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Abstract—In cognitive radio networks, uncontrolled access of
secondary users degrades the performance of primary users and
can even lead to system infeasibility, as the secondary users are
allowed to transmit simultaneously on a shared spectrum. We
study the feasibility of the total energy consumption minimization
problem subjecting to power budget and Signal-to-Interference-
plus-Noise Ratio (SINR) constraints. Finding the largest set of
secondary users (i.e., the system capacity) that can be supported
in the system is hard to solve due to the nonconvexity of the
cardinality objective. We formulate this problem as a vector-
cardinality optimization problem, and propose a convex relax-
ation that replaces the objective with a continuous and convex
function. Motivated by the sum-of-infeasibilities heuristic, a joint
power and admission control algorithm is proposed to compute
the maximum number of secondary users that can be supported.
Numerical results are presented to show that our algorithm is
theoretically sound and practically implementable.
Index Terms—Power control, admission control, optimization,

feasibility, cognitive radio networks.

I. INTRODUCTION
Cognitive radio networks are envisioned to provide high

bandwidth to mobile users via dynamic spectrum access
techniques and heterogeneous wireless architectures [1], [2].
Energy efficiency in cognitive radio networks is a growing
focus as energy consumption and electromagnetic radiation
increasingly become a global environmental concern [3]–[5].
In wireless networks, power control has traditionally been
used to satisfy the Signal-to-Interference-plus-Noise Ratio
(SINR) requirements of users and to minimize the total energy
consumption [6]. Sorooshyari et al. developed an axiomatic
framework for power control in cognitive radio networks
in [7]. Since the seminal work by Foschini and Miljanic in [8]
in designing power control algorithms for energy minimization
subject to SINR constraints, it has been extended to consider
power constraints, e.g., the constrained Distributed Power
Control (DPC) algorithm in [9], when there is an individual
power constraint for each user.
A key issue in this energy minimization problem is the

infeasibility problem, i.e., when it is not possible to simulta-
neously meet the SINR constraints of all the secondary users.
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When there is infeasibility, existing power control algorithms,
e.g., in [8], may not converge or may be unstable, e.g.,
using the DPC algorithm in [9], users may transmit at the
maximum possible power and yet still cannot satisfy their
SINR constraints that lead to undue interference. In [10], the
authors proposed an energy-robustness tradeoff optimization
to balance energy expenditure and robustness against outage.
This problem is more severe in a cognitive radio network if
the overwhelming interference to the primary users caused by
the secondary users is uncontrolled. Thus, admission control
is necessary to resolve the infeasibility issue in the energy
minimization problem [11].
In cognitive radio networks, secondary users monitor the

surrounding radio environment, dynamically adapt their trans-
mission parameters, and opportunistically utilize the temporar-
ily free spectrum resource licensed to primary users [12]. To
simultaneously maximize the number of secondary users that
can be supported and minimize the total energy consump-
tion is generally hard to solve and in fact NP-hard [13].
Mathematically, it is equivalent to computing the maximum
feasible set given an infeasible set of linear constraints [14].
In the power control literature, there has been extensive
work on admission control to find the system capacity, i.e.,
the maximum feasible set. In [15], Ren et al. studied the
impact of power allocation of secondary users with admission
control. In [16], Mahdavi-Doost et al. developed a centralized
gradual removal algorithm that removes users to increase the
maximum achievable SINR in the system. In [17], Rasti et
al. proposed a distributed temporarily removal algorithm, in
which users stop transmission once their instantaneous power
exceed certain threshold. Matskani et al. [13] and Mitliagkas et
al. [18] proposed removing users based on convex relaxation
to obtain an approximate solution to the system capacity.
Besides, Kang et al. in [19] proposed an optimal power

allocation strategy for the secondary user under the primary
user outage probability constraint. Huang et al. in [20] de-
signed a distributed power control algorithm to maximize
the throughput of secondary users and protect the primary
user’s quality-of-service. Anandkumar et al. in [21] proposed
policies to obtain the optimal throughput transmission for
secondary users. Phunchongharn et al. considered the channel
gain uncertainty to design power control algorithms to tackle
the system capacity violation in [22]. Halldorsson et al. gave



algorithms based on a novel linear programming formulation
for capacity problems, with constant-factor performance guar-
antees for several capacity and throughput problems in [23].
Parsaeefard et al. proposed a robust distributed uplink power
allocation algorithm for underlay cognitive radio networks to
maximize the social utility of secondary users in [24].
The system capacity is intriguingly related to the amount

of energy consumption in the network. Aggressive admission
control unduly removes secondary users that leads to the
network being under-utilized, albeit with a lower total energy
consumption. On the other hand, a maximum system efficiency
perspective requires supporting as many secondary users as
possible albeit with a higher total energy consumption. This
energy-infeasibility tradeoff entails an optimization of the
system operating point to balance the system capacity and the
energy consumption.
In contrast to the commonly used two-timescale approach

(finding a maximum secondary user set first before minimizing
the total energy consumption of all users in the set) in
the literature, we propose a single timescale approach to
jointly optimize this energy-infeasibility tradeoff that yields
power control algorithm with low complexity. In particular,
using convex relaxation and Lagrange duality, we propose an
algorithm based on the sum-of-infeasibilities in optimization
theory [25], which is also partially motivated by compressed
sensing [14], to compute a (suboptimal) set of users that can
be supported subject to a system constraint on the total energy
consumption that can be tolerated.
Overall, the contributions in this paper are:
1) the formulation and relaxation of the feasibility problem
as a vector-cardinality minimization problem,

2) a joint power and admission control algorithm in the
form of a fixed-point algorithm that exhibits desirable
convergence behavior.

The paper is organized as follows: We introduce the sys-
tem model in Section II. We first study a vector-cardinality
formulation and its relaxation, and then propose a joint
power and admission control algorithm based on the sum-of-
infeasibilities in Section III. We evaluate the performance of
our algorithm numerically and compare them to other baseline
algorithms in Section IV. Finally, we conclude the paper in
Section V.
The following notations are used in this paper: Boldface

uppercase letters denote matrices, boldface lowercase letters
denote column vectors and italics denote scalars. ρ(A) de-
notes the Perron-Frobenius eigenvalue of a nonnegative matrix
A. The super-script (·)� denotes the transpose. ‖ · ‖0 and
‖ · ‖1 denote the �0 and �1 norm, respectively. I denotes
the identity matrix. ex and logx denote (ex1 , . . . , exn)� and
(log x1, . . . , log xn)

�, respectively.

II. SYSTEM MODEL

In this section, we consider a cognitive radio network with
a collection of primary users and secondary users. There
are Lm primary users and Ls secondary users (transmitter-
receiver pairs), communicating simultaneously over a common

frequency-flat fading channel. The received SINR of the ith
primary user and the jth secondary user in the transmission
can be given in terms of the transmit power p = [pm;ps] as:

SINR
m
i (p) =

Gmm
ii pmi

Lm∑
l=1
l �=i

Gmm
il pml +

Ls∑
j=1

Gms
ij psj + nm

i

, (1)

and:

SINR
s
j(p) =

Gss
jjp

s
j

Lm∑
i=1

Gsm
ji pmi +

Ls∑
l=1
l �=j

Gss
jl p

s
l + ns

j

, (2)

respectively, where the super-script m represents the primary
user, the super-script s represents the secondary user, Gms

ij is
the channel gain from the jth secondary transmitter to the ith
primary receiver, and ni is the additive white Gaussian noise
(AWGN) at the ith user.

Fig. 1. Illustration of a cognitive radio network.

The optimization problem that minimizes the total energy
consumption of both the primary and secondary users subject
to power budget and SINR constraints is given by [6], [8]:

minimize
Lm∑
i=1

pmi +

Ls∑
j=1

psj

subject to SINR
m
i (p) ≥ γ̄m

i , i = 1, . . . , Lm,
SINR

s
j(p) ≥ γ̄s

j , j = 1, . . . , Ls,
0 ≤ pm ≤ p̄m,
0 ≤ ps ≤ p̄s,

variables : pm,ps,

(3)

where p̄ = [p̄m; p̄s] is the upper bound of transmit power for
all users and γ̄ = [γ̄m; γ̄s] is a given minimum SINR thresh-
old vector, representing the quality-of-service requirement in
the cognitive radio network.



To give a more compact representation, let us define the
nonnegative vector:

v = [vm;vs] =

(
nm
1

Gmm
11

, · · · ,
nm
Lm

Gmm
LmLm

,
ns
1

Gss
11

, · · · ,
ns
Ls

Gss
LsLs

)�

,

(4)
and the nonnegative matrix F:

F =

[
Fmm Fms

Fsm Fss

]
, (5)

where Fmm ∈ R
Lm×Lm ,Fms ∈ R

Lm×Ls ,Fsm ∈ R
Ls×Lm

and Fss ∈ R
Ls×Ls , with entries:

Fms
ij =

Gms
ij

Gmm
ii

, F sm
ji =

Gsm
ji

Gss
jj

,

Fmm
li =

{
0, l = i,
Gmm

li

Gmm
ll

, l �= i,
(6)

and:

F ss
lj =

{
0, l = j,
Gss

lj

Gss
ll

, l �= j.
(7)

Moreover, we assume that F is irreducible, i.e., each user has
at least an interferer. Then, we can rewrite (3) as a linear
program in matrix form [6]:

minimize 1�p

subject to (I− diag(γ̄)F)p ≥ diag(γ̄)v,
0 ≤ p ≤ p̄,

variables : p.

(8)

In general, (8) may or may not be feasible. It is well-known
that a necessary (but not sufficient) condition for the feasibility
of (8) is ρ(diag(γ̄)F) < 1 [6], [8], [9], [26].
Suppose (8) is feasible. Then to solve (8), the following

DPC algorithm has been proposed in [9]:

pl(t+ 1) = min

{
γ̄lpl(t)

SINRl(p(t))
, p̄l

}
, l = 1, . . . , Lm + Ls,

(9)
where SINR(p) = [SINRm(p); SINRs(p)]. This algorithm
converges to the optimal solution of (3) whenever (3) is feasi-
ble. Intuitively, the lth user increases its power if its SINRl(p)
is below γ̄l, and otherwise decreases it. However, when (3) is
infeasible, (9) is a greedy algorithm that converges to a point,
where some but not all of the users can satisfy their SINR
thresholds. From a system efficiency perspective viewpoint, it
is necessary to find the system capacity, i.e., the maximum
number of users that can be supported. In a cognitive radio
network, the overwhelming interference from the unlicensed
secondary users can adversely affect the performance of the
overall network. Thus, it is more interesting to study the
impact of secondary users on the primary users. Therefore,
we make the assumption that the system having only primary
users is already feasible without any secondary user.
In the following, we first construct a feasible optimiza-

tion problem for (3), i.e., a vector-cardinality minimization
problem, whose convex relaxation is the sum-of-infeasibilities

heuristic in optimization theory [25]. By exploiting the opti-
mality conditions, we propose a fixed-point algorithm to solve
this sum-of-infeasibilities problem in Section III. Figure 2
gives an overview of the key optimization problems solved
in this paper.

Fig. 2. Overview of the connection between the key optimization problems.

III. RELAXATION BY SUM-OF-INFEASIBILITIES
In this section, we first introduce a vector-cardinality prob-

lem and then adopt a convex relaxation technique by re-
placing the vector-cardinality with a sum-of-infeasibilities. In
particular, we exploit the optimality conditions of this convex
relaxation to design an iterative fixed-point algorithm.

A. Energy-Infeasibility Optimization Problem
Finding the largest set of users whose SINR thresholds can

all be satisfied is a NP-hard combinatorial problem [17]. When
the number of secondary users is large, it is not practical
to examine all the combinations of the secondary users to
select a feasible set with the maximum cardinality. In the
following, we formulate another optimization problem related
to (3) by adding auxiliary variables qmi and qsj to the right side
of the SINR constraints for the ith primary user and the jth
secondary user respectively. Letting q = [qm;qs], we consider
the following (nonconvex) optimization problem:

minimize ‖q‖0

subject to γ̄m
i

SINRm
i
(p) ≤ 1 + qmi , i = 1, . . . , Lm,

γ̄s
j

SINRs
j
(p) ≤ 1 + qsj , j = 1, . . . , Ls,

0 ≤ p ≤ p̄,
variables : p,q,

(10)

where q can be interpreted as the effect of SINR margins
added to all SINR thresholds (that cushion and keep the
SINR from falling below the SINR thresholds when there is
fluctuation in the system operating point). For brevity, we also
call q the SINR margin variable.
Note that (3) is feasible if and only if the optimal value

of (10) is zero. Note that (10) is always feasible. We have
q�l > 0 if the SINR threshold of the lth user cannot be
achieved. Intuitively, a feasible set of users for (3) can be



obtained by removing all the users satisfying q�l > 0 at the
optimality of (10). However, (10) is still a computationally
hard problem due to the nonsmooth and nonconvex objective
function. Therefore, we consider the following optimization
problem by replacing the objective function of (10) with the
sum of q, i.e., the sum-of-infeasibilities heuristic (cf. Chapter
11.4 in [25]), given by:

minimize 1�q

subject to γ̄m
i

SINRm
i
(p) ≤ 1 + qmi , i = 1, . . . , Lm,

γ̄s
j

SINRs
j
(p) ≤ 1 + qsj , j = 1, . . . , Ls,

0 ≤ p ≤ p̄,
q ≥ 0,

variables : p,q.

(11)

Let the optimal p in (11) be denoted by p�.
Lemma 1: The optimal value of (11) is smaller than the

optimal value of (10).
Remark 1: For the nonnegative SINR margin variable, we

have 1− ql ≤ 1/(1+ ql). Then, the objective function of (11)
satisfies:

Lm∑
i=1

qmi +

Ls∑
j=1

qsj ≥

Lm∑
i=1

(
1−

SINR
m
i (p)

γ̄m
i

)

+

Ls∑
j=1

(
1−

SINR
s
j(p)

γ̄s
j

)
.

(12)

The equality in (12) is tight if (3) is feasible, i.e., q� = 0.
Otherwise, minimizing the left side of (12) has the effect of
minimizing the differences between the SINR thresholds and
the actual SINRs of all users.
Although (11) is still nonconvex, we can transform it to a

convex problem by using a logarithmic transformation on the
transmit power, i.e., p̃ = logp. Then, we obtain the following
equivalent convex optimization problem:

minimize 1�q

subject to log γ̄m
i − log SINRm

i (ep̃) ≤ log(1 + qmi ), ∀i,
log γ̄s

j − log SINRs
j(e

p̃) ≤ log(1 + qsj ), ∀j,
ep̃ ≤ p̄,
q ≥ 0,

variables : p̃,q.
(13)

We denote the optimal solution of q in (13) by q� =
(q�1 , . . . , q

�
Lm+Ls

)�. Note that the optimal p̃ in (13), denoted
by p̃�, is related to p� in (11) by p̃� = logp�. Now, we
characterize (13) with the following results, and this facilitates
the design of a fixed-point algorithm.
Lemma 2: If (p̃,q) is a feasible point of (13), we have:

ρ

(
diag

(
γ̄

1 + q

)(
F+

1

p̄l
ve�l

))
≤ 1, l = 1, . . . , Lm+Ls.

(14)
Next, we use the optimality conditions of (13) to develop

an iterative fixed-point algorithm.

Theorem 1: The optimal transmit power p� in (11), the q�

in (13), and the dual variables (ν�,λ�) of (13) satisfy:

p� = diag

(
γ̄

1 + q�

)
(Fp� + v), (15)

ν�l = p�l

⎛
⎜⎜⎝∑

i�=l

Gilν
�
i∑

j �=i

Gijp
�
j + ni

+ λ�
l

⎞
⎟⎟⎠ , l = 1, . . . , Lm+Ls,

(16)
λ�
l (p

�
l − p̄l) = 0, l = 1, . . . , Lm + Ls, (17)

and

q�l = max{ν�l − 1, 0}, l = 1, . . . , Lm + Ls, (18)

where νl ∈ R+, which is associated with the lth SINR con-
straint, can be interpreted as the admission price, and λl ∈ R+

is associated with the lth power constraint. Furthermore, by
introducing an auxiliary variable x�

l = ν�l /p
�
l for each l, we

can rewrite (16) as:

x� = F� diag

(
γ̄

1 + q�

)
x� + λ�. (19)

Remark 2: The dual variable λ�
l = 0 when the associated

transmit power satisfies p�l < p̄l at optimality of (13). If the
optimal value of (10) is greater than zero, the dual variables
satisfy ν� > 0 and λ� �= 0. In general, x can be regarded as
an auxiliary variable to assist the computation of the primal
and dual variables in (13).

B. Sum-of-Infeasibilities Joint Power and Admission Control
Algorithm
Now, we propose a fixed-point algorithm to compute the

optimal solution of (13), and simultaneously remove secondary
users iteratively through admission control to identify a subset
of secondary users that is feasible in (3).

Algorithm 1: Sum-of-Infeasibilities Joint Power and Admis-
sion Control

1) Initialization:
• Initialize the set of supported secondary users

A(0) = {1, . . . , Ls}.
2) Update by each user l during the uplink time slot:

• Update the transmitter power pl(k + 1) at the (k +
1)th step for all users:

pl(k+1) = min

{
γ̄lpl(k)

max{νl(k), 1}SINRl(p(k))
, p̄l

}
.

(20)
3) Update by each user l during the downlink time slot:
If pl < p̄l

• Update the auxiliary variable xl(k + 1):

xl(k + 1) =

Lm+Ls∑
j=1

Fjlγ̄j
max{νj(k), 1}

xj(k), ∀l. (21)



• Update the admission price νl(k + 1):

νl(k + 1) = xl(k + 1)pl(k + 1), ∀l. (22)

else
• Update the admission price νl(k + 1):

νl(k + 1) =
γ̄l

SINRl(p(k + 1))
, ∀l. (23)

• Update the auxiliary variable x(k + 1):

xl(k + 1) = νl(k + 1)/pl(k + 1), ∀l. (24)

end
4) Secondary user admission control:

• After a predefined threshold T (i.e., the iteration
number of inner loop (20)-(24)), let ql(k + 1) =
max{νl(k+1)−1, 0} for all users. If 1�q(k+1) >
0, then switch off the worst secondary user j, where:

j = arg max
l∈A(k)

νl+Lm
(k + 1), (25)

• Update the set A(k + 1) ←A(k) − j.

Theorem 2: If Algorithm 1 converges then it converges to
a feasible set of supported secondary users for (3).
Remark 3: The computation of (21) and (25) can be made

distributed by message passing. The limit point of lim
k→∞

p(k)

solves (3), and lim
k→∞

1�q(k) = 0 implies that (3) is feasible.
When lim

k→∞
ql(k) > 0 for some l, the corresponding secondary

users have to be removed to make (3) feasible.
Since the condition that SINRl(p

�) = γ̄l

1+q�
l

, q�l = 0 implies
that the lth user can achieve its SINR threshold. Otherwise,
q�l > 0 implies that the lth user cannot reach its SINR
threshold and it should be switched off. If we remove all
the users that satisfy q�l > 0, then (3) is guaranteed to be
feasible. However, some users are unnecessarily removed since
we have used the relaxation (11) instead of (10). To remove
the least possible number of users, we introduce the idea of
deflation into the admission control. Based on q�, an educated
guess to reduce the sum of the infeasibilities is to delete the
worst secondary user corresponding to arg max

l∈A(k)
q�l , which

is equivalent to (25). This is implemented in Step 4. The
unsupported secondary user is switched off not only to reduce
its transmit power, but also to avoid adding interference to
other users.
Furthermore, note that the SINR margin satisfies q� = 0

after the system becomes feasible. Then, since the admission
price satisfies ν� ≤ 1 based on (18), the power update in (20)
is equivalent to that in (9). Therefore, the total transmit power
is minimized on the set of primary users and a subset of
feasible secondary users.

C. Discussion of Threshold T

The convergence of Algorithm 1 depends on the prede-
fined stopping threshold T at Step 4. If T is large enough,
Algorithm 1 removes the secondary users that cause infeasi-
bility based on relatively stabilized admission price and may

converge rather slowly. As T becomes smaller, Algorithm 1
converges faster but may prematurely remove more secondary
users based on (yet to stabilize) admission price. In practice, it
is observed that the users in the feasible subset can attain their
required SINR even when the convergence time of Algorithm 1
is small. Hence, the choice of T reflects the aggressiveness of
admission control and convergence. To understand this better,
we use the outage probability, which is defined as the ratio of
the number of removed users to the total number of secondary
users, as a parameter to study the tradeoff between the outage
probability and the convergence time of Algorithm 1 by
choosing different T .
The total number of iterations of Algorithm 1 for conver-

gence is affected by T which in turn affects the number of
users eventually removed. From a practical perspective, the
system should become feasible as soon as possible. Larger
cognitive radio networks may have more secondary users and
require a dynamically adaptable T . We describe a heuristic
to adapt T . First, we empirically get an (a priori) outage
probability ro in the cognitive radio networks. Suppose we
desire an expected convergence time of Algorithm 1, denoted
as T̄ . Then, we use the threshold T = T̄ /(Ls × ro) for
admission control. We may have more than one secondary
user satisfying (25). In this case, we remove secondary users
by breaking ties uniformly at random.

IV. NUMERICAL EXAMPLES
In this section, we provide experimental results to illustrate

that our proposed algorithm outperforms other known alter-
natives in terms of the energy consumption and the system
capacity.
Example 1: We compare our methods with the distributed

power control algorithm with temporary removal and feasibil-
ity check (DFC) in [17]. Although the model in [17] is the
special case for a single cell where the channel gain for each
user is the same Glj = Gjj , we use the same setup for the
convenience of comparison. The AWGN at the receiver, i.e.,
n = σ2, is assumed to be 5 × 10−15 W. The channel gain
is adopted from the well-known model Gjj = kd−4

j , where
dj is the distance between the jth transmitter and its receiver,
and k = 0.09 is the attenuation factor that represents power
variations due to path loss. The upper bounds of the transmit
power for all users are the same, i.e., p̄l = 1W for all l. There
are 5 users indexed by 1 to 5 in a single-cell environment
where the distance vector is d = [300, 530, 740, 860, 910]�

m, in which each element is the distance of the corresponding
receiver from its transmitter. The SINR threshold vector is
γ̄ = [0.40, 0.30, 0.35, 0.25, 0.25]�, which is equivalent to
γ̄ = [−4,−5.2,−4.6,−6,−6]�dB. User 1 is the primary user
while the others are the secondary users.
Figure 3 shows the same simulation result of DFC as [17],

which sets p5 = 0 to switch off User 5 so that the other users
reach their SINR thresholds with the minimum total energy
consumption as the system is infeasible. The optimal power
is p = [0.0061, 0.0483, 0.2063, 0.2904, 0]�. In addition, the
performance of DFC depends on the initial point. Although
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Fig. 3. The evolution of transmit power and SINR for DFC with proper
initial point. The blue lines are 4 supported users. The red line is the removed
secondary user.

DFC performs well when the initial point is chosen appropri-
ately, the iteration may oscillate for other initial points. It is
mentioned in [17] that such oscillation can be further removed
through additional heuristics.
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Fig. 4. The evolution of transmit power and SINR for Algorithm 1. The
blue lines are 4 supported users. The red line is the removed worst secondary
user.

Figure 4 shows that Algorithm 1 obtains the same feasible
set in terms of the cardinality. Also, the solution of the power
is p = [0.0015, 0.0121, 0, 0.0728, 0.0912]�, and Algorithm 1
removes User 3 instead of User 5. Hence, our feasible set
gives an energy saving of 0.5511−0.1776

0.5511 × 100% = 67.8%.
The main reason is that DFC temporally removes the user
that first hits the upper bound of the user’s individual power

constraint, whereas, our method predicts the worst secondary
user with an educated guess that exploits the SINR margin
variable.
Table I shows the admission criteria of secondary users

when Algorithm 1 obtains the optimal solution of (13). Al-
though we can reduce the sum of power to 0.1731 by removing
User 1 with p = [0, 0.0092, 0.0393, 0.0553, 0.0693]�, we
do not remove User 1 because it is the primary user. In
addition, our results are the same as the results produced
by the centralized algorithm in [16], which greedily removes
the user that provides the highest marginal increase in the
maximum achievable SINR once it is removed. Nevertheless,
the centralized algorithm in [16] has a higher complexity as it
tries to remove every user at each iteration based on the global
information that has to be obtained in a centralized manner.

TABLE I
ADMISSION CRITERIA OF ALGORITHM 1

Alg. 1 p
�

q
�

User 1 0.0152 0.3590
User 2 0.1284 0.2233
User 3 0.5272 0.2954
User 4 0.8127 0.1406
User 5 1.0000 0.1668∑

2.4835 1.1852

Example 2: We compare Algorithm 1 with the widely used
constrained DPC algorithm (9) for general networks with
different channel gains Glj �= Gjj of each user. There are 2
primary users and 8 secondary users in an infeasible cognitive
network where the channel gains are generated randomly. The
upper bounds of the power constraints and the SINR thresholds
are the same for all l, that are p̄l = 1 W and γ̄l = 0.5,
respectively.
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Fig. 5. The evolution of transmit power and SINR for DPC. The red lines
are unsupported 8 users. The blue lines are supported 2 users.

Figure 5 shows the evolution of DPC where 8 unsupported
users transmit at their maximum power level but do not achieve
their SINR thresholds. As these unsupported users increase the
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Fig. 6. The evolution of transmit power and SINR for Algorithm 1. The red
lines are removed worst 3 secondary users. The blue lines are supported 7
users.

interference in the network, there are only 2 users achieving
their SINR thresholds. Figure 6 shows the evolution of Al-
gorithm 1 where there are 7 users supported by the network
after we gradually remove the {5, 3, 10}-th users which are
the secondary users. Meanwhile, the centralized algorithm
in [16] gets the same approximate maximum feasible set by
greedily removing the {5, 10, 3}-th users. Compared to DPC,
our algorithm increases the system capacity from 20% to 70%.
Example 3: It is possible to obtain different maximum fea-

sible sets from different algorithms, as the maximum feasible
set may not be unique. Hence, we compare the system capacity
obtained (equivalently the outage probability) and the energy
consumption based on different algorithms. This example
reports the Monte-Carlo (MC) average results for at least 300
MC runs. For each MC run, transmitter locations are uniformly
drawn on a 2Km × 2Km square. For each transmitter location,
a receiver location is drawn uniformly in a disc of radius 400
meters, excluding a radius of 10 meters. The primary users are
randomly selected from all users and the remaining ones are
secondary users. All upper bounds of transmit power are fixed
as p̄l = 1 W. The channel gains are calculated by Glj = d−4

lj

where dlj is the Euclidean distance between the jth transmitter
and the lth receiver. The receiver noise is set as -60 dBm. In
the figures, Alg. 1 is our proposed Algorithm 1 in Section III,
Cent is the centralized removal algorithm in [16] and Exce is
the algorithm where we use the heuristic that considers the
removal metric [18] with the worst secondary user j:

j = argmax
a∈A

∑
l �=a

Glap
e
a +

∑
l �=a

Galp
e
l , (26)

where A is the set of current secondary users in system and
pel is the excess transmission power needed for User l to attain
its SINR threshold.
Figures 7 and 8 show that our Algorithm 1 outperforms
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Fig. 7. Average outage probability and average total energy consumption
versus total number of users. The lower bound of SINR thresholds are the
same γ̄l = −6 dB for all l.
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Fig. 8. Average outage probability and average total energy consumption
versus different SINR thresholds. The total number of users is 50.

the centralized greedily removal algorithm in [16] and the
algorithm that uses the removal heuristic in (26) for admission
control. Although the centralized algorithm and the algorithm
that uses the removal heuristic in (26) have an overall smaller
total energy consumption than those obtained by Algorithm 1,
this is due to the fact that they support fewer users thus
yielding a lower system capacity. When the outage probabil-
ities are the same, Algorithm 1 achieves smaller total energy
consumption than the Exce algorithm. This demonstrates the
value of optimizing the admission price as compared to the
metric in (26). Figure 9 shows that the convergence time
becomes longer with a larger T , while the outage probability
tends to be smaller in the same case. When T is large enough,



the convergence time and outage probability can be stabilized,
which means that Algorithm 1 converges and the increase of T
does not affect significantly the performance. In this example,
we set T = 16 by letting the expected convergence time be
T̄ = 340 and we empirically get a priori outage probability
which is ro = 0.43.
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Fig. 9. Average outage probability and average convergence time for different
threshold T in a 50 users case. The lower bound of all the SINR minimum
thresholds are set to be the same γ̄l = −8 dB for all l.

V. CONCLUSION
In this paper, we studied the feasibility problem of energy

minimization in cognitive radio networks subject to power
and SINR constraints. We formulated this problem as a
vector-cardinality optimization problem. We used a sum-of-
infeasibilities heuristic to relax the vector-cardinality optimiza-
tion problem and to design a joint power and admission control
algorithm. Numerical evaluations showed that our proposed
sum-of-infeasibilities joint power and control algorithm was
computationally fast and converged to the equilibrium that was
near-optimal in terms of maximizing the system capacity with
minimal energy consumption. Our algorithm can also outper-
form existing admission control and power control algorithms.
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