∈ N , k ∈ K (15h)

wH
i wi ≤ Pmax, i ∈ N , (15i)

where the variables are wi, eji, ẽik, sji, Iik for all i, j ∈
N , k ∈ K and γ. Note that we have re-written 2nd constraint

in problem (12) as two separate ones, i.e., (15c) and (15e).

Furthermore, it easy to show (e.g., by contradiction) that

constraints (15d) and (15g) are tight (i.e., they hold with

equality at optimality). Hence, problem (12) and (15) are

equivalent.

IV. OPTIMAL BEAMFORMER DESIGN

The outer product wiw
H
i in problem (15) is a rank one

positive semidefinite matrix. We introduce a new set of vari-

ables Wi = wiw
H
i for all i ∈ N . Then the constraints

(15b),(15d),(15g) and (15i) become linear in Wi and Wi

should be rank one. Furthermore, we can see from problem

(15) that the constraints (15b), (15c) are quadratic in eii,

constraints (15d), (15e) are quadratic in eji and (15g),(15h) are

quadratic in ẽik. This suggests that we can use the following

lemma to recast these constraints as linear matrix inequalities

(LMIs).

S-lemma [12], [20], [21] : Let Φi be a real valued function

of an m-dimensional complex vector, y, defined as,

Φi(y) = yHAiy + 2Re(bH
i y) + ci,

where Ai ∈ Hm, bi ∈ Cm, ci ∈ R and i = 0, 1. Assume that
there exists a vector ŷ ∈ Cm such that Φ1(ŷ) < 0. Then the

following conditions are equivalent:

S1 : Φ0(y) ≥ 0 for all y ∈ Cm such that Φ1(y) ≤ 0.

S2 : There exists λ ≥ 0 such that the following LMI is

feasible:
[

A0 b0

bH
0 c0

]

+ λ

[

A1 b1

bH
1 c1

]

� 0.

First two constraints in problem (15) can be re-written as,

eHiiWieii + 2Re((Wiĝii)
Heii) + ĝH

iiWiĝii

−γ

(

∑N
j=1
j 6=i

sji + σ2
i

)

≥ 0, i ∈ N (16)

eHiiQiieii − 1 ≤ 0, i ∈ N . (17)

The existence of an eii for which (17) holds strictly is obvious

(e.g., eii = 0). Hence, we can regard the left hand sides of (16)
and (17) as Φ0(eii) and Φ1(eii) in S-Lemma. Then, according
to S-Lemma the inequality (16) is satisfied for all channel

errors eii that satisfy (17) if there exists µii ≥ 0 such that

(18) (defined at the top of the next page) is satisfied.

Following the same procedure, we can say that the inequal-

ity (15d) is satisfied for all channel errors eji that satisfy (15e)

if there exists µji ≥ 0 such that (19) is satisfied. Similarly,

the inequality (15g) is satisfied for all channel errors ẽik that

satisfy (15h) if there exists νik ≥ 0 such that (19) is satisfied.

Thus we can rewrite problem (15) equivalently as follows,

maximize γ
subject to ∆ii � 0, i ∈ N

Φji � 0, j ∈ N\{i}, i ∈ N
Θik � 0, i ∈ N , k ∈ K
∑N

i=1 Iik ≤ Ith, k ∈ K
µji ≥ 0, i, j ∈ N
νik ≥ 0, i ∈ N , k ∈ K
Wi � 0, i ∈ N
Trace(Wi) ≤ Pmax, i ∈ N
Rank(Wi) = 1, i ∈ N ,

(21)

where γ and Wi, µji, νik, sji, Iik for i, j ∈ N , k ∈ K are the

optimization variables.

Without the rank constraints, problem (21) can be solved

using bisection. For a fixed γ the feasibility can be checked

by solving the problem,

P0(γ) : maximize 0
subject to ∆ii(γ) � 0, i ∈ N

Φji � 0, j ∈ N\{i}, i ∈ N
Θik � 0, i ∈ N , k ∈ K
∑N

i=1 Iik ≤ Ith, k ∈ K
µji ≥ 0, i, j ∈ N
νik ≥ 0, i ∈ N , k ∈ K
Wi � 0, i ∈ N
Trace(Wi) ≤ Pmax, i ∈ N ,

(22)

using a standard SDP solver. The optimal beamforming matri-

ces can be obtained when the maximum feasible γ is achieved.

In order to obtain a rank one solution, we replace the

dummy objective function in (22) with sum power minimiza-

tion of the secondary network. Then the problem use to check



∆ii ,





Wi Wiĝii

ĝH
iiWi ĝH

iiWiĝii − γ

(

∑N
j=1
j 6=i

sji + σ2
i

)



+ µii

[

Qii 0
0 −1

]

� 0, i ∈ N (18)

Φji ,

[

−Wj −Wj ĝji

−ĝH
jiWj sji − ĝH

jiWj ĝji

]

+ µji

[

Qji 0
0 −1

]

� 0, j ∈ N\{i}, i ∈ N (19)

Θik ,

[

−Wi −Wiĥik

−ĥH
ikWi Iik − ĥH

ikWiĥik

]

+ νik

[

Q̃ik 0
0 −1

]

� 0, i ∈ N , k ∈ K (20)

the feasibility can be rewrite as,

P1(γ) : minimize
∑N

i=1 Trace(Wi)
subject to constraints of P0(γ)

(23)

with the optimization variables Wi, µji, νik, sji, Iik for all

i, j ∈ N , k ∈ K. Clearly, problem (22) is feasible if and

only problem (23) is feasible. Furthermore, the following

proposition ensure that problem (23) returns always a set of

rank one matrices Wi.

Proposition 1. If there exists any γ value such that the

problem (23) is feasible, then the corresponding feasible

beamforming matrices are always rank-one, that is, Wi =
wi(wi)

H for all i ∈ N .
Proof: The proof is presented in the Appendix A.

Hence, the optimal beamforming vectors that maximize the

minimum SINR can be found by eigen-decomposition, when

the maximum feasible γ is achieved. This implies that, we

have solved the original problem (11) without any relaxation

and hence the global optimal solution is achieved.

Following iterative algorithm can be used to design the

optimal robust beamforming vectors for an underlay ad hoc

CRN that maximize the minimum SINR of the cognitive users.

Algorithm 1: Robust Cognitive Beamforming

1) Inputs: network parameters

{ĝji}, {ĥik}, {Qji}, {Q̃ik}, {σi}, Ith, Pmax.

2) Initialization: given tolerance ǫ > 0. The initial lower
and upper bounds of optimal value γlow and γupp.

3) Set γ =
(

γlow + γupp
)

/2.
4) If P1(γ) is feasible, set γlow = γ and denote the solution

by {W∗
i }. Else set γupp = γ.

5) Stopping criterion: if γupp − γlow ≤ ǫ STOP; otherwise
go to step 3.

6) Outputs: γ and {w∗
i (w

∗
i )

H = W∗
i }.

the initial lower and upper bounds for γ can be efficiently

initialized by solving modified (i.e., relaxed and restricted)

versions of the original problem.

V. RESULTS AND DISCUSSION

Numerical simulations are performed to validate and as-

sess the performance of the proposed beamforming scheme.

We consider a simple network model where two secondary

transmitter-receiver pairs (N = 2) coexist in a primary

network with two primary RXs (K = 2). We assume that

each secondary TX is equipped with four antennas (nt = 4).
Further, we use an independent and identically distributed

CN (0, 1) to generate all the estimated channel vectors. The

CSI uncertainties are assumed to be within the bounded

uncertainty balls ‖eii‖2 = ‖eji‖2 = ‖ẽik‖2 ≤ ξ2 for all

i, j ∈ N , k ∈ K. Each entry in the error vectors follows a

truncated Gaussian distribution of CN (0, ξ2/9nt) truncated at
−ξ/

√
2nt and +ξ/

√
2nt, where ξ is radius of the uncertainty

ball. We assume that σ2
i = σ2 = 1(0 dB) for all i ∈ N and

the maximum available transmit power of a secondary TX is

Pmax/σ
2 = 10 dB. To maintain the QoS requirements for the

primary network the maximum allowable interference power

from the secondary network is limited to 0 dB, so that the

primary network can operate neglecting the interference from

the secondary network.

We present results for both robust and non-robust beam-

forming designs for comparison. The robust beamformer de-

sign is acquired directly following algorithm 1 and since all

the obtained beamforming matrices are with unit rank, those

are directly used in the calculation of interference powers

to primary RXs and SINRs for secondary RXs to reduce

the complexity of the simulations. For the non-robust case,

the beamforming vectors are obtained based on the estimated

channels by ignoring the uncertainty. There, the algorithm 1 is

followed and instead of problem (23) the following problem,

minimize
∑N

i=1 Trace(Wi)

subject to ĝH
iiWiĝii ≥ γ

(

∑N
j=1
j 6=i

ĝH
jiWjĝji + σ2

i

)

,

i ∈ N
∑N

i=1 ĥ
H
ikWiĥik − Ith ≤ 0, k ∈ K

Trace(Wi)− Pmax ≤ 0, i ∈ N
Wi � 0, i ∈ N ,

(24)

is used, where the optimization variable is Wi for all i ∈ N .

The MATLAB toolbox CVX is used to solve all the optimiza-

tion problems and there the SDPs are solved using the solver

SeDuMi.

Fig. 2 and Fig. 3 displays the cumulative density function

(CDF) of received secondary interference at the first primary

RX for different uncertainty balls. In Fig. 2, the CDF is taken

over the distribution of 10000 different possible channels lie

in the corresponding uncertainty balls for a given channel es-

timate. Fig. 3 is drawn by averaging over 1000 such estimated
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Fig. 2. CDF of the interference due to the secondary network at 1st primary
RX for different uncertainty spheres for a network with nt = 4, N = 2 and
K = 2. The interference threshold for the primary network is 0 dB. CDF is
taken over different possible channel errors for a single channel estimate.
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Fig. 3. CDF of the interference due to the secondary network at 1st primary
RX for different uncertainty spheres for a network with nt = 4, N = 2 and
K = 2. The interference threshold for the primary network is 0 dB. CDF
is taken over different possible channel errors and averaged over multiple
channel estimates.

channel realizations. As we expected, it is clear from Fig. 2

that the non-robust design gives the worst performance. In fact,

according to Fig. 2, around 52%, 55%, 57%, 59% and 61%
of the simulated channel errors the non-robust design exceeds

the interference threshold of the primary network (0 dB) for
uncertainty ball radius 0.1, 0.2, 0.3, 0.4 and 0.5 respectively.

These values in average are around 52%, 54%, 56%, 59%
and 61% for uncertainty ball radius 0.1, 0.2, 0.3, 0.4 and 0.5
according to Fig. 3. On the other hand, for the proposed robust

algorithm, the interference to the primary RX is always less

than the threshold level which guarantees the required QoS of

the primary network. Moreover, it can be observed from the

figure 2 that the CDF spread out wide with the uncertainty
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Fig. 4. CDF of the received SINR at secondary RX 2 for different uncertainty
spheres for a network with nt = 4, N = 2 and K = 2. CDF is taken over
different possible channel errors for a single channel estimate.

radius varies from 0.1 to 0.4. When the uncertainty ball is

small, since the range of the possible channels are less, the

beamformer design can direct sharp nulls towards primary RXs

as the channel is precisely known. As radii become larger, the

range of possible channels in the uncertainty ball get increased

and hence the nulls become less focused. But most of those

channels lie in deep null and hence the CDFs spread out wide.

Further increase in the radii force the beam pattern to flattens

in the direction of the uncertainty region and therefore the

interference to the primary RXs get less variable as radius

varies from 0.4 to 0.5 in Fig. 2. This phenomenon can also

be observed in Fig. 3.

The CDF of the received SINR at 2nd secondary RX for

different uncertainty radius values is plotted in Fig. 4 for

channel estimate used in Fig. 2, since secondary RX 2 result

in the minimum SINR for that channel estimate. As same

as in Fig. 2, the CDF is taken over 10000 possible channels

inside the uncertainty region. Further, the same figure averaged

over 1000 different channel estimates is plotted in Fig. 5. The

ability of the secondary TXs to focus sharp beams towards the

corresponding secondary RXs while simultaneously directing

nulls towards other secondary RXs and primary RXs reduces

as the channel knowledge deceases. Hence, it can be seen from

the Fig. 4 and Fig. 5 that, as expected, the mean SINR reduces

with increase in the radius of uncertainty balls. Furthermore,

for small uncertainty regions the beamformers are designed as

the channel is precisely known and hence in Figure 4 the CDF

is narrowed for small uncertainty radius values.

Finally, the variation in the optimal objective value with the

radius of uncertainty balls is illustrated in Fig. 6. The figure

is averaged over 1000 channel realizations. As mentioned

earlier, since the ability of the transmitters to focus the

beams towards secondary RXs and nulls towards primary RXs

increase rapidly with smaller uncertainty regions, the optimal

value rapidly increase at smaller values of uncertainty ball
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Fig. 5. CDF of the received SINR at secondary RX 2 for different uncertainty
spheres for a network with nt = 4, N = 2 and K = 2. CDF is taken over
different possible channel errors and averaged over multiple channel estimates.
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Fig. 6. Variation of the objective value with respect to the radius of the
uncertainty balls for a network with nt = 4, N = 2 and K = 2. The curve
is averaged over multiple channel estimates.

radius in Fig. 6. At higher values of ξii, ξji, δik the beams

become flat in all directions and the transmit powers become

reasonably small, hence the optimal objective value and also

the variation become small.

VI. CONCLUSION

We have presented a centralized method to design optimal

beamforming vectors for an underlay cognitive ad hoc network

to maximize the minimum of the received SINRs of the

cognitive users subject to primary interference constraints. The

developed robust design based on SDP can handle the channel

uncertainties in all relevant channels where the uncertainties

are modeled by complex ellipsoids. Further, we have shown

that for this problem no relaxation is required, and the optimal

solution can be achieved guarantying the global optimality of

the original problem. The simulation results show that our

robust design is more effective than the non-robust design.

APPENDIX A

PROOF OF PROPOSITION 1

Let us rewrite the problem (23) as follows,

minimize
∑N

i=1 Trace(Wi)
subject to ∆ii

(

Wi, γ, µii, {sji}j 6=i

)

� 0, i ∈ N
Φji

(

Wj, µji, sji
)

� 0, j ∈ N\{i}, i ∈ N
Θik

(

Wi, νik, Iik
)

� 0, i ∈ N , k ∈ K
Wi � 0, i ∈ N
Trace(Wi) ≤ Pmax, i ∈ N
∑N

i=1 Iik ≤ Ith, k ∈ K
µji ≥ 0, i, j ∈ N
νik ≥ 0, i ∈ N , k ∈ K,

(A.1)

where the optimization variables are Wi, µji, νik, sji, Iik for

all i, j ∈ N , k ∈ K for a feasible γ value. Proposition 1 can

be proved following the method used to prove proposition 1

in [12], by investigating the KKT conditions of the problem

(A.1).

Let the optimal dual variable associated with the first five

constraints be {Ψ∗
ii � 0}, {Ψ∗

ji � 0},{Λ∗
ik � 0},{Z∗

i � 0}
and {β∗

i ≥ 0} respectively. Further, let

Ψ∗
ii =

[

Aii bii

bH
ii cii

]

� 0 i ∈ N , (A.2)

where the matrix Aii ∈ Hnt is PSD, bii ∈ Cnt and cii ∈ R is

non-negative according to the properties of PSD matrices. We

can verify that according to the KKT conditions of (A.1) the

optimal W∗
i , µ

∗
ji, ν

∗
ik, s

∗
ji, I

∗
ik for all i, j ∈ N , k ∈ K should

satisfy the following conditions,

Z∗
i = β∗

i Int
+

∑N
j=1
j 6=i

[

Int
ĝij

]

Ψ∗
ij

[

Int

ĝH
ij

]

+
∑K

k=1

[

Int
ĥik

]

Λ∗
ik

[

Int

ĥH
ik

]

− 1
γ

[

Int
ĝii

]

Ψ∗
ii

[

Int

ĝH
ii

]

� 0,

(A.3)

Z∗
iW

∗
i = 0,W∗

i 6= 0, (A.4)

∆ii

(

Wi, γ, µii, {sji}j 6=i

)

Ψ∗
ii = 0,Ψ∗

ii 6= 0, (A.5)

Trace
(

QiiAii

)

≤ cii, (A.6)

s∗ji > 0 ∀j ∈ N/{i}, (A.7)

µ∗
ii > 0, (A.8)

for all i ∈ N . Equality in (A.3) is obtained using the stationary

property of W∗
i and the inequality is directly given by dual

feasibility of Z∗
i . In (A.4) and (A.5) the equalities are obtained

from complementary slackness of constraints four and one in

(A.1) respectively. Since the target SINR should satisfy γ > 0,
the beamforming matrix must satisfy the condition W∗

i 6= 0

. If Ψ∗
ii = 0, (A.3) will lead to Z∗

i ≻ 0 and as a result

contradicts with (A.4) since the equality condition of (A.4)

forced to W∗
i = 0. Further, the stationary property of µii and

dual feasibility of constraint µii ≥ 0 leads to condition (A.6).



Condition (A.7) is achieved investigating the primal feasibility

of constraint Φji � 0, and finally to show (A.8), we can see

from (18) that when µii = 0,

[

−ĝH
ii 1

]

∆ii

(

W∗
i , γ, µ

∗
ii, {s∗ji}j 6=i

)

[

−ĝij

1

]

= −γ

(

∑N
j=1
j 6=i

sji + σ2
i

)

< 0,
(A.9)

which contradicts with constraint ∆ii � 0. Rest of the proof
directly follows the proof of proposition 1 in [12].

First assume that Ψ∗
ii is rank one and therefore it

can be written as Ψ∗
ii = vvH , where v ∈ Cnt+1.

Then, Z̄∗
i = β∗

i Int
+

∑N
j=1
j 6=i

[

Int
ĝij

]

Ψ∗
ij

[

Int

ĝH
ij

]

+

∑K

k=1

[

Int
ĥik

]

Λ∗
ik

[

Int

ĥH
ik

]

≻ 0, become full ranked and

1
γ

[

Int
ĝii

]

vvH

[

Int

ĝH
ii

]

becomes rank one matrices. Hence

from (A.5),

Rank(Z∗
i ) =

Rank

(

Z̄∗
i − 1

γ

[

Int
ĝii

]

vvH

[

Int

ĝH
ii

]

)

≥ nt − 1.

(A.10)

Using Sylvester’s rank inequality we can write following for

rank of W∗
i ,

Rank(W∗
i ) ≤ nt +Rank(Z∗

iW
∗
i )− Rank(Z∗

i ) (A.11)

It follows from (A.4), (A.10) and (A.11) that,

0 ≤ Rank(W∗
i ) ≤ 1 (A.12)

implying W∗
i must be rank one. What remains is to prove

that Ψ∗
ii is indeed rank one. By substituting (18) and (A.2) in

to condition (A.5), the following two equalities can be easily

obtained,

(W∗
i + µ∗

iiQii)Aii +W∗
i ĝiib

H
ii = 0, (A.13)

(W∗
i + µ∗

iiQii)bii +W∗
i ĝiicii = 0. (A.14)

Moreover, cii > 0 must be satisfied, if not we must have

Ψ∗
ii = 0 by (A.2) and (A.6) since Qii ≻ 0 which contradicts

with (A.5). Post-multiply (A.14) with −bH
ii /cii and add the

resultant equality to A.13 result in,

(W∗
i + µ∗

iiQii)(Aii − biib
H
ii /cii) = 0. (A.15)

Since µ∗
ii > 0 and Qii ≻ 0 the term (W∗

i + µ∗
iiQii) ≻ 0,

(A.15) implies that Aii = biib
H
ii /cii. Hence (A.2) transforms

to

Ψ∗
ii =

[

biib
H
ii /cii bii

bH
ii cii

]

=

[

bii/
√
cii√

cii

]

[

bH
ii /

√
cii

√
cii

]

� 0,
(A.16)

which is indeed a rank-one matrix. This concludes the proof.
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