Distributed Flow Scheduling in an Unknown
Environment

Yaoging Yang *f, Keqin Liu T, Pingyi Fan*
* Department of Electronic Engineering, Tsinghua University, Beijing, China
t Department of Electrical and Computer Engineering, UC Davis, California, USA
Email: yqyang1991@gmail.com, kqliu@ucdavis.edu

Abstract—Flow scheduling is crucial in the next-generation
network but hard to address due to fast changing link states
and tremendous cost to explore the global structure. In this
paper, we first design a distributed virtual game to solve the
optimization of flow scheduling problem assuming the priori
knowledge of the distribution of edge cost as a random variable.
In our virtual game, we use incentives to stimulate selfish users
to reach a Nash Equilibrium Point which is suboptimum based
on the analysis of the ‘Price of Anarchy’. This algorithm is then
generalized into the situation with unknown cost distribution,
where the ultimate goal is to minimize the cost in the long run.
In order to achieve a reasonable tradeoff between exploration of
cost distribution and exploitation with limited information, we
model this problem as a Multi-armed Bandit Game and combine
the newly proposed DSEE with our virtual game design. Armed
with these powerful tools, we find a totally distributed algorithm
to ensure the logarithmic growing of regret with time, which is
optimum in classic Multi-armed Bandit problem. Theoretical
proof and simulation results both confirm the effectiveness of
our algorithm. To the best of our knowledge, this is the first
work to combine multi-armed bandit with distributed flow
scheduling.

Keywords—Distributed Flow Scheduling, Price of Anarchy,
Multi-Armed Bandit, Logarithmic Regret

I. INTRODUCTION

Flow scheduling has wide applications in ATM and MPLS
networks. But it is still an open problem. The flow scheduling
can be formulated as an optimization problem, where all
the routers in the network cooperate to find a network-wide
sharing scheme. Since the network cost is usually a superlinear
function of flow amount, the main concern is to handle possi-
ble congestion on the same edge to reduce the network cost. In
order to be useful in practice, a distributed solution to such an
optimization problem is also crucial. Moreover, control signals
and information exchanges should be relatively small. There
has been much related literature on these problems.

With development of the widely-used MPLS network, the
minimum interference routing[l]‘[‘” has become a mainstream
in flow scheduling and traffic engineering. However, minimum
interference routing algorithms, like MIRAP and WSPH,
mainly consider load balancing to maintain the ’sustainability’
to admit future flows. The objective of cost minimization
cannot be guaranteed. Besides, the atomic routings in routing
games®/l71=[9 have attracted much attention. Although the

atomic routings[®! can be used to handle the flow scheduling
problem directly, it is implemented with players deciding the
best paths, which is impractical in nature. A more reasonable
solution should be to let distributed routers carry out the
path selection. Moreover, [5] only considers the environment
with known edge costs. Its generalization to an unknown
environment is nontrivial.

To address the routing problem with unknown edge cost, the
Multi-armed Bandit (MAB) algorithm recently has emerged
as an effective way'®/=[1%], The classic MAB considers a
single player and N independent arms, each arm, if played,
incurs a random cost with an unknown distribution. The player
should decide the sequence to play each arm to obtain the
minimum cost in the long run. Its key point lies in maintaining
a reasonable tradeoff between exploration and exploitation,
which respectively means to play a new arm and learn its
cost distribution or to play the arm with minimum cost. A
frequently used criterion on judging an adopted sequence is the
so called regret or cost of learning, defined as the difference
in total cost between the chosen sequence and the optimum
sequence. The best regret, logarithmically growing with time,
is obtained in [10] by Lai and Robbins. In [11][12], the
index-type policies are provided to achieve logarithmic regret.
Routing problems with unknown edge cost distributions can
be modeled as a MAB problem if each path is viewed as an
arm. However, paths with shared edge cannot be viewed as
independent. This issue has been partially addressed in [13]-
[15] by generalizing the classic MAB algorithm into shortest
path problem. But these methods do not apply in routing
problems with congestion.

In this paper, we firstly focus on the known scenario to solve
the optimization of flow scheduling. We will devise a novel
virtual game, in which the incentives are used to stimulate
selfish users to reach a Nash Equilibrium point. In contrast
to the atomic routing game, the virtual game is implemented
with distributed routers, instead of players, deciding the best
paths. Moreover, our virtual game is completely online, with
no direct information exchange between users. We prove
that our virtual game reaches a Nash Equilibrium Point in
limited circles. The performance of the Nash Equilibrium
point is analyzed based on the Price of Anarchy, defined
as the ratio of total cost in a Nash Equilibrium Point to
an optimum total cost. In the second half, the proposed
algorithm is generalized into an environment with unknown

edge costs, with the expectations of these costs estimated
through exploration. Then the exploitation starts by applying
the virtual game based on the exploration results. Like most
MAB problems, explorations introduce extra cost, or reward
loss. So we propose to use the DSEE Sequence!'”! to optimize
the exploration time. The ultimate object of our design is to
minimize long-run total cost for the whole network, so the
time consumptions for both explorations and exploitations are
taken into account. Instead of making modifications to classic
MAB algorithms, we solve the congestion problem beforehand
in the virtual game designing. We prove that the regret also
grows logarithmically with time, which is optimum in MAB
problem.

II. SYSTEM MODEL
A. Cost Modeling

We consider a flow scheduling problem in a graph G =
(V, E). Assume that |V| = N which represents the number
of the distributed routers. There are K flows, each with unit
amount fr = 1 and source-destination pairs (s, tr) Where
Sk, tr € V and s # ti. For simplicity, in the following we
use 'kth flow’ and ’user k’ interchangeably. For each edge
e € F, define flow summation on the edge

fe=>_ 1w (1)

k:e€py
in which the pj represents the path chosen by the kth flow.

Since all flows have unit amount, each flow summation f,.
takes a discrete value from {1,2, ..., K'}. Define

CF)=>>co(fe) @)

eckE

as the total cost in one time slot, in which the c.(f.) represents
the cost for edge e. Note that with a different flow summation
fes ce(fe) is a different random variable whose expectation
value increases when f. grows. When f. is fixed, for different
time slots, c.(f.) is an i.i.d. random process. F' denotes the
whole flow distribution on the network. ' = (fe,, fe, - fe 5)-
We should state here that flow distribution is a vector rep-
resenting the flow summation in each edge, while we may
refer to another meaning which represents the distribution of
a random variable. There is clear a distinction between these
two. In order to minimize the time average of C'(F), we try
to obtain the best flow distribution F' in a distributed way to
minimize the expectation of C'(F'). Henceforth we use a bar
to represent the expectation. For example, C(F) denotes the
expectation of C'(F'). The unit amount is the granularity of all
flows. Obviously, generalization to multi-commodity scenario
is trivial if we split flows into flow units and treat each unit
as an independent sub-flow.

B. Incentive
Although the final goal of us is to minimize the expected

total cost by finding a best flow distribution C(F'), this
social warfare point might not meet the needs of all the

users. Furthermore, in our paper, we assume that users do
not exchange information directly. So users are blind and
only trying to optimize its own usage, which may lead to
congestions over common links. In order to stimulate users to
cooperate, we set revenues as incentives for them. Assume at
some time ¢, there are already K, flows in the network and
the whole flow distribution is currently F;. Then the whole
cost of the network equals C(F}). For a certain kth flow, let
F, (k) denote the flow distribution when f, is withdrawn from
F;. We define

C(F,) - C(E(R)) 3)

as the revenue for the kth flow. Obviously, when user & has
a chance to change its routing path, he must choose the path
that introduces the minimum extra cost (3). Since C(F;(k))
is independent of user k, the total cost will decrease surely.
Obviously, this is an game theoretical method to minimize the
total cost (2). We are trying to get the social warfare point but
the distributed and blind users are only trying to optimize its
own revenue. Thus it is required to find a properly designed
mechanism to set revenue for all the users and guide them
toward the social warfare point. This game is only virtual since
users are not real competitors. We are only trying to use this
virtual game to achieve the optimum point when E(C(F')) is
minimized.

C. System Description

In this paper, we focus on the distributed case when a central
controller is implicit. That is to say, our algorithm is essentially
different from some classic ones where a central controller
collects all the link information and broadcasts the result of
a centralized algorithm. In contrast, in our settings, all the
routers form a distributed operating system and each router
only communicates with its direct neighbors in the graph G. In
this case, we propose a virtual game (detailed in algorithm 1)
which only needs local information to calculate link prices. For
the exploration period, we present another algorithm operated
in a distributed way.

Nevertheless, we still need a central controller which helps
start the algorithm and broadcast some initial settings. Also,
a central controller is needed to broadcast the timing infor-
mation periodically. However, the adoption of our distributed
virtual game and the distributed exploration algorithm really
reduce the refinements and control information of the central
controller.

III. ALGORITHM IN KNOWN MODEL
A. Virtual Game Design

In this section, a virtual game design will be proposed to
solve the optimization problem of flow scheduling. We first
consider the known environment, i.e., assume that routers
know all ¢.(f.) apriori, with the unknown environment
discussed later. Each user takes turns to hire routers to do
Bellman Ford Algorithm[16]. The price for each edge is set
as the incentive described in IL.LB. The total cost decreases

each time when a user changes path as indicated in part II.B.
Besides, there will be N % K time slots reserved for one
circle. So time reserved for each user is N slots, enough for
Bellman Ford Algorithm to converge[16].

The details are described in algorithm 1. This represents one
circle of the virtual game. The virtual game will go on until
all the users reach a Nash Equilibrium Point. We discuss the
equilibrium point in the next subsection.

Algorithm 1 One cycle of the Virtual Game (/N K time slots)
Initialize

The central controller collects and broadcasts information like
numbers of nodes N, number of flows K.

For k from 1 to K

1) Take out the kth flow from current flow distribution. This
could be carried out by each router to clear flow k in its
memory. If it is the first time for this flow to do step (1),
then no memory about flow k£ has been established, so we do
not need to take it out.

2) Calculate price on each edge. The price is the extra cost if
this edge is chosen:

Pe(F):ée(fe)_Ee(fe_fk) 4

Here F' and f. are temporary flow distribution and flow
summation (1) if flow k& chooses e.

3) Start the Bellman Ford Algorithm from source s; and wait
for N slots to ensure its convergence. Find out the path py
with the minimum price (7) to transmit flow to dy.

4) Add up fi on each selected edge to transmit the kth flow.
end

B. Nash Egquilibrium Point

Theorem 1: The proposed algorithm 1 in III.A guarantees
that after finite circles the whole network always reaches a
Nash Equilibrium Point, and the Convergence time is bounded
in [2M] times of Bellman Ford circles. Here Sy denotes
the maximum difference between cost of two different flow
distributions, and .S,,, denotes the minimum.

Proof: During one circle, one of two events below must
oceur:

a).At least one user changes his path.

b).No one changes his path.

If event ‘b’ happens, we know that no one could change
his path unilaterally. Obviously the network has reached Nash
Equilibrium Point.

However, if event ‘a’ happens, total cost decreases. This has
been stated in IL.B. Since there will be limited paths for one
flow to take, the number of flow distributions will be limited,
too. So ‘a’ won’t happen all the time.

We can further figure out the upper bound of convergence
time to reach a Nash Equilibrium Point. In fact, we need

[%W times of Bellman Ford circles. This is true because
during each Bellman Ford circle, the cost of the whole
network will at least decrease by S, if ‘b’ does not happen.
|

The basic idea of the proof is: In each circle if one
user changes his path, total network cost decreases. But this
can not happen forever since the optimum point exists. In
Fig.3 we show the behavior of ‘regret’ growth which will be
defined properly. In this figure one can directly see the fast
convergence to an Equilibrium Point, even the environment
has been changed to an unknown one.

IV. PRICE OF ANARCHY

In this part we will analyze Algorithm 1 in terms of ‘Price
of Anarchy’. This notion was originally defined in [8]. In [9],
the authors analyzed the price of anarchy of an atomic routing
game consisting of polynomial edge cost with nonnegative
coefficient. The results of d°(? was revealed, in which d
represents the highest order of the polynomial edge cost
function. This result is confirmed in [5]. In this paper, we still
need analysis of the ‘Price of Anarchy’ since our ultimate
goal is to solve an optimization problem. Though we have
shown that our algorithm is able to make users reach a Nash
Equilibrium Point, it is useful to figure out the difference
between a Nash Equilibrium Point and the optimum point.

Definition 1: We define the Price of Anarchy as
C(Fn)/C(F7) 5)

The Fy represents flow distribution of one Nash equilibrium
point. And F™* represents flow distribution of the optimum
point in terms of minimizing the network cost.

Next we will first investigate the existence of constant
price of anarchy for general polynomial edge cost. Then we
will provide concrete value for polynomials with nonnegative
coefficients. Here we assume the functions to be convex, a
trivial condition when congestion is concerned[3][5][6]. The
assumption of polynomial edge cost is common in previous
work of Routing Games[5][8][9]. Moreover, polynomial
functions are quite enough to model congestions in our
problem, so we still use this assumption.

A. General Polynomial Function: Existence
Definition 2: We define Total Price for distribution ' as
P(F):Z[Ee(fe)_ée(fe_]-)]'fe (6)
ecelE

We simply replace unit flow with 1 in the sequel, as claimed
in section II.A. What’s important is why we define (6) as the
‘total price’. In fact, from (3)(4) we know that the incentive
pricing scheme asks for the kth user a price of

Pe(F) =" [ee(fe) — ee(fe — 1) 7

eEpy

We add up (7) for all K users and simply change the order
of summation. It yields (6).

Theorem 2: If the expectation of edge cost function
Ce(fe) is convex and grows polynomially with f,, as shown
in (8), there exists a constant bound for the ‘Price of Anarchy’
independent of network size and flow distribution.

d
Ce(fe) = acfd+ > al fi7 ®

i=1

To prove this theorem, we need the following two lemmas.
Lemma 1: For a given network G=(V,E), there exist some

constant numbers A;, A,, A,and a constant set J = [J, Jg].
For any flow distribution F', we have
. P
A < <A, 9
1 < C(F))
For any flow distribution and any edge e, we have
Celfe D) ~eelle) (10)
Ce(fﬂ) - CE(fe - 1)
7e e) 75 e 1
gy <) = eelfe=1) (11)

e

These constant numbers are all independent of the network
size and flow distribution.

The nature of Lemma 1 is very simple. With polynomial
Ce, numerator and denominator of the fractions in (9)(10)(11)
are of the same order of flow summation f.. When f. grows
larger, these fractions all converge to constants. So these
fractions are certainly bounded. Rigorous proof of this lemma
is put in Appendix A [18].

Lemma 2: For a given network G=(V,E) and a Nash
Equilibrium point F' of K users, for any flow distribution F”,
we have

P(F) < Ay) lee(fe) —ee(fe =D ff

eckE

12)

This is the ‘Variational Inequality Characterization’[5],
which describes the basic feature of a Nash Equilibrium Point.
The rigorous proof of Lemma 2 is in Appendix B [18]. The key
is the combining of (10) with the following feature (equation
(30) of [18]) for a Nash Equilibrium Point F

<D [Ee (fe+ 1) =T ()] £

eckE

P(F) (13)

Proof of Theorem 2: Let F represent a random Nash Equi-
librium point and F'™* denote the optimum point. For a certain
edge e, from (11), we have

[Ee(fe)*ée(fefl)]/fd_l < ﬁ
[Ce(f2) —ce(fz — D/ (f2)4

T <3 (14)

Here * represents the optimum point. From this inequality we
can derive directly and get

[Ee(.fe) - Ee(fe - 1)] : f:
J 1 d—1
<()i{lecfe) = elfe = 1] fo}T
R
Alee(f2) —ee(f2 = 1) £}
Combining (15) with the Ho lder inequality, we get

Z[Ee(fe) - Ee(fe - 1)} fe*

eEE

<(7 {Z Ce(f& _Ce

eckE

{Z ce(/.

eck

Joa
_(JR)d

(15)

] f3 T
(16)
G(fr — 1) fr}a

[P(E)]T - [P(F)]

From (12) we arrive at

P(F) < Ay ()1 (PR (P ()

It means
i JL

Jr
And we have Lemma 1, so we finally get

_C(F) P(F) PFY)
- P(F) P(F*) C(F¥)
A,
(A S
A Jr
From previous Lemmas, we know absolutely that constants
on the right side of this inequality are independent from

network topology and flow distribution. Since Fy is a random
flow distribution, Theorem 2 has been proved. £l

P(F)/P(F7) < (Au) (18)

C(F)/C(F™) .
(19)

B. Polynomial Function with Nonnegative Coelfficients:
Concrete Value

For polynomial edge cost with nonnegative coefficients,
here we will give out concrete value of the bound. We take
advantage of the nonnegative coefficients to simplify proof
in IV.A. First we give out some definitions. If (8) holds
and coefficients are all nonnegative, we have the following
equation for each edge e

Ce(fe +1) —Ce(fe) :CLE[(JC@ + 1)d - fed]
d
+ Do [(fe+)T = 7]

i=1

(20)

Obviously, all terms in (20) have nonnegative coefficients. We
assume

d

=Y all et

i=0

Ee(fe + 1) - Ee(fe) (21)

~ (1) ~(0) _

in which a¢’ > 0 and a¢ ' = a.. Moreover,
d .

Z dél) = 66(1) — Ce (0) (22)

=0
We assume

se = min (alV) (23)
a(i>>0
L = max[c.(1) — (0)] (24)

eck

Theorem 3: For a given network G=(V,E), if all edge cost
functions satisfy (8) and coefficients are nonnegative, constant
upper bound of the Price of Anarchy exists. The constant is
[(d+ 1)Lmag +£]? =doW.

Proof: Conditions in this theorem also ensure the functions to
be convex. This results in, for any flow distribution

C(F) < P(F) (25)
From (22)(24) we have, for any i and any e € E
a) < L (26)
Based on the holder inequality, we have
D lee(fe+1) —e(f)] - £
ecE
d . .
=> > alfr
i= OeGE
ST A (D a0 ()
i=0 eckE ecek
d i—1
<LZ{Z e fY TR S ey
i=0 ecE Se eel Se
1 d d—i
<Lmaz — - (F)© T {O(FF) YT
<Lmag oo+ AN FTHOE)3
Since C(F*) < C(F), we have
D oleelfe+ 1) —ee(fo)] - 12
ecE (27)

DIk

For one random Nash equilibrium F' and the optimum point
F*, it follows from (13) and (25) that

<(d+ 1)L7;z€aExSi A{C(F)}Y THOF

C(F) < P(F) <> [ee(fe+1) —ec(f)]- £ (28)
ee
Combining (27)(28), we have
C(F)/C(F*) < [(d+ DLmaz ~]? = @ (29)

eceE S,

And this constant is independent of network topology and flow
distribution.Hl

V. ALGORITHM IN UNKNOWN MODEL

In this section, we will generalize the proposed algorithm
above to address the unknown model where the cost distri-
bution of each edge is unknown at the beginning. We adopt
the newly proposed DSEE Sequence in [17] which cuts time
into interleaving exploration and exploitation periods. We first
give out description of DSEE (Figure 1) and then describe
exploration and exploitation period respectively.

A. Definition of the DSEE

virtual game virtual game virtual game
L 1 Wi | VA
i Expliation #™ Explorsion T tion. # EPoon = Exlotatn

Fig. 1: DSEE sequence

A Deterministic Sequencing of Exploration and Exploitation
(DSEE) is a time division scheme which cuts time into
interleaving exploration and exploitation periods, as shown in
Figure 1. An exploration period begins this sequence, then an
exploitation sequence follows. Then the second exploration
period starts. Slightly different from the original sequence de-
fined in [17], we put one Virtual Game cycle at the beginning
of each exploitation period. One cycle of the virtual game is
defined in Algorithm 1.

Without loss of generality, we set that one exploration period
ends after N time slots. In our scheme, at the beginning of
each exploitation period, the first N+ K time slots are arranged
to conduct one cycle of the virtual game, with the rest time
of the exploitation used for routing or exploitation of the
network. Exploitation terminates at time slot ¢ when ¢ satisfies
the following inequality for the first time in this exploitation
period.

card(t) < Glog(t) (30)

In this inequality the card(t) represents sum number of time
slots used to do exploration up to time ¢. The parameter GG
is called the DSEE parameter and determined by the central
controller beforehand. Certainly, the whole DSEE Sequence is
determined beforehand once the parameter G has been chosen.
Exploration periods and Bellman Ford periods cannot be too
long since they introduce extra cost to the network.

B. Exploration

One exploitation period lasts for N = |V| time slots.
In one exploration period, only one source node sj starts
exploration. And K source nodes do exploration in turn, in
different exploration periods. At the beginning of the first
exploration period, s; sends out a short flow of a random
amount f; to a random edge e, related to it to explore a
sample of the random variable c.,(f1). Then the other node
of edge e, receives this flow and forward it in the next time

slot. After one exploration, one sample of each c.(f) is stored
in the router related to e and the router uses accumulated
sample mean é.(f) to approximate each expectation c.(f).
This whole exploration period terminates in N = |V/| time
slots. In the next exploration period, as mentioned above, it is
the turn of so to start exploration instead of s;. And so forth.
This can be carried out with a token. If node s,, is a source
node of a flow, it gets a token number v, and sets the initial
value to 1, which means that the next exploration period will
be started by s;. After each exploration period, «,, adds up
with 1, which means that next flow will start exploring at the
beginning of the next exploration period. When «,, reaches
K + 1, it returns to 1. Noting that all a, has the same value
since the DSEE sequence is determined by parameter G' and
thus the same to all the nodes, we define o which is equal
to the common value of «,. Besides, the constant number
N = |V| is large enough to ensure a minimum probability
r = Mminecpi<f<i(re(f)) > 0, in which the r. is the
probability of the edge e being estimated under edge flow
summation f.

C. Exploitation

At the beginning of each exploitation period, we implement
one circle of the virtual game described in III.A.
However, we should replace (4) with

Pe(F) = ée(fe) = e(fe = fr)

where ¢.(f.) denotes the sample means.
We end this section with Algorithm 2 which describes the
whole algorithm in the unknown model.

VI. ANALYSIS IN REGRET

€1V

The conventional regret in a MAB problem is defined as the
difference in total cost between the chosen strategy sequence
and the optimum strategy sequence when cost distribution
is known. In section IIl.LB, we have proved that K users
guarantee to reach the Nash Equilibrium Point in limited
circles of virtual game. Based on this fact, we would provide
a modified definition of regret different from the conventional
one.

Definition 3: We define regret as the number of time slots
when the network is not in a Nash Equilibrium Point.

Next we will reveal the equivalence of the new regret definition
with the conventional one. Then we will prove that the regret
grows logarithmically with time.

A. Egquivalence between new regret definition and conven-
tional one

In our algorithm, there exist two conditions that regret
increases. The first one is exploration or Bellman Ford. During
these periods, no flows are transmitted. However, if we define
an extra constant cost for each of such slot to get a classic
definition, we can see that this two regrets grow with time in
the same order. The second one is when flows are not routed
in a Nash Equilibrium Point in an exploitation period. But in

Algorithm 2 DSEE with a virtual game
Initialize

The central controller collects and broadcasts
information like numbers of nodes N, number of
flows K and the DSEE parameter G.

For each node n (from 1 to V)

Node s,, calculates the DSEE sequence with inequality
(30) and memorize the beginning of each period. If node
s, 18 a source node of a flow, it defines a token number
« and sets the initial value to 1.

end

For T from 1 to infinity
For each node n (from 1 to N)

1) Start counting an exploration period. End it after N
time slots. At the beginning of this period, s, starts the
exploration by sending out the short exploration flow
to a random neighbor. Then this node sends it out to
another one randomly, until the end of this exploration
period. Increase v with 1.

2) Start a cycle of the virtual game defined in algorithm
1. Wait for NK slots until the end of this cycle.

3) Start exploiting the network, end this exploitation
period until time index ¢ satisfies inequality (30).

end
end

one such slot, extra cost cannot be larger than S);, the largest
and bounded possible total cost for the whole network[18].
Therefore, even if we define a classic regret, it still grows
with the same order of time.

The only difference is the distance from one Nash Equi-
librium Point to the Optimum Point. However, finding the
Optimum Point for different flows tends to be NP hard and it
cannot be implemented in a distributed way. So we choose to
define regret based on a sub-optimal Nash Equilibrium Point
which cannot be further improved in a distributed manner.
Previous parts have shown the constant ‘Price of Anarchy’
bound, which convince the feasibility of our definition.

B. Regret Order

Theorem 4: If the chosen G in (14) satisfies
8m?|E|o?
—)
then regret(T) increases with O(log(T')) when doing the
algorithm in section V. Some definitions in (32) are needed:
Definition 4: Let S be a m-dimensional vector space. A set

G > maz(3/r, (32)

rc

B = {x1,x9,...,2m} C S is called a barycentric spanner for
S if every x in S can be written as linear combination of
elements of B with coefficients in [—1, 1].

It is shown in [15] that if S is a compact set, then it has
a barycentric spanner. We know that the set of different paths
for a certain source-destination pair (sy,dy) is a compact
vector space, thus it has a barycentric spanner with dimension
my. We assume m = kmlaxK my. o2 is the largest variance
of all the edge cost under different flow distributions. r
is the minimum of the probability that a certain edge is
chosen during explorations. ¢y, is the minimum price difference
between two paths for the kth user under all different flow
distributions. Since number of flow distributions is limited,
¢ surely exists. Then we can define ¢ = kmin ci. These

parameters are all related to the network topology and can be
obtained beforehand. However, while choosing a G based on
(32) is doable, usually we can choose a smaller G. Here we
only concern about the existence of a sufficient condition.
Proof of Theorem 4 is put in Appendix E in [18]. Here we
provide the basic idea. If G is chosen big enough, sufficient
times will be used for exploration so that we have relatively
accurate sample means for the cost of each edge under
different flow summation. Based on Bernstein’s inequality, we
can bound the variance of sample means of path cost. When
this variance is small enough, we can bound the probability
that we make mistakes in the virtual game circle. Mistake-free
virtual game circles result in Nash Equilibrium (Theorem 1).

VII. SIMULATIONS

A. Numerical Results of the Price of Anarchy

7
Order = 2
3‘6: ————— Order = 4
= :
S 50 ———— Order =6
[=]
24
=
33
o
S
o 2L
1r 3
\""‘.'~,
0 hiath JE TR ey e
1 1.5 2 25 3

Price of Anarchy

Fig. 2: ‘Price of Anarchy’ distribution

In this part we illustrate simulation results of the proposed
algorithm in terms of the ‘Price of Anarchy’. We run the
simulations for many times in a graph of 10 nodes and 6 flows.
Each time we run several circles of the proposed algorithm 1.
When the total cost does not change again, we view the system
as having entered a Nash Equilibrium Point and calculate the
"Price of Anarchy’. Figure 2 shows the probability density

function of the ‘Price of Anarchy’ for different cost function
orders. The results show that density near price 1 is quite
large, which confirms the efficiency of our algorithm. Also, the
relationship between the ‘Price of Anarchy’ and cost function
order can be observed: distribution with a higher order has a
longer tail.

B. Numerical Results of the Regret

In this part we demonstrate the simulation results for regret
order. We use the same simulation settings in part A. However,
this time the link cost function is defined to be unknown and
we use our algorithm 2 to estimate the link cost function
while utilizing the network, which is called *Exploration and
Exploitation’. We run the algorithm 2 for many times and
calculate the expected regret by averaging. That is why we are
getting a smooth curve. Figure 3 shows the growing behavior
of regret with time under different G selections. We divide
regret by log(T) to view its convergence. We choose the Gy,
as the basic G based on the condition shown in Theorem 4.
Actually, this condition is just an sufficient condition that leads
to logarithmic growing of regret. In real simulation, we have
chosen a basic G smaller than in Theorem 4 but can still help
the logarithmic growth hold.

150

100

Gb

0.7Gb

0.5Gb

Regret/log (T)

50

| | | | | | | i
0 100 200 300 400 500 600 700 800
T (ms)

Fig. 3: regret(T) divided by log(T)

VIII. CONCLUSIONS

In this paper, we considered the flow scheduling problem
under both known and unknown model. For the known model,
we proposed a virtual non-cooperative game with incentive
pricing to solve the cost optimization problem. To analyze
this virtual game, we proved that our game always converges
to a Nash Equilibrium Point which has a bounded price of
anarchy. The constant bound was proved to be independent
of network size and flow distribution. Then we extended this
algorithm to situations when cost distributions were unknown
apriori. We modeled this problem under multi-armed bandit
model and combined the virtual game with the newly proposed
DSEE Sequence which could achieve best regret for all light-
tail cost distributions. It was proved that the regret of our
algorithm was growing logarithmically with time if the DSEE

parameters were chosen properly, which is best in the con-
vetinal online learning scenario. Finally, simulation results in
terms of the Price of Anarchy and the regret growing behavior
were provided to confirm the effectiveness of our algorithms
in both two models.

ACKNOWLEDGEMENT

Prof. P. Fan’s work was supported by the China Major
State Basic Research Development Program (973 Program)
No.2012CB316100(2), National Natural Science Foundation
of China (NSFC) No. 61171064, the China National Science
and Technology Major Project No0.2010ZX03003-003 and
NSFC No. 61021001.

REFERENCES

[1] K. Kar, M. Kodialam, T. V. Lakshman, “Minimum Interference Rout-
ing of Bandwidth Guaranteed Tunnels with MPLS Traffic Engineering
Applications”, IEEE JSAC, vol. 18, no. 12, pp. 2566-2579, December
2000.

[2] Mudi Kodialam T. V. Laksban, “Minimum Interference Routing with
Applications to MPLS TraMic Engineering”, Proc.IEEE INFOCOM, vol.
2, pp. 884-893, 2000.

[3] B. Fortz, M. Thorup, “Internet Traffic Engineering by Optimizing OSPF
Weights”, Proc.IEEE INFOCOM, vol. 2, pp. 519-528, 2000.

[4] R. Guerin, A. Orda, D. Williams, “QoS routing mechanisms and OSPF ex-
tensions”, Proc.IEEE Global Telecommunications Conference (GLOBE-
COM), vol. 3, pp. 1903-1908, 1997.

[5] N. Nisan, T. Roughgarden, E. Tardos, and V.Vazirani, “Algorithmic Game
Theory”, Cambridge University Press, 2007.

[6] J. B. Rosen, “Existence and Uniqueness of Equilibrium Points for
Concave N-Person Games”, Econometrica, vol. 33, no. 3, pp. 520-534,
Jul. 1965.

[7] Baruch Awerbuch, Robert Kleinberg, “Online Linear Optimization and
Adaptive Routing”, Journal of Computer and System Sciences, vol. 74,
no. 1, pp. 97-114, Feb. 2008.

[8] E. Koutsoupias, C. H. Papadimitriou, “Worstcase equilibria”, Proceedings
of the 16th Annual Symposium on Theoretical Aspects of Computer
Science, pp. 404-413, 1999.

[9]1 B. Awerbuch, Y. Azar, and L. Epstein, “The price of routing Unsplittable
flow”, Proc.37th Symp. Theory of Computing, pp. 57-66, 2005.

[10] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules”, Advances in Applied Mathematics, vol. 6, no. 1, pp. 422, 1985.

[11] R. Agrawal, “Sample mean based index policies with O(log(n)) regret
for the multi-armed bandit problem”, Adv. Appl.Probab., vol. 27, no. 4,
pp. 1054-1078, Dec. 1995.

[12] P. Auer, N. Cesa-Bianchi, and P. Fisher, “Finite time Analysis of the
Multiarmed Bandit Problem”, Machine Learning, vol. 47, no.2-3, pp.235-
256, May, 2002.

[13] K. Liu and Q. Zhao, “Adaptive Shortest-Path Routing under Unknown
and Stochastically Varying Link States”, Proc. of the 10th International
Symposium on Modeling and Optimization in Mobile, Ad Hoc, and
Wireless Networks (WiOpt), pp. 232-237, May, 2012.

[14] Y. Gai, B. Krishnamachari, and R. Jain, “Combinatorial Network Op-
timization with Unknown Variables: Multi-Armed Bandits with Linear
Rewards and Individual Observations”, IEEE/ACM Transactions on Net-
working, vol. 20, no. 5, 2012.

[15] K. Liu and Q. Zhao, “Distributed Learning in Multi-Armed Bandit With
Multiple Players”, IEEE TRANSACTIONS ON SIGNAL PROCESSING,
vol. 58, no. 11, pp. 5667-5681, Nov. 2010.

[16] Dimitri P. Bertsekas and Robert G. Gallager, “Data Networks(2nd
edition)”, Prentice Hall, 1992.

[17] K. Liu and Q. Zhao, “Multi-Armed Bandit Problems with Heavy-Tailed
Reward Distributions”, Proc. of Allerton Conference on Communications,
Control, and Computing, pp. 485-492, Sep. 2011.

[18] Y. Yang, K. Liu, Q.Zhao “Distributed Flow Scheduling in Unknown
Environment”, Online Available: http://arxiv.org/pdf/1210.1708.pdf

