rustc_parse/parser/
expr.rs

1// ignore-tidy-filelength
2
3use core::mem;
4use core::ops::{Bound, ControlFlow};
5
6use ast::mut_visit::{self, MutVisitor};
7use ast::token::IdentIsRaw;
8use ast::{CoroutineKind, ForLoopKind, GenBlockKind, MatchKind, Pat, Path, PathSegment, Recovered};
9use rustc_ast::ptr::P;
10use rustc_ast::token::{self, Delimiter, InvisibleOrigin, MetaVarKind, Token, TokenKind};
11use rustc_ast::tokenstream::TokenTree;
12use rustc_ast::util::case::Case;
13use rustc_ast::util::classify;
14use rustc_ast::util::parser::{AssocOp, ExprPrecedence, Fixity, prec_let_scrutinee_needs_par};
15use rustc_ast::visit::{Visitor, walk_expr};
16use rustc_ast::{
17    self as ast, AnonConst, Arm, AssignOp, AssignOpKind, AttrStyle, AttrVec, BinOp, BinOpKind,
18    BlockCheckMode, CaptureBy, ClosureBinder, DUMMY_NODE_ID, Expr, ExprField, ExprKind, FnDecl,
19    FnRetTy, Label, MacCall, MetaItemLit, Movability, Param, RangeLimits, StmtKind, Ty, TyKind,
20    UnOp, UnsafeBinderCastKind, YieldKind,
21};
22use rustc_data_structures::stack::ensure_sufficient_stack;
23use rustc_errors::{Applicability, Diag, PResult, StashKey, Subdiagnostic};
24use rustc_literal_escaper::unescape_char;
25use rustc_macros::Subdiagnostic;
26use rustc_session::errors::{ExprParenthesesNeeded, report_lit_error};
27use rustc_session::lint::BuiltinLintDiag;
28use rustc_session::lint::builtin::BREAK_WITH_LABEL_AND_LOOP;
29use rustc_span::edition::Edition;
30use rustc_span::source_map::{self, Spanned};
31use rustc_span::{BytePos, ErrorGuaranteed, Ident, Pos, Span, Symbol, kw, sym};
32use thin_vec::{ThinVec, thin_vec};
33use tracing::instrument;
34
35use super::diagnostics::SnapshotParser;
36use super::pat::{CommaRecoveryMode, Expected, RecoverColon, RecoverComma};
37use super::ty::{AllowPlus, RecoverQPath, RecoverReturnSign};
38use super::{
39    AttrWrapper, BlockMode, ClosureSpans, ExpTokenPair, ForceCollect, Parser, PathStyle,
40    Restrictions, SemiColonMode, SeqSep, TokenType, Trailing, UsePreAttrPos,
41};
42use crate::{errors, exp, maybe_recover_from_interpolated_ty_qpath};
43
44#[derive(Debug)]
45pub(super) enum DestructuredFloat {
46    /// 1e2
47    Single(Symbol, Span),
48    /// 1.
49    TrailingDot(Symbol, Span, Span),
50    /// 1.2 | 1.2e3
51    MiddleDot(Symbol, Span, Span, Symbol, Span),
52    /// Invalid
53    Error,
54}
55
56impl<'a> Parser<'a> {
57    /// Parses an expression.
58    #[inline]
59    pub fn parse_expr(&mut self) -> PResult<'a, P<Expr>> {
60        self.current_closure.take();
61
62        let attrs = self.parse_outer_attributes()?;
63        self.parse_expr_res(Restrictions::empty(), attrs).map(|res| res.0)
64    }
65
66    /// Parses an expression, forcing tokens to be collected.
67    pub fn parse_expr_force_collect(&mut self) -> PResult<'a, P<Expr>> {
68        self.current_closure.take();
69
70        // If the expression is associative (e.g. `1 + 2`), then any preceding
71        // outer attribute actually belongs to the first inner sub-expression.
72        // In which case we must use the pre-attr pos to include the attribute
73        // in the collected tokens for the outer expression.
74        let pre_attr_pos = self.collect_pos();
75        let attrs = self.parse_outer_attributes()?;
76        self.collect_tokens(
77            Some(pre_attr_pos),
78            AttrWrapper::empty(),
79            ForceCollect::Yes,
80            |this, _empty_attrs| {
81                let (expr, is_assoc) = this.parse_expr_res(Restrictions::empty(), attrs)?;
82                let use_pre_attr_pos =
83                    if is_assoc { UsePreAttrPos::Yes } else { UsePreAttrPos::No };
84                Ok((expr, Trailing::No, use_pre_attr_pos))
85            },
86        )
87    }
88
89    pub fn parse_expr_anon_const(&mut self) -> PResult<'a, AnonConst> {
90        self.parse_expr().map(|value| AnonConst { id: DUMMY_NODE_ID, value })
91    }
92
93    fn parse_expr_catch_underscore(&mut self, restrictions: Restrictions) -> PResult<'a, P<Expr>> {
94        let attrs = self.parse_outer_attributes()?;
95        match self.parse_expr_res(restrictions, attrs) {
96            Ok((expr, _)) => Ok(expr),
97            Err(err) => match self.token.ident() {
98                Some((Ident { name: kw::Underscore, .. }, IdentIsRaw::No))
99                    if self.may_recover() && self.look_ahead(1, |t| t == &token::Comma) =>
100                {
101                    // Special-case handling of `foo(_, _, _)`
102                    let guar = err.emit();
103                    self.bump();
104                    Ok(self.mk_expr(self.prev_token.span, ExprKind::Err(guar)))
105                }
106                _ => Err(err),
107            },
108        }
109    }
110
111    /// Parses a sequence of expressions delimited by parentheses.
112    fn parse_expr_paren_seq(&mut self) -> PResult<'a, ThinVec<P<Expr>>> {
113        self.parse_paren_comma_seq(|p| p.parse_expr_catch_underscore(Restrictions::empty()))
114            .map(|(r, _)| r)
115    }
116
117    /// Parses an expression, subject to the given restrictions.
118    #[inline]
119    pub(super) fn parse_expr_res(
120        &mut self,
121        r: Restrictions,
122        attrs: AttrWrapper,
123    ) -> PResult<'a, (P<Expr>, bool)> {
124        self.with_res(r, |this| this.parse_expr_assoc_with(Bound::Unbounded, attrs))
125    }
126
127    /// Parses an associative expression with operators of at least `min_prec` precedence.
128    /// The `bool` in the return value indicates if it was an assoc expr, i.e. with an operator
129    /// followed by a subexpression (e.g. `1 + 2`).
130    pub(super) fn parse_expr_assoc_with(
131        &mut self,
132        min_prec: Bound<ExprPrecedence>,
133        attrs: AttrWrapper,
134    ) -> PResult<'a, (P<Expr>, bool)> {
135        let lhs = if self.token.is_range_separator() {
136            return self.parse_expr_prefix_range(attrs).map(|res| (res, false));
137        } else {
138            self.parse_expr_prefix(attrs)?
139        };
140        self.parse_expr_assoc_rest_with(min_prec, false, lhs)
141    }
142
143    /// Parses the rest of an associative expression (i.e. the part after the lhs) with operators
144    /// of at least `min_prec` precedence. The `bool` in the return value indicates if something
145    /// was actually parsed.
146    pub(super) fn parse_expr_assoc_rest_with(
147        &mut self,
148        min_prec: Bound<ExprPrecedence>,
149        starts_stmt: bool,
150        mut lhs: P<Expr>,
151    ) -> PResult<'a, (P<Expr>, bool)> {
152        let mut parsed_something = false;
153        if !self.should_continue_as_assoc_expr(&lhs) {
154            return Ok((lhs, parsed_something));
155        }
156
157        self.expected_token_types.insert(TokenType::Operator);
158        while let Some(op) = self.check_assoc_op() {
159            let lhs_span = self.interpolated_or_expr_span(&lhs);
160            let cur_op_span = self.token.span;
161            let restrictions = if op.node.is_assign_like() {
162                self.restrictions & Restrictions::NO_STRUCT_LITERAL
163            } else {
164                self.restrictions
165            };
166            let prec = op.node.precedence();
167            if match min_prec {
168                Bound::Included(min_prec) => prec < min_prec,
169                Bound::Excluded(min_prec) => prec <= min_prec,
170                Bound::Unbounded => false,
171            } {
172                break;
173            }
174            // Check for deprecated `...` syntax
175            if self.token == token::DotDotDot && op.node == AssocOp::Range(RangeLimits::Closed) {
176                self.err_dotdotdot_syntax(self.token.span);
177            }
178
179            if self.token == token::LArrow {
180                self.err_larrow_operator(self.token.span);
181            }
182
183            parsed_something = true;
184            self.bump();
185            if op.node.is_comparison() {
186                if let Some(expr) = self.check_no_chained_comparison(&lhs, &op)? {
187                    return Ok((expr, parsed_something));
188                }
189            }
190
191            // Look for JS' `===` and `!==` and recover
192            if let AssocOp::Binary(bop @ BinOpKind::Eq | bop @ BinOpKind::Ne) = op.node
193                && self.token == token::Eq
194                && self.prev_token.span.hi() == self.token.span.lo()
195            {
196                let sp = op.span.to(self.token.span);
197                let sugg = bop.as_str().into();
198                let invalid = format!("{sugg}=");
199                self.dcx().emit_err(errors::InvalidComparisonOperator {
200                    span: sp,
201                    invalid: invalid.clone(),
202                    sub: errors::InvalidComparisonOperatorSub::Correctable {
203                        span: sp,
204                        invalid,
205                        correct: sugg,
206                    },
207                });
208                self.bump();
209            }
210
211            // Look for PHP's `<>` and recover
212            if op.node == AssocOp::Binary(BinOpKind::Lt)
213                && self.token == token::Gt
214                && self.prev_token.span.hi() == self.token.span.lo()
215            {
216                let sp = op.span.to(self.token.span);
217                self.dcx().emit_err(errors::InvalidComparisonOperator {
218                    span: sp,
219                    invalid: "<>".into(),
220                    sub: errors::InvalidComparisonOperatorSub::Correctable {
221                        span: sp,
222                        invalid: "<>".into(),
223                        correct: "!=".into(),
224                    },
225                });
226                self.bump();
227            }
228
229            // Look for C++'s `<=>` and recover
230            if op.node == AssocOp::Binary(BinOpKind::Le)
231                && self.token == token::Gt
232                && self.prev_token.span.hi() == self.token.span.lo()
233            {
234                let sp = op.span.to(self.token.span);
235                self.dcx().emit_err(errors::InvalidComparisonOperator {
236                    span: sp,
237                    invalid: "<=>".into(),
238                    sub: errors::InvalidComparisonOperatorSub::Spaceship(sp),
239                });
240                self.bump();
241            }
242
243            if self.prev_token == token::Plus
244                && self.token == token::Plus
245                && self.prev_token.span.between(self.token.span).is_empty()
246            {
247                let op_span = self.prev_token.span.to(self.token.span);
248                // Eat the second `+`
249                self.bump();
250                lhs = self.recover_from_postfix_increment(lhs, op_span, starts_stmt)?;
251                continue;
252            }
253
254            if self.prev_token == token::Minus
255                && self.token == token::Minus
256                && self.prev_token.span.between(self.token.span).is_empty()
257                && !self.look_ahead(1, |tok| tok.can_begin_expr())
258            {
259                let op_span = self.prev_token.span.to(self.token.span);
260                // Eat the second `-`
261                self.bump();
262                lhs = self.recover_from_postfix_decrement(lhs, op_span, starts_stmt)?;
263                continue;
264            }
265
266            let op = op.node;
267            // Special cases:
268            if op == AssocOp::Cast {
269                lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Cast)?;
270                continue;
271            } else if let AssocOp::Range(limits) = op {
272                // If we didn't have to handle `x..`/`x..=`, it would be pretty easy to
273                // generalise it to the Fixity::None code.
274                lhs = self.parse_expr_range(prec, lhs, limits, cur_op_span)?;
275                break;
276            }
277
278            let min_prec = match op.fixity() {
279                Fixity::Right => Bound::Included(prec),
280                Fixity::Left | Fixity::None => Bound::Excluded(prec),
281            };
282            let (rhs, _) = self.with_res(restrictions - Restrictions::STMT_EXPR, |this| {
283                let attrs = this.parse_outer_attributes()?;
284                this.parse_expr_assoc_with(min_prec, attrs)
285            })?;
286
287            let span = self.mk_expr_sp(&lhs, lhs_span, rhs.span);
288            lhs = match op {
289                AssocOp::Binary(ast_op) => {
290                    let binary = self.mk_binary(source_map::respan(cur_op_span, ast_op), lhs, rhs);
291                    self.mk_expr(span, binary)
292                }
293                AssocOp::Assign => self.mk_expr(span, ExprKind::Assign(lhs, rhs, cur_op_span)),
294                AssocOp::AssignOp(aop) => {
295                    let aopexpr = self.mk_assign_op(source_map::respan(cur_op_span, aop), lhs, rhs);
296                    self.mk_expr(span, aopexpr)
297                }
298                AssocOp::Cast | AssocOp::Range(_) => {
299                    self.dcx().span_bug(span, "AssocOp should have been handled by special case")
300                }
301            };
302        }
303
304        Ok((lhs, parsed_something))
305    }
306
307    fn should_continue_as_assoc_expr(&mut self, lhs: &Expr) -> bool {
308        match (self.expr_is_complete(lhs), AssocOp::from_token(&self.token)) {
309            // Semi-statement forms are odd:
310            // See https://github.com/rust-lang/rust/issues/29071
311            (true, None) => false,
312            (false, _) => true, // Continue parsing the expression.
313            // An exhaustive check is done in the following block, but these are checked first
314            // because they *are* ambiguous but also reasonable looking incorrect syntax, so we
315            // want to keep their span info to improve diagnostics in these cases in a later stage.
316            (true, Some(AssocOp::Binary(
317                BinOpKind::Mul | // `{ 42 } *foo = bar;` or `{ 42 } * 3`
318                BinOpKind::Sub | // `{ 42 } -5`
319                BinOpKind::Add | // `{ 42 } + 42` (unary plus)
320                BinOpKind::And | // `{ 42 } &&x` (#61475) or `{ 42 } && if x { 1 } else { 0 }`
321                BinOpKind::Or | // `{ 42 } || 42` ("logical or" or closure)
322                BinOpKind::BitOr // `{ 42 } | 42` or `{ 42 } |x| 42`
323            ))) => {
324                // These cases are ambiguous and can't be identified in the parser alone.
325                //
326                // Bitwise AND is left out because guessing intent is hard. We can make
327                // suggestions based on the assumption that double-refs are rarely intentional,
328                // and closures are distinct enough that they don't get mixed up with their
329                // return value.
330                let sp = self.psess.source_map().start_point(self.token.span);
331                self.psess.ambiguous_block_expr_parse.borrow_mut().insert(sp, lhs.span);
332                false
333            }
334            (true, Some(op)) if !op.can_continue_expr_unambiguously() => false,
335            (true, Some(_)) => {
336                self.error_found_expr_would_be_stmt(lhs);
337                true
338            }
339        }
340    }
341
342    /// We've found an expression that would be parsed as a statement,
343    /// but the next token implies this should be parsed as an expression.
344    /// For example: `if let Some(x) = x { x } else { 0 } / 2`.
345    fn error_found_expr_would_be_stmt(&self, lhs: &Expr) {
346        self.dcx().emit_err(errors::FoundExprWouldBeStmt {
347            span: self.token.span,
348            token: self.token,
349            suggestion: ExprParenthesesNeeded::surrounding(lhs.span),
350        });
351    }
352
353    /// Possibly translate the current token to an associative operator.
354    /// The method does not advance the current token.
355    ///
356    /// Also performs recovery for `and` / `or` which are mistaken for `&&` and `||` respectively.
357    pub(super) fn check_assoc_op(&self) -> Option<Spanned<AssocOp>> {
358        let (op, span) = match (AssocOp::from_token(&self.token), self.token.ident()) {
359            // When parsing const expressions, stop parsing when encountering `>`.
360            (
361                Some(
362                    AssocOp::Binary(BinOpKind::Shr | BinOpKind::Gt | BinOpKind::Ge)
363                    | AssocOp::AssignOp(AssignOpKind::ShrAssign),
364                ),
365                _,
366            ) if self.restrictions.contains(Restrictions::CONST_EXPR) => {
367                return None;
368            }
369            // When recovering patterns as expressions, stop parsing when encountering an
370            // assignment `=`, an alternative `|`, or a range `..`.
371            (
372                Some(
373                    AssocOp::Assign
374                    | AssocOp::AssignOp(_)
375                    | AssocOp::Binary(BinOpKind::BitOr)
376                    | AssocOp::Range(_),
377                ),
378                _,
379            ) if self.restrictions.contains(Restrictions::IS_PAT) => {
380                return None;
381            }
382            (Some(op), _) => (op, self.token.span),
383            (None, Some((Ident { name: sym::and, span }, IdentIsRaw::No)))
384                if self.may_recover() =>
385            {
386                self.dcx().emit_err(errors::InvalidLogicalOperator {
387                    span: self.token.span,
388                    incorrect: "and".into(),
389                    sub: errors::InvalidLogicalOperatorSub::Conjunction(self.token.span),
390                });
391                (AssocOp::Binary(BinOpKind::And), span)
392            }
393            (None, Some((Ident { name: sym::or, span }, IdentIsRaw::No))) if self.may_recover() => {
394                self.dcx().emit_err(errors::InvalidLogicalOperator {
395                    span: self.token.span,
396                    incorrect: "or".into(),
397                    sub: errors::InvalidLogicalOperatorSub::Disjunction(self.token.span),
398                });
399                (AssocOp::Binary(BinOpKind::Or), span)
400            }
401            _ => return None,
402        };
403        Some(source_map::respan(span, op))
404    }
405
406    /// Checks if this expression is a successfully parsed statement.
407    fn expr_is_complete(&self, e: &Expr) -> bool {
408        self.restrictions.contains(Restrictions::STMT_EXPR) && classify::expr_is_complete(e)
409    }
410
411    /// Parses `x..y`, `x..=y`, and `x..`/`x..=`.
412    /// The other two variants are handled in `parse_prefix_range_expr` below.
413    fn parse_expr_range(
414        &mut self,
415        prec: ExprPrecedence,
416        lhs: P<Expr>,
417        limits: RangeLimits,
418        cur_op_span: Span,
419    ) -> PResult<'a, P<Expr>> {
420        let rhs = if self.is_at_start_of_range_notation_rhs() {
421            let maybe_lt = self.token;
422            let attrs = self.parse_outer_attributes()?;
423            Some(
424                self.parse_expr_assoc_with(Bound::Excluded(prec), attrs)
425                    .map_err(|err| self.maybe_err_dotdotlt_syntax(maybe_lt, err))?
426                    .0,
427            )
428        } else {
429            None
430        };
431        let rhs_span = rhs.as_ref().map_or(cur_op_span, |x| x.span);
432        let span = self.mk_expr_sp(&lhs, lhs.span, rhs_span);
433        let range = self.mk_range(Some(lhs), rhs, limits);
434        Ok(self.mk_expr(span, range))
435    }
436
437    fn is_at_start_of_range_notation_rhs(&self) -> bool {
438        if self.token.can_begin_expr() {
439            // Parse `for i in 1.. { }` as infinite loop, not as `for i in (1..{})`.
440            if self.token == token::OpenBrace {
441                return !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
442            }
443            true
444        } else {
445            false
446        }
447    }
448
449    /// Parses prefix-forms of range notation: `..expr`, `..`, `..=expr`.
450    fn parse_expr_prefix_range(&mut self, attrs: AttrWrapper) -> PResult<'a, P<Expr>> {
451        if !attrs.is_empty() {
452            let err = errors::DotDotRangeAttribute { span: self.token.span };
453            self.dcx().emit_err(err);
454        }
455
456        // Check for deprecated `...` syntax.
457        if self.token == token::DotDotDot {
458            self.err_dotdotdot_syntax(self.token.span);
459        }
460
461        debug_assert!(
462            self.token.is_range_separator(),
463            "parse_prefix_range_expr: token {:?} is not DotDot/DotDotEq",
464            self.token
465        );
466
467        let limits = match self.token.kind {
468            token::DotDot => RangeLimits::HalfOpen,
469            _ => RangeLimits::Closed,
470        };
471        let op = AssocOp::from_token(&self.token);
472        let attrs = self.parse_outer_attributes()?;
473        self.collect_tokens_for_expr(attrs, |this, attrs| {
474            let lo = this.token.span;
475            let maybe_lt = this.look_ahead(1, |t| t.clone());
476            this.bump();
477            let (span, opt_end) = if this.is_at_start_of_range_notation_rhs() {
478                // RHS must be parsed with more associativity than the dots.
479                let attrs = this.parse_outer_attributes()?;
480                this.parse_expr_assoc_with(Bound::Excluded(op.unwrap().precedence()), attrs)
481                    .map(|(x, _)| (lo.to(x.span), Some(x)))
482                    .map_err(|err| this.maybe_err_dotdotlt_syntax(maybe_lt, err))?
483            } else {
484                (lo, None)
485            };
486            let range = this.mk_range(None, opt_end, limits);
487            Ok(this.mk_expr_with_attrs(span, range, attrs))
488        })
489    }
490
491    /// Parses a prefix-unary-operator expr.
492    fn parse_expr_prefix(&mut self, attrs: AttrWrapper) -> PResult<'a, P<Expr>> {
493        let lo = self.token.span;
494
495        macro_rules! make_it {
496            ($this:ident, $attrs:expr, |this, _| $body:expr) => {
497                $this.collect_tokens_for_expr($attrs, |$this, attrs| {
498                    let (hi, ex) = $body?;
499                    Ok($this.mk_expr_with_attrs(lo.to(hi), ex, attrs))
500                })
501            };
502        }
503
504        let this = self;
505
506        // Note: when adding new unary operators, don't forget to adjust TokenKind::can_begin_expr()
507        match this.token.uninterpolate().kind {
508            // `!expr`
509            token::Bang => make_it!(this, attrs, |this, _| this.parse_expr_unary(lo, UnOp::Not)),
510            // `~expr`
511            token::Tilde => make_it!(this, attrs, |this, _| this.recover_tilde_expr(lo)),
512            // `-expr`
513            token::Minus => {
514                make_it!(this, attrs, |this, _| this.parse_expr_unary(lo, UnOp::Neg))
515            }
516            // `*expr`
517            token::Star => {
518                make_it!(this, attrs, |this, _| this.parse_expr_unary(lo, UnOp::Deref))
519            }
520            // `&expr` and `&&expr`
521            token::And | token::AndAnd => {
522                make_it!(this, attrs, |this, _| this.parse_expr_borrow(lo))
523            }
524            // `+lit`
525            token::Plus if this.look_ahead(1, |tok| tok.is_numeric_lit()) => {
526                let mut err = errors::LeadingPlusNotSupported {
527                    span: lo,
528                    remove_plus: None,
529                    add_parentheses: None,
530                };
531
532                // a block on the LHS might have been intended to be an expression instead
533                if let Some(sp) = this.psess.ambiguous_block_expr_parse.borrow().get(&lo) {
534                    err.add_parentheses = Some(ExprParenthesesNeeded::surrounding(*sp));
535                } else {
536                    err.remove_plus = Some(lo);
537                }
538                this.dcx().emit_err(err);
539
540                this.bump();
541                let attrs = this.parse_outer_attributes()?;
542                this.parse_expr_prefix(attrs)
543            }
544            // Recover from `++x`:
545            token::Plus if this.look_ahead(1, |t| *t == token::Plus) => {
546                let starts_stmt =
547                    this.prev_token == token::Semi || this.prev_token == token::CloseBrace;
548                let pre_span = this.token.span.to(this.look_ahead(1, |t| t.span));
549                // Eat both `+`s.
550                this.bump();
551                this.bump();
552
553                let operand_expr = this.parse_expr_dot_or_call(attrs)?;
554                this.recover_from_prefix_increment(operand_expr, pre_span, starts_stmt)
555            }
556            token::Ident(..) if this.token.is_keyword(kw::Box) => {
557                make_it!(this, attrs, |this, _| this.parse_expr_box(lo))
558            }
559            token::Ident(..) if this.may_recover() && this.is_mistaken_not_ident_negation() => {
560                make_it!(this, attrs, |this, _| this.recover_not_expr(lo))
561            }
562            _ => return this.parse_expr_dot_or_call(attrs),
563        }
564    }
565
566    fn parse_expr_prefix_common(&mut self, lo: Span) -> PResult<'a, (Span, P<Expr>)> {
567        self.bump();
568        let attrs = self.parse_outer_attributes()?;
569        let expr = if self.token.is_range_separator() {
570            self.parse_expr_prefix_range(attrs)
571        } else {
572            self.parse_expr_prefix(attrs)
573        }?;
574        let span = self.interpolated_or_expr_span(&expr);
575        Ok((lo.to(span), expr))
576    }
577
578    fn parse_expr_unary(&mut self, lo: Span, op: UnOp) -> PResult<'a, (Span, ExprKind)> {
579        let (span, expr) = self.parse_expr_prefix_common(lo)?;
580        Ok((span, self.mk_unary(op, expr)))
581    }
582
583    /// Recover on `~expr` in favor of `!expr`.
584    fn recover_tilde_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
585        self.dcx().emit_err(errors::TildeAsUnaryOperator(lo));
586
587        self.parse_expr_unary(lo, UnOp::Not)
588    }
589
590    /// Parse `box expr` - this syntax has been removed, but we still parse this
591    /// for now to provide a more useful error
592    fn parse_expr_box(&mut self, box_kw: Span) -> PResult<'a, (Span, ExprKind)> {
593        let (span, expr) = self.parse_expr_prefix_common(box_kw)?;
594        // Make a multipart suggestion instead of `span_to_snippet` in case source isn't available
595        let box_kw_and_lo = box_kw.until(self.interpolated_or_expr_span(&expr));
596        let hi = span.shrink_to_hi();
597        let sugg = errors::AddBoxNew { box_kw_and_lo, hi };
598        let guar = self.dcx().emit_err(errors::BoxSyntaxRemoved { span, sugg });
599        Ok((span, ExprKind::Err(guar)))
600    }
601
602    fn is_mistaken_not_ident_negation(&self) -> bool {
603        let token_cannot_continue_expr = |t: &Token| match t.uninterpolate().kind {
604            // These tokens can start an expression after `!`, but
605            // can't continue an expression after an ident
606            token::Ident(name, is_raw) => token::ident_can_begin_expr(name, t.span, is_raw),
607            token::Literal(..) | token::Pound => true,
608            _ => t.is_metavar_expr(),
609        };
610        self.token.is_ident_named(sym::not) && self.look_ahead(1, token_cannot_continue_expr)
611    }
612
613    /// Recover on `not expr` in favor of `!expr`.
614    fn recover_not_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
615        let negated_token = self.look_ahead(1, |t| *t);
616
617        let sub_diag = if negated_token.is_numeric_lit() {
618            errors::NotAsNegationOperatorSub::SuggestNotBitwise
619        } else if negated_token.is_bool_lit() {
620            errors::NotAsNegationOperatorSub::SuggestNotLogical
621        } else {
622            errors::NotAsNegationOperatorSub::SuggestNotDefault
623        };
624
625        self.dcx().emit_err(errors::NotAsNegationOperator {
626            negated: negated_token.span,
627            negated_desc: super::token_descr(&negated_token),
628            // Span the `not` plus trailing whitespace to avoid
629            // trailing whitespace after the `!` in our suggestion
630            sub: sub_diag(
631                self.psess.source_map().span_until_non_whitespace(lo.to(negated_token.span)),
632            ),
633        });
634
635        self.parse_expr_unary(lo, UnOp::Not)
636    }
637
638    /// Returns the span of expr if it was not interpolated, or the span of the interpolated token.
639    fn interpolated_or_expr_span(&self, expr: &Expr) -> Span {
640        match self.prev_token.kind {
641            token::NtIdent(..) | token::NtLifetime(..) => self.prev_token.span,
642            token::CloseInvisible(InvisibleOrigin::MetaVar(_)) => {
643                // `expr.span` is the interpolated span, because invisible open
644                // and close delims both get marked with the same span, one
645                // that covers the entire thing between them. (See
646                // `rustc_expand::mbe::transcribe::transcribe`.)
647                self.prev_token.span
648            }
649            _ => expr.span,
650        }
651    }
652
653    fn parse_assoc_op_cast(
654        &mut self,
655        lhs: P<Expr>,
656        lhs_span: Span,
657        expr_kind: fn(P<Expr>, P<Ty>) -> ExprKind,
658    ) -> PResult<'a, P<Expr>> {
659        let mk_expr = |this: &mut Self, lhs: P<Expr>, rhs: P<Ty>| {
660            this.mk_expr(this.mk_expr_sp(&lhs, lhs_span, rhs.span), expr_kind(lhs, rhs))
661        };
662
663        // Save the state of the parser before parsing type normally, in case there is a
664        // LessThan comparison after this cast.
665        let parser_snapshot_before_type = self.clone();
666        let cast_expr = match self.parse_as_cast_ty() {
667            Ok(rhs) => mk_expr(self, lhs, rhs),
668            Err(type_err) => {
669                if !self.may_recover() {
670                    return Err(type_err);
671                }
672
673                // Rewind to before attempting to parse the type with generics, to recover
674                // from situations like `x as usize < y` in which we first tried to parse
675                // `usize < y` as a type with generic arguments.
676                let parser_snapshot_after_type = mem::replace(self, parser_snapshot_before_type);
677
678                // Check for typo of `'a: loop { break 'a }` with a missing `'`.
679                match (&lhs.kind, &self.token.kind) {
680                    (
681                        // `foo: `
682                        ExprKind::Path(None, ast::Path { segments, .. }),
683                        token::Ident(kw::For | kw::Loop | kw::While, IdentIsRaw::No),
684                    ) if let [segment] = segments.as_slice() => {
685                        let snapshot = self.create_snapshot_for_diagnostic();
686                        let label = Label {
687                            ident: Ident::from_str_and_span(
688                                &format!("'{}", segment.ident),
689                                segment.ident.span,
690                            ),
691                        };
692                        match self.parse_expr_labeled(label, false) {
693                            Ok(expr) => {
694                                type_err.cancel();
695                                self.dcx().emit_err(errors::MalformedLoopLabel {
696                                    span: label.ident.span,
697                                    suggestion: label.ident.span.shrink_to_lo(),
698                                });
699                                return Ok(expr);
700                            }
701                            Err(err) => {
702                                err.cancel();
703                                self.restore_snapshot(snapshot);
704                            }
705                        }
706                    }
707                    _ => {}
708                }
709
710                match self.parse_path(PathStyle::Expr) {
711                    Ok(path) => {
712                        let span_after_type = parser_snapshot_after_type.token.span;
713                        let expr = mk_expr(
714                            self,
715                            lhs,
716                            self.mk_ty(path.span, TyKind::Path(None, path.clone())),
717                        );
718
719                        let args_span = self.look_ahead(1, |t| t.span).to(span_after_type);
720                        let suggestion = errors::ComparisonOrShiftInterpretedAsGenericSugg {
721                            left: expr.span.shrink_to_lo(),
722                            right: expr.span.shrink_to_hi(),
723                        };
724
725                        match self.token.kind {
726                            token::Lt => {
727                                self.dcx().emit_err(errors::ComparisonInterpretedAsGeneric {
728                                    comparison: self.token.span,
729                                    r#type: path,
730                                    args: args_span,
731                                    suggestion,
732                                })
733                            }
734                            token::Shl => self.dcx().emit_err(errors::ShiftInterpretedAsGeneric {
735                                shift: self.token.span,
736                                r#type: path,
737                                args: args_span,
738                                suggestion,
739                            }),
740                            _ => {
741                                // We can end up here even without `<` being the next token, for
742                                // example because `parse_ty_no_plus` returns `Err` on keywords,
743                                // but `parse_path` returns `Ok` on them due to error recovery.
744                                // Return original error and parser state.
745                                *self = parser_snapshot_after_type;
746                                return Err(type_err);
747                            }
748                        };
749
750                        // Successfully parsed the type path leaving a `<` yet to parse.
751                        type_err.cancel();
752
753                        // Keep `x as usize` as an expression in AST and continue parsing.
754                        expr
755                    }
756                    Err(path_err) => {
757                        // Couldn't parse as a path, return original error and parser state.
758                        path_err.cancel();
759                        *self = parser_snapshot_after_type;
760                        return Err(type_err);
761                    }
762                }
763            }
764        };
765
766        // Try to parse a postfix operator such as `.`, `?`, or index (`[]`)
767        // after a cast. If one is present, emit an error then return a valid
768        // parse tree; For something like `&x as T[0]` will be as if it was
769        // written `((&x) as T)[0]`.
770
771        let span = cast_expr.span;
772
773        let with_postfix = self.parse_expr_dot_or_call_with(AttrVec::new(), cast_expr, span)?;
774
775        // Check if an illegal postfix operator has been added after the cast.
776        // If the resulting expression is not a cast, it is an illegal postfix operator.
777        if !matches!(with_postfix.kind, ExprKind::Cast(_, _)) {
778            let msg = format!(
779                "cast cannot be followed by {}",
780                match with_postfix.kind {
781                    ExprKind::Index(..) => "indexing",
782                    ExprKind::Try(_) => "`?`",
783                    ExprKind::Field(_, _) => "a field access",
784                    ExprKind::MethodCall(_) => "a method call",
785                    ExprKind::Call(_, _) => "a function call",
786                    ExprKind::Await(_, _) => "`.await`",
787                    ExprKind::Use(_, _) => "`.use`",
788                    ExprKind::Match(_, _, MatchKind::Postfix) => "a postfix match",
789                    ExprKind::Err(_) => return Ok(with_postfix),
790                    _ => unreachable!("parse_dot_or_call_expr_with_ shouldn't produce this"),
791                }
792            );
793            let mut err = self.dcx().struct_span_err(span, msg);
794
795            let suggest_parens = |err: &mut Diag<'_>| {
796                let suggestions = vec![
797                    (span.shrink_to_lo(), "(".to_string()),
798                    (span.shrink_to_hi(), ")".to_string()),
799                ];
800                err.multipart_suggestion(
801                    "try surrounding the expression in parentheses",
802                    suggestions,
803                    Applicability::MachineApplicable,
804                );
805            };
806
807            suggest_parens(&mut err);
808
809            err.emit();
810        };
811        Ok(with_postfix)
812    }
813
814    /// Parse `& mut? <expr>` or `& raw [ const | mut ] <expr>`.
815    fn parse_expr_borrow(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
816        self.expect_and()?;
817        let has_lifetime = self.token.is_lifetime() && self.look_ahead(1, |t| t != &token::Colon);
818        let lifetime = has_lifetime.then(|| self.expect_lifetime()); // For recovery, see below.
819        let (borrow_kind, mutbl) = self.parse_borrow_modifiers();
820        let attrs = self.parse_outer_attributes()?;
821        let expr = if self.token.is_range_separator() {
822            self.parse_expr_prefix_range(attrs)
823        } else {
824            self.parse_expr_prefix(attrs)
825        }?;
826        let hi = self.interpolated_or_expr_span(&expr);
827        let span = lo.to(hi);
828        if let Some(lt) = lifetime {
829            self.error_remove_borrow_lifetime(span, lt.ident.span.until(expr.span));
830        }
831
832        // Add expected tokens if we parsed `&raw` as an expression.
833        // This will make sure we see "expected `const`, `mut`", and
834        // guides recovery in case we write `&raw expr`.
835        if borrow_kind == ast::BorrowKind::Ref
836            && mutbl == ast::Mutability::Not
837            && matches!(&expr.kind, ExprKind::Path(None, p) if *p == kw::Raw)
838        {
839            self.expected_token_types.insert(TokenType::KwMut);
840            self.expected_token_types.insert(TokenType::KwConst);
841        }
842
843        Ok((span, ExprKind::AddrOf(borrow_kind, mutbl, expr)))
844    }
845
846    fn error_remove_borrow_lifetime(&self, span: Span, lt_span: Span) {
847        self.dcx().emit_err(errors::LifetimeInBorrowExpression { span, lifetime_span: lt_span });
848    }
849
850    /// Parse `mut?` or `raw [ const | mut ]`.
851    fn parse_borrow_modifiers(&mut self) -> (ast::BorrowKind, ast::Mutability) {
852        if self.check_keyword(exp!(Raw)) && self.look_ahead(1, Token::is_mutability) {
853            // `raw [ const | mut ]`.
854            let found_raw = self.eat_keyword(exp!(Raw));
855            assert!(found_raw);
856            let mutability = self.parse_const_or_mut().unwrap();
857            (ast::BorrowKind::Raw, mutability)
858        } else {
859            // `mut?`
860            (ast::BorrowKind::Ref, self.parse_mutability())
861        }
862    }
863
864    /// Parses `a.b` or `a(13)` or `a[4]` or just `a`.
865    fn parse_expr_dot_or_call(&mut self, attrs: AttrWrapper) -> PResult<'a, P<Expr>> {
866        self.collect_tokens_for_expr(attrs, |this, attrs| {
867            let base = this.parse_expr_bottom()?;
868            let span = this.interpolated_or_expr_span(&base);
869            this.parse_expr_dot_or_call_with(attrs, base, span)
870        })
871    }
872
873    pub(super) fn parse_expr_dot_or_call_with(
874        &mut self,
875        mut attrs: ast::AttrVec,
876        mut e: P<Expr>,
877        lo: Span,
878    ) -> PResult<'a, P<Expr>> {
879        let mut res = ensure_sufficient_stack(|| {
880            loop {
881                let has_question =
882                    if self.prev_token == TokenKind::Ident(kw::Return, IdentIsRaw::No) {
883                        // We are using noexpect here because we don't expect a `?` directly after
884                        // a `return` which could be suggested otherwise.
885                        self.eat_noexpect(&token::Question)
886                    } else {
887                        self.eat(exp!(Question))
888                    };
889                if has_question {
890                    // `expr?`
891                    e = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Try(e));
892                    continue;
893                }
894                let has_dot = if self.prev_token == TokenKind::Ident(kw::Return, IdentIsRaw::No) {
895                    // We are using noexpect here because we don't expect a `.` directly after
896                    // a `return` which could be suggested otherwise.
897                    self.eat_noexpect(&token::Dot)
898                } else if self.token == TokenKind::RArrow && self.may_recover() {
899                    // Recovery for `expr->suffix`.
900                    self.bump();
901                    let span = self.prev_token.span;
902                    self.dcx().emit_err(errors::ExprRArrowCall { span });
903                    true
904                } else {
905                    self.eat(exp!(Dot))
906                };
907                if has_dot {
908                    // expr.f
909                    e = self.parse_dot_suffix_expr(lo, e)?;
910                    continue;
911                }
912                if self.expr_is_complete(&e) {
913                    return Ok(e);
914                }
915                e = match self.token.kind {
916                    token::OpenParen => self.parse_expr_fn_call(lo, e),
917                    token::OpenBracket => self.parse_expr_index(lo, e)?,
918                    _ => return Ok(e),
919                }
920            }
921        });
922
923        // Stitch the list of outer attributes onto the return value. A little
924        // bit ugly, but the best way given the current code structure.
925        if !attrs.is_empty()
926            && let Ok(expr) = &mut res
927        {
928            mem::swap(&mut expr.attrs, &mut attrs);
929            expr.attrs.extend(attrs)
930        }
931        res
932    }
933
934    pub(super) fn parse_dot_suffix_expr(
935        &mut self,
936        lo: Span,
937        base: P<Expr>,
938    ) -> PResult<'a, P<Expr>> {
939        // At this point we've consumed something like `expr.` and `self.token` holds the token
940        // after the dot.
941        match self.token.uninterpolate().kind {
942            token::Ident(..) => self.parse_dot_suffix(base, lo),
943            token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) => {
944                let ident_span = self.token.span;
945                self.bump();
946                Ok(self.mk_expr_tuple_field_access(lo, ident_span, base, symbol, suffix))
947            }
948            token::Literal(token::Lit { kind: token::Float, symbol, suffix }) => {
949                Ok(match self.break_up_float(symbol, self.token.span) {
950                    // 1e2
951                    DestructuredFloat::Single(sym, _sp) => {
952                        // `foo.1e2`: a single complete dot access, fully consumed. We end up with
953                        // the `1e2` token in `self.prev_token` and the following token in
954                        // `self.token`.
955                        let ident_span = self.token.span;
956                        self.bump();
957                        self.mk_expr_tuple_field_access(lo, ident_span, base, sym, suffix)
958                    }
959                    // 1.
960                    DestructuredFloat::TrailingDot(sym, ident_span, dot_span) => {
961                        // `foo.1.`: a single complete dot access and the start of another.
962                        // We end up with the `sym` (`1`) token in `self.prev_token` and a dot in
963                        // `self.token`.
964                        assert!(suffix.is_none());
965                        self.token = Token::new(token::Ident(sym, IdentIsRaw::No), ident_span);
966                        self.bump_with((Token::new(token::Dot, dot_span), self.token_spacing));
967                        self.mk_expr_tuple_field_access(lo, ident_span, base, sym, None)
968                    }
969                    // 1.2 | 1.2e3
970                    DestructuredFloat::MiddleDot(
971                        sym1,
972                        ident1_span,
973                        _dot_span,
974                        sym2,
975                        ident2_span,
976                    ) => {
977                        // `foo.1.2` (or `foo.1.2e3`): two complete dot accesses. We end up with
978                        // the `sym2` (`2` or `2e3`) token in `self.prev_token` and the following
979                        // token in `self.token`.
980                        let next_token2 =
981                            Token::new(token::Ident(sym2, IdentIsRaw::No), ident2_span);
982                        self.bump_with((next_token2, self.token_spacing));
983                        self.bump();
984                        let base1 =
985                            self.mk_expr_tuple_field_access(lo, ident1_span, base, sym1, None);
986                        self.mk_expr_tuple_field_access(lo, ident2_span, base1, sym2, suffix)
987                    }
988                    DestructuredFloat::Error => base,
989                })
990            }
991            _ => {
992                self.error_unexpected_after_dot();
993                Ok(base)
994            }
995        }
996    }
997
998    fn error_unexpected_after_dot(&self) {
999        let actual = super::token_descr(&self.token);
1000        let span = self.token.span;
1001        let sm = self.psess.source_map();
1002        let (span, actual) = match (&self.token.kind, self.subparser_name) {
1003            (token::Eof, Some(_)) if let Ok(snippet) = sm.span_to_snippet(sm.next_point(span)) => {
1004                (span.shrink_to_hi(), format!("`{}`", snippet))
1005            }
1006            (token::CloseInvisible(InvisibleOrigin::MetaVar(_)), _) => {
1007                // No need to report an error. This case will only occur when parsing a pasted
1008                // metavariable, and we should have emitted an error when parsing the macro call in
1009                // the first place. E.g. in this code:
1010                // ```
1011                // macro_rules! m { ($e:expr) => { $e }; }
1012                //
1013                // fn main() {
1014                //     let f = 1;
1015                //     m!(f.);
1016                // }
1017                // ```
1018                // we'll get an error "unexpected token: `)` when parsing the `m!(f.)`, so we don't
1019                // want to issue a second error when parsing the expansion `«f.»` (where `«`/`»`
1020                // represent the invisible delimiters).
1021                self.dcx().span_delayed_bug(span, "bad dot expr in metavariable");
1022                return;
1023            }
1024            _ => (span, actual),
1025        };
1026        self.dcx().emit_err(errors::UnexpectedTokenAfterDot { span, actual });
1027    }
1028
1029    /// We need an identifier or integer, but the next token is a float.
1030    /// Break the float into components to extract the identifier or integer.
1031    ///
1032    /// See also [`TokenKind::break_two_token_op`] which does similar splitting of `>>` into `>`.
1033    //
1034    // FIXME: With current `TokenCursor` it's hard to break tokens into more than 2
1035    //  parts unless those parts are processed immediately. `TokenCursor` should either
1036    //  support pushing "future tokens" (would be also helpful to `break_and_eat`), or
1037    //  we should break everything including floats into more basic proc-macro style
1038    //  tokens in the lexer (probably preferable).
1039    pub(super) fn break_up_float(&self, float: Symbol, span: Span) -> DestructuredFloat {
1040        #[derive(Debug)]
1041        enum FloatComponent {
1042            IdentLike(String),
1043            Punct(char),
1044        }
1045        use FloatComponent::*;
1046
1047        let float_str = float.as_str();
1048        let mut components = Vec::new();
1049        let mut ident_like = String::new();
1050        for c in float_str.chars() {
1051            if c == '_' || c.is_ascii_alphanumeric() {
1052                ident_like.push(c);
1053            } else if matches!(c, '.' | '+' | '-') {
1054                if !ident_like.is_empty() {
1055                    components.push(IdentLike(mem::take(&mut ident_like)));
1056                }
1057                components.push(Punct(c));
1058            } else {
1059                panic!("unexpected character in a float token: {c:?}")
1060            }
1061        }
1062        if !ident_like.is_empty() {
1063            components.push(IdentLike(ident_like));
1064        }
1065
1066        // With proc macros the span can refer to anything, the source may be too short,
1067        // or too long, or non-ASCII. It only makes sense to break our span into components
1068        // if its underlying text is identical to our float literal.
1069        let can_take_span_apart =
1070            || self.span_to_snippet(span).as_deref() == Ok(float_str).as_deref();
1071
1072        match &*components {
1073            // 1e2
1074            [IdentLike(i)] => {
1075                DestructuredFloat::Single(Symbol::intern(i), span)
1076            }
1077            // 1.
1078            [IdentLike(left), Punct('.')] => {
1079                let (left_span, dot_span) = if can_take_span_apart() {
1080                    let left_span = span.with_hi(span.lo() + BytePos::from_usize(left.len()));
1081                    let dot_span = span.with_lo(left_span.hi());
1082                    (left_span, dot_span)
1083                } else {
1084                    (span, span)
1085                };
1086                let left = Symbol::intern(left);
1087                DestructuredFloat::TrailingDot(left, left_span, dot_span)
1088            }
1089            // 1.2 | 1.2e3
1090            [IdentLike(left), Punct('.'), IdentLike(right)] => {
1091                let (left_span, dot_span, right_span) = if can_take_span_apart() {
1092                    let left_span = span.with_hi(span.lo() + BytePos::from_usize(left.len()));
1093                    let dot_span = span.with_lo(left_span.hi()).with_hi(left_span.hi() + BytePos(1));
1094                    let right_span = span.with_lo(dot_span.hi());
1095                    (left_span, dot_span, right_span)
1096                } else {
1097                    (span, span, span)
1098                };
1099                let left = Symbol::intern(left);
1100                let right = Symbol::intern(right);
1101                DestructuredFloat::MiddleDot(left, left_span, dot_span, right, right_span)
1102            }
1103            // 1e+ | 1e- (recovered)
1104            [IdentLike(_), Punct('+' | '-')] |
1105            // 1e+2 | 1e-2
1106            [IdentLike(_), Punct('+' | '-'), IdentLike(_)] |
1107            // 1.2e+ | 1.2e-
1108            [IdentLike(_), Punct('.'), IdentLike(_), Punct('+' | '-')] |
1109            // 1.2e+3 | 1.2e-3
1110            [IdentLike(_), Punct('.'), IdentLike(_), Punct('+' | '-'), IdentLike(_)] => {
1111                // See the FIXME about `TokenCursor` above.
1112                self.error_unexpected_after_dot();
1113                DestructuredFloat::Error
1114            }
1115            _ => panic!("unexpected components in a float token: {components:?}"),
1116        }
1117    }
1118
1119    /// Parse the field access used in offset_of, matched by `$(e:expr)+`.
1120    /// Currently returns a list of idents. However, it should be possible in
1121    /// future to also do array indices, which might be arbitrary expressions.
1122    fn parse_floating_field_access(&mut self) -> PResult<'a, Vec<Ident>> {
1123        let mut fields = Vec::new();
1124        let mut trailing_dot = None;
1125
1126        loop {
1127            // This is expected to use a metavariable $(args:expr)+, but the builtin syntax
1128            // could be called directly. Calling `parse_expr` allows this function to only
1129            // consider `Expr`s.
1130            let expr = self.parse_expr()?;
1131            let mut current = &expr;
1132            let start_idx = fields.len();
1133            loop {
1134                match current.kind {
1135                    ExprKind::Field(ref left, right) => {
1136                        // Field access is read right-to-left.
1137                        fields.insert(start_idx, right);
1138                        trailing_dot = None;
1139                        current = left;
1140                    }
1141                    // Parse this both to give helpful error messages and to
1142                    // verify it can be done with this parser setup.
1143                    ExprKind::Index(ref left, ref _right, span) => {
1144                        self.dcx().emit_err(errors::ArrayIndexInOffsetOf(span));
1145                        current = left;
1146                    }
1147                    ExprKind::Lit(token::Lit {
1148                        kind: token::Float | token::Integer,
1149                        symbol,
1150                        suffix,
1151                    }) => {
1152                        if let Some(suffix) = suffix {
1153                            self.expect_no_tuple_index_suffix(current.span, suffix);
1154                        }
1155                        match self.break_up_float(symbol, current.span) {
1156                            // 1e2
1157                            DestructuredFloat::Single(sym, sp) => {
1158                                trailing_dot = None;
1159                                fields.insert(start_idx, Ident::new(sym, sp));
1160                            }
1161                            // 1.
1162                            DestructuredFloat::TrailingDot(sym, sym_span, dot_span) => {
1163                                assert!(suffix.is_none());
1164                                trailing_dot = Some(dot_span);
1165                                fields.insert(start_idx, Ident::new(sym, sym_span));
1166                            }
1167                            // 1.2 | 1.2e3
1168                            DestructuredFloat::MiddleDot(
1169                                symbol1,
1170                                span1,
1171                                _dot_span,
1172                                symbol2,
1173                                span2,
1174                            ) => {
1175                                trailing_dot = None;
1176                                fields.insert(start_idx, Ident::new(symbol2, span2));
1177                                fields.insert(start_idx, Ident::new(symbol1, span1));
1178                            }
1179                            DestructuredFloat::Error => {
1180                                trailing_dot = None;
1181                                fields.insert(start_idx, Ident::new(symbol, self.prev_token.span));
1182                            }
1183                        }
1184                        break;
1185                    }
1186                    ExprKind::Path(None, Path { ref segments, .. }) => {
1187                        match &segments[..] {
1188                            [PathSegment { ident, args: None, .. }] => {
1189                                trailing_dot = None;
1190                                fields.insert(start_idx, *ident)
1191                            }
1192                            _ => {
1193                                self.dcx().emit_err(errors::InvalidOffsetOf(current.span));
1194                                break;
1195                            }
1196                        }
1197                        break;
1198                    }
1199                    _ => {
1200                        self.dcx().emit_err(errors::InvalidOffsetOf(current.span));
1201                        break;
1202                    }
1203                }
1204            }
1205
1206            if self.token.kind.close_delim().is_some() || self.token.kind == token::Comma {
1207                break;
1208            } else if trailing_dot.is_none() {
1209                // This loop should only repeat if there is a trailing dot.
1210                self.dcx().emit_err(errors::InvalidOffsetOf(self.token.span));
1211                break;
1212            }
1213        }
1214        if let Some(dot) = trailing_dot {
1215            self.dcx().emit_err(errors::InvalidOffsetOf(dot));
1216        }
1217        Ok(fields.into_iter().collect())
1218    }
1219
1220    fn mk_expr_tuple_field_access(
1221        &self,
1222        lo: Span,
1223        ident_span: Span,
1224        base: P<Expr>,
1225        field: Symbol,
1226        suffix: Option<Symbol>,
1227    ) -> P<Expr> {
1228        if let Some(suffix) = suffix {
1229            self.expect_no_tuple_index_suffix(ident_span, suffix);
1230        }
1231        self.mk_expr(lo.to(ident_span), ExprKind::Field(base, Ident::new(field, ident_span)))
1232    }
1233
1234    /// Parse a function call expression, `expr(...)`.
1235    fn parse_expr_fn_call(&mut self, lo: Span, fun: P<Expr>) -> P<Expr> {
1236        let snapshot = if self.token == token::OpenParen {
1237            Some((self.create_snapshot_for_diagnostic(), fun.kind.clone()))
1238        } else {
1239            None
1240        };
1241        let open_paren = self.token.span;
1242
1243        let seq = self
1244            .parse_expr_paren_seq()
1245            .map(|args| self.mk_expr(lo.to(self.prev_token.span), self.mk_call(fun, args)));
1246        match self.maybe_recover_struct_lit_bad_delims(lo, open_paren, seq, snapshot) {
1247            Ok(expr) => expr,
1248            Err(err) => self.recover_seq_parse_error(exp!(OpenParen), exp!(CloseParen), lo, err),
1249        }
1250    }
1251
1252    /// If we encounter a parser state that looks like the user has written a `struct` literal with
1253    /// parentheses instead of braces, recover the parser state and provide suggestions.
1254    #[instrument(skip(self, seq, snapshot), level = "trace")]
1255    fn maybe_recover_struct_lit_bad_delims(
1256        &mut self,
1257        lo: Span,
1258        open_paren: Span,
1259        seq: PResult<'a, P<Expr>>,
1260        snapshot: Option<(SnapshotParser<'a>, ExprKind)>,
1261    ) -> PResult<'a, P<Expr>> {
1262        match (self.may_recover(), seq, snapshot) {
1263            (true, Err(err), Some((mut snapshot, ExprKind::Path(None, path)))) => {
1264                snapshot.bump(); // `(`
1265                match snapshot.parse_struct_fields(path.clone(), false, exp!(CloseParen)) {
1266                    Ok((fields, ..)) if snapshot.eat(exp!(CloseParen)) => {
1267                        // We are certain we have `Enum::Foo(a: 3, b: 4)`, suggest
1268                        // `Enum::Foo { a: 3, b: 4 }` or `Enum::Foo(3, 4)`.
1269                        self.restore_snapshot(snapshot);
1270                        let close_paren = self.prev_token.span;
1271                        let span = lo.to(close_paren);
1272                        // filter shorthand fields
1273                        let fields: Vec<_> =
1274                            fields.into_iter().filter(|field| !field.is_shorthand).collect();
1275
1276                        let guar = if !fields.is_empty() &&
1277                            // `token.kind` should not be compared here.
1278                            // This is because the `snapshot.token.kind` is treated as the same as
1279                            // that of the open delim in `TokenTreesReader::parse_token_tree`, even
1280                            // if they are different.
1281                            self.span_to_snippet(close_paren).is_ok_and(|snippet| snippet == ")")
1282                        {
1283                            err.cancel();
1284                            self.dcx()
1285                                .create_err(errors::ParenthesesWithStructFields {
1286                                    span,
1287                                    r#type: path,
1288                                    braces_for_struct: errors::BracesForStructLiteral {
1289                                        first: open_paren,
1290                                        second: close_paren,
1291                                    },
1292                                    no_fields_for_fn: errors::NoFieldsForFnCall {
1293                                        fields: fields
1294                                            .into_iter()
1295                                            .map(|field| field.span.until(field.expr.span))
1296                                            .collect(),
1297                                    },
1298                                })
1299                                .emit()
1300                        } else {
1301                            err.emit()
1302                        };
1303                        Ok(self.mk_expr_err(span, guar))
1304                    }
1305                    Ok(_) => Err(err),
1306                    Err(err2) => {
1307                        err2.cancel();
1308                        Err(err)
1309                    }
1310                }
1311            }
1312            (_, seq, _) => seq,
1313        }
1314    }
1315
1316    /// Parse an indexing expression `expr[...]`.
1317    fn parse_expr_index(&mut self, lo: Span, base: P<Expr>) -> PResult<'a, P<Expr>> {
1318        let prev_span = self.prev_token.span;
1319        let open_delim_span = self.token.span;
1320        self.bump(); // `[`
1321        let index = self.parse_expr()?;
1322        self.suggest_missing_semicolon_before_array(prev_span, open_delim_span)?;
1323        self.expect(exp!(CloseBracket))?;
1324        Ok(self.mk_expr(
1325            lo.to(self.prev_token.span),
1326            self.mk_index(base, index, open_delim_span.to(self.prev_token.span)),
1327        ))
1328    }
1329
1330    /// Assuming we have just parsed `.`, continue parsing into an expression.
1331    fn parse_dot_suffix(&mut self, self_arg: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
1332        if self.token_uninterpolated_span().at_least_rust_2018() && self.eat_keyword(exp!(Await)) {
1333            return Ok(self.mk_await_expr(self_arg, lo));
1334        }
1335
1336        if self.eat_keyword(exp!(Use)) {
1337            let use_span = self.prev_token.span;
1338            self.psess.gated_spans.gate(sym::ergonomic_clones, use_span);
1339            return Ok(self.mk_use_expr(self_arg, lo));
1340        }
1341
1342        // Post-fix match
1343        if self.eat_keyword(exp!(Match)) {
1344            let match_span = self.prev_token.span;
1345            self.psess.gated_spans.gate(sym::postfix_match, match_span);
1346            return self.parse_match_block(lo, match_span, self_arg, MatchKind::Postfix);
1347        }
1348
1349        // Parse a postfix `yield`.
1350        if self.eat_keyword(exp!(Yield)) {
1351            let yield_span = self.prev_token.span;
1352            self.psess.gated_spans.gate(sym::yield_expr, yield_span);
1353            return Ok(
1354                self.mk_expr(lo.to(yield_span), ExprKind::Yield(YieldKind::Postfix(self_arg)))
1355            );
1356        }
1357
1358        let fn_span_lo = self.token.span;
1359        let mut seg = self.parse_path_segment(PathStyle::Expr, None)?;
1360        self.check_trailing_angle_brackets(&seg, &[exp!(OpenParen)]);
1361        self.check_turbofish_missing_angle_brackets(&mut seg);
1362
1363        if self.check(exp!(OpenParen)) {
1364            // Method call `expr.f()`
1365            let args = self.parse_expr_paren_seq()?;
1366            let fn_span = fn_span_lo.to(self.prev_token.span);
1367            let span = lo.to(self.prev_token.span);
1368            Ok(self.mk_expr(
1369                span,
1370                ExprKind::MethodCall(Box::new(ast::MethodCall {
1371                    seg,
1372                    receiver: self_arg,
1373                    args,
1374                    span: fn_span,
1375                })),
1376            ))
1377        } else {
1378            // Field access `expr.f`
1379            let span = lo.to(self.prev_token.span);
1380            if let Some(args) = seg.args {
1381                // See `StashKey::GenericInFieldExpr` for more info on why we stash this.
1382                self.dcx()
1383                    .create_err(errors::FieldExpressionWithGeneric(args.span()))
1384                    .stash(seg.ident.span, StashKey::GenericInFieldExpr);
1385            }
1386
1387            Ok(self.mk_expr(span, ExprKind::Field(self_arg, seg.ident)))
1388        }
1389    }
1390
1391    /// At the bottom (top?) of the precedence hierarchy,
1392    /// Parses things like parenthesized exprs, macros, `return`, etc.
1393    ///
1394    /// N.B., this does not parse outer attributes, and is private because it only works
1395    /// correctly if called from `parse_expr_dot_or_call`.
1396    fn parse_expr_bottom(&mut self) -> PResult<'a, P<Expr>> {
1397        maybe_recover_from_interpolated_ty_qpath!(self, true);
1398
1399        let span = self.token.span;
1400        if let Some(expr) = self.eat_metavar_seq_with_matcher(
1401            |mv_kind| matches!(mv_kind, MetaVarKind::Expr { .. }),
1402            |this| {
1403                // Force collection (as opposed to just `parse_expr`) is required to avoid the
1404                // attribute duplication seen in #138478.
1405                let expr = this.parse_expr_force_collect();
1406                // FIXME(nnethercote) Sometimes with expressions we get a trailing comma, possibly
1407                // related to the FIXME in `collect_tokens_for_expr`. Examples are the multi-line
1408                // `assert_eq!` calls involving arguments annotated with `#[rustfmt::skip]` in
1409                // `compiler/rustc_index/src/bit_set/tests.rs`.
1410                if this.token.kind == token::Comma {
1411                    this.bump();
1412                }
1413                expr
1414            },
1415        ) {
1416            return Ok(expr);
1417        } else if let Some(lit) =
1418            self.eat_metavar_seq(MetaVarKind::Literal, |this| this.parse_literal_maybe_minus())
1419        {
1420            return Ok(lit);
1421        } else if let Some(block) =
1422            self.eat_metavar_seq(MetaVarKind::Block, |this| this.parse_block())
1423        {
1424            return Ok(self.mk_expr(span, ExprKind::Block(block, None)));
1425        } else if let Some(path) =
1426            self.eat_metavar_seq(MetaVarKind::Path, |this| this.parse_path(PathStyle::Type))
1427        {
1428            return Ok(self.mk_expr(span, ExprKind::Path(None, path)));
1429        }
1430
1431        // Outer attributes are already parsed and will be
1432        // added to the return value after the fact.
1433
1434        let restrictions = self.restrictions;
1435        self.with_res(restrictions - Restrictions::ALLOW_LET, |this| {
1436            // Note: adding new syntax here? Don't forget to adjust `TokenKind::can_begin_expr()`.
1437            let lo = this.token.span;
1438            if let token::Literal(_) = this.token.kind {
1439                // This match arm is a special-case of the `_` match arm below and
1440                // could be removed without changing functionality, but it's faster
1441                // to have it here, especially for programs with large constants.
1442                this.parse_expr_lit()
1443            } else if this.check(exp!(OpenParen)) {
1444                this.parse_expr_tuple_parens(restrictions)
1445            } else if this.check(exp!(OpenBrace)) {
1446                this.parse_expr_block(None, lo, BlockCheckMode::Default)
1447            } else if this.check(exp!(Or)) || this.check(exp!(OrOr)) {
1448                this.parse_expr_closure().map_err(|mut err| {
1449                    // If the input is something like `if a { 1 } else { 2 } | if a { 3 } else { 4 }`
1450                    // then suggest parens around the lhs.
1451                    if let Some(sp) = this.psess.ambiguous_block_expr_parse.borrow().get(&lo) {
1452                        err.subdiagnostic(ExprParenthesesNeeded::surrounding(*sp));
1453                    }
1454                    err
1455                })
1456            } else if this.check(exp!(OpenBracket)) {
1457                this.parse_expr_array_or_repeat(exp!(CloseBracket))
1458            } else if this.is_builtin() {
1459                this.parse_expr_builtin()
1460            } else if this.check_path() {
1461                this.parse_expr_path_start()
1462            } else if this.check_keyword(exp!(Move))
1463                || this.check_keyword(exp!(Use))
1464                || this.check_keyword(exp!(Static))
1465                || this.check_const_closure()
1466            {
1467                this.parse_expr_closure()
1468            } else if this.eat_keyword(exp!(If)) {
1469                this.parse_expr_if()
1470            } else if this.check_keyword(exp!(For)) {
1471                if this.choose_generics_over_qpath(1) {
1472                    this.parse_expr_closure()
1473                } else {
1474                    assert!(this.eat_keyword(exp!(For)));
1475                    this.parse_expr_for(None, lo)
1476                }
1477            } else if this.eat_keyword(exp!(While)) {
1478                this.parse_expr_while(None, lo)
1479            } else if let Some(label) = this.eat_label() {
1480                this.parse_expr_labeled(label, true)
1481            } else if this.eat_keyword(exp!(Loop)) {
1482                this.parse_expr_loop(None, lo).map_err(|mut err| {
1483                    err.span_label(lo, "while parsing this `loop` expression");
1484                    err
1485                })
1486            } else if this.eat_keyword(exp!(Match)) {
1487                this.parse_expr_match().map_err(|mut err| {
1488                    err.span_label(lo, "while parsing this `match` expression");
1489                    err
1490                })
1491            } else if this.eat_keyword(exp!(Unsafe)) {
1492                this.parse_expr_block(None, lo, BlockCheckMode::Unsafe(ast::UserProvided)).map_err(
1493                    |mut err| {
1494                        err.span_label(lo, "while parsing this `unsafe` expression");
1495                        err
1496                    },
1497                )
1498            } else if this.check_inline_const(0) {
1499                this.parse_const_block(lo, false)
1500            } else if this.may_recover() && this.is_do_catch_block() {
1501                this.recover_do_catch()
1502            } else if this.is_try_block() {
1503                this.expect_keyword(exp!(Try))?;
1504                this.parse_try_block(lo)
1505            } else if this.eat_keyword(exp!(Return)) {
1506                this.parse_expr_return()
1507            } else if this.eat_keyword(exp!(Continue)) {
1508                this.parse_expr_continue(lo)
1509            } else if this.eat_keyword(exp!(Break)) {
1510                this.parse_expr_break()
1511            } else if this.eat_keyword(exp!(Yield)) {
1512                this.parse_expr_yield()
1513            } else if this.is_do_yeet() {
1514                this.parse_expr_yeet()
1515            } else if this.eat_keyword(exp!(Become)) {
1516                this.parse_expr_become()
1517            } else if this.check_keyword(exp!(Let)) {
1518                this.parse_expr_let(restrictions)
1519            } else if this.eat_keyword(exp!(Underscore)) {
1520                Ok(this.mk_expr(this.prev_token.span, ExprKind::Underscore))
1521            } else if this.token_uninterpolated_span().at_least_rust_2018() {
1522                // `Span::at_least_rust_2018()` is somewhat expensive; don't get it repeatedly.
1523                let at_async = this.check_keyword(exp!(Async));
1524                // check for `gen {}` and `gen move {}`
1525                // or `async gen {}` and `async gen move {}`
1526                // FIXME: (async) gen closures aren't yet parsed.
1527                // FIXME(gen_blocks): Parse `gen async` and suggest swap
1528                if this.token_uninterpolated_span().at_least_rust_2024()
1529                    && this.is_gen_block(kw::Gen, at_async as usize)
1530                {
1531                    this.parse_gen_block()
1532                // Check for `async {` and `async move {`,
1533                } else if this.is_gen_block(kw::Async, 0) {
1534                    this.parse_gen_block()
1535                } else if at_async {
1536                    this.parse_expr_closure()
1537                } else if this.eat_keyword_noexpect(kw::Await) {
1538                    this.recover_incorrect_await_syntax(lo)
1539                } else {
1540                    this.parse_expr_lit()
1541                }
1542            } else {
1543                this.parse_expr_lit()
1544            }
1545        })
1546    }
1547
1548    fn parse_expr_lit(&mut self) -> PResult<'a, P<Expr>> {
1549        let lo = self.token.span;
1550        match self.parse_opt_token_lit() {
1551            Some((token_lit, _)) => {
1552                let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Lit(token_lit));
1553                self.maybe_recover_from_bad_qpath(expr)
1554            }
1555            None => self.try_macro_suggestion(),
1556        }
1557    }
1558
1559    fn parse_expr_tuple_parens(&mut self, restrictions: Restrictions) -> PResult<'a, P<Expr>> {
1560        let lo = self.token.span;
1561        self.expect(exp!(OpenParen))?;
1562        let (es, trailing_comma) = match self.parse_seq_to_end(
1563            exp!(CloseParen),
1564            SeqSep::trailing_allowed(exp!(Comma)),
1565            |p| p.parse_expr_catch_underscore(restrictions.intersection(Restrictions::ALLOW_LET)),
1566        ) {
1567            Ok(x) => x,
1568            Err(err) => {
1569                return Ok(self.recover_seq_parse_error(
1570                    exp!(OpenParen),
1571                    exp!(CloseParen),
1572                    lo,
1573                    err,
1574                ));
1575            }
1576        };
1577        let kind = if es.len() == 1 && matches!(trailing_comma, Trailing::No) {
1578            // `(e)` is parenthesized `e`.
1579            ExprKind::Paren(es.into_iter().next().unwrap())
1580        } else {
1581            // `(e,)` is a tuple with only one field, `e`.
1582            ExprKind::Tup(es)
1583        };
1584        let expr = self.mk_expr(lo.to(self.prev_token.span), kind);
1585        self.maybe_recover_from_bad_qpath(expr)
1586    }
1587
1588    fn parse_expr_array_or_repeat(&mut self, close: ExpTokenPair<'_>) -> PResult<'a, P<Expr>> {
1589        let lo = self.token.span;
1590        self.bump(); // `[` or other open delim
1591
1592        let kind = if self.eat(close) {
1593            // Empty vector
1594            ExprKind::Array(ThinVec::new())
1595        } else {
1596            // Non-empty vector
1597            let first_expr = self.parse_expr()?;
1598            if self.eat(exp!(Semi)) {
1599                // Repeating array syntax: `[ 0; 512 ]`
1600                let count = self.parse_expr_anon_const()?;
1601                self.expect(close)?;
1602                ExprKind::Repeat(first_expr, count)
1603            } else if self.eat(exp!(Comma)) {
1604                // Vector with two or more elements.
1605                let sep = SeqSep::trailing_allowed(exp!(Comma));
1606                let (mut exprs, _) = self.parse_seq_to_end(close, sep, |p| p.parse_expr())?;
1607                exprs.insert(0, first_expr);
1608                ExprKind::Array(exprs)
1609            } else {
1610                // Vector with one element
1611                self.expect(close)?;
1612                ExprKind::Array(thin_vec![first_expr])
1613            }
1614        };
1615        let expr = self.mk_expr(lo.to(self.prev_token.span), kind);
1616        self.maybe_recover_from_bad_qpath(expr)
1617    }
1618
1619    fn parse_expr_path_start(&mut self) -> PResult<'a, P<Expr>> {
1620        let maybe_eq_tok = self.prev_token;
1621        let (qself, path) = if self.eat_lt() {
1622            let lt_span = self.prev_token.span;
1623            let (qself, path) = self.parse_qpath(PathStyle::Expr).map_err(|mut err| {
1624                // Suggests using '<=' if there is an error parsing qpath when the previous token
1625                // is an '=' token. Only emits suggestion if the '<' token and '=' token are
1626                // directly adjacent (i.e. '=<')
1627                if maybe_eq_tok == TokenKind::Eq && maybe_eq_tok.span.hi() == lt_span.lo() {
1628                    let eq_lt = maybe_eq_tok.span.to(lt_span);
1629                    err.span_suggestion(eq_lt, "did you mean", "<=", Applicability::Unspecified);
1630                }
1631                err
1632            })?;
1633            (Some(qself), path)
1634        } else {
1635            (None, self.parse_path(PathStyle::Expr)?)
1636        };
1637
1638        // `!`, as an operator, is prefix, so we know this isn't that.
1639        let (span, kind) = if self.eat(exp!(Bang)) {
1640            // MACRO INVOCATION expression
1641            if qself.is_some() {
1642                self.dcx().emit_err(errors::MacroInvocationWithQualifiedPath(path.span));
1643            }
1644            let lo = path.span;
1645            let mac = P(MacCall { path, args: self.parse_delim_args()? });
1646            (lo.to(self.prev_token.span), ExprKind::MacCall(mac))
1647        } else if self.check(exp!(OpenBrace))
1648            && let Some(expr) = self.maybe_parse_struct_expr(&qself, &path)
1649        {
1650            if qself.is_some() {
1651                self.psess.gated_spans.gate(sym::more_qualified_paths, path.span);
1652            }
1653            return expr;
1654        } else {
1655            (path.span, ExprKind::Path(qself, path))
1656        };
1657
1658        let expr = self.mk_expr(span, kind);
1659        self.maybe_recover_from_bad_qpath(expr)
1660    }
1661
1662    /// Parse `'label: $expr`. The label is already parsed.
1663    pub(super) fn parse_expr_labeled(
1664        &mut self,
1665        label_: Label,
1666        mut consume_colon: bool,
1667    ) -> PResult<'a, P<Expr>> {
1668        let lo = label_.ident.span;
1669        let label = Some(label_);
1670        let ate_colon = self.eat(exp!(Colon));
1671        let tok_sp = self.token.span;
1672        let expr = if self.eat_keyword(exp!(While)) {
1673            self.parse_expr_while(label, lo)
1674        } else if self.eat_keyword(exp!(For)) {
1675            self.parse_expr_for(label, lo)
1676        } else if self.eat_keyword(exp!(Loop)) {
1677            self.parse_expr_loop(label, lo)
1678        } else if self.check_noexpect(&token::OpenBrace) || self.token.is_metavar_block() {
1679            self.parse_expr_block(label, lo, BlockCheckMode::Default)
1680        } else if !ate_colon
1681            && self.may_recover()
1682            && (self.token.kind.close_delim().is_some() || self.token.is_punct())
1683            && could_be_unclosed_char_literal(label_.ident)
1684        {
1685            let (lit, _) =
1686                self.recover_unclosed_char(label_.ident, Parser::mk_token_lit_char, |self_| {
1687                    self_.dcx().create_err(errors::UnexpectedTokenAfterLabel {
1688                        span: self_.token.span,
1689                        remove_label: None,
1690                        enclose_in_block: None,
1691                    })
1692                });
1693            consume_colon = false;
1694            Ok(self.mk_expr(lo, ExprKind::Lit(lit)))
1695        } else if !ate_colon
1696            && (self.check_noexpect(&TokenKind::Comma) || self.check_noexpect(&TokenKind::Gt))
1697        {
1698            // We're probably inside of a `Path<'a>` that needs a turbofish
1699            let guar = self.dcx().emit_err(errors::UnexpectedTokenAfterLabel {
1700                span: self.token.span,
1701                remove_label: None,
1702                enclose_in_block: None,
1703            });
1704            consume_colon = false;
1705            Ok(self.mk_expr_err(lo, guar))
1706        } else {
1707            let mut err = errors::UnexpectedTokenAfterLabel {
1708                span: self.token.span,
1709                remove_label: None,
1710                enclose_in_block: None,
1711            };
1712
1713            // Continue as an expression in an effort to recover on `'label: non_block_expr`.
1714            let expr = self.parse_expr().map(|expr| {
1715                let span = expr.span;
1716
1717                let found_labeled_breaks = {
1718                    struct FindLabeledBreaksVisitor;
1719
1720                    impl<'ast> Visitor<'ast> for FindLabeledBreaksVisitor {
1721                        type Result = ControlFlow<()>;
1722                        fn visit_expr(&mut self, ex: &'ast Expr) -> ControlFlow<()> {
1723                            if let ExprKind::Break(Some(_label), _) = ex.kind {
1724                                ControlFlow::Break(())
1725                            } else {
1726                                walk_expr(self, ex)
1727                            }
1728                        }
1729                    }
1730
1731                    FindLabeledBreaksVisitor.visit_expr(&expr).is_break()
1732                };
1733
1734                // Suggestion involves adding a labeled block.
1735                //
1736                // If there are no breaks that may use this label, suggest removing the label and
1737                // recover to the unmodified expression.
1738                if !found_labeled_breaks {
1739                    err.remove_label = Some(lo.until(span));
1740
1741                    return expr;
1742                }
1743
1744                err.enclose_in_block = Some(errors::UnexpectedTokenAfterLabelSugg {
1745                    left: span.shrink_to_lo(),
1746                    right: span.shrink_to_hi(),
1747                });
1748
1749                // Replace `'label: non_block_expr` with `'label: {non_block_expr}` in order to suppress future errors about `break 'label`.
1750                let stmt = self.mk_stmt(span, StmtKind::Expr(expr));
1751                let blk = self.mk_block(thin_vec![stmt], BlockCheckMode::Default, span);
1752                self.mk_expr(span, ExprKind::Block(blk, label))
1753            });
1754
1755            self.dcx().emit_err(err);
1756            expr
1757        }?;
1758
1759        if !ate_colon && consume_colon {
1760            self.dcx().emit_err(errors::RequireColonAfterLabeledExpression {
1761                span: expr.span,
1762                label: lo,
1763                label_end: lo.between(tok_sp),
1764            });
1765        }
1766
1767        Ok(expr)
1768    }
1769
1770    /// Emit an error when a char is parsed as a lifetime or label because of a missing quote.
1771    pub(super) fn recover_unclosed_char<L>(
1772        &self,
1773        ident: Ident,
1774        mk_lit_char: impl FnOnce(Symbol, Span) -> L,
1775        err: impl FnOnce(&Self) -> Diag<'a>,
1776    ) -> L {
1777        assert!(could_be_unclosed_char_literal(ident));
1778        self.dcx()
1779            .try_steal_modify_and_emit_err(ident.span, StashKey::LifetimeIsChar, |err| {
1780                err.span_suggestion_verbose(
1781                    ident.span.shrink_to_hi(),
1782                    "add `'` to close the char literal",
1783                    "'",
1784                    Applicability::MaybeIncorrect,
1785                );
1786            })
1787            .unwrap_or_else(|| {
1788                err(self)
1789                    .with_span_suggestion_verbose(
1790                        ident.span.shrink_to_hi(),
1791                        "add `'` to close the char literal",
1792                        "'",
1793                        Applicability::MaybeIncorrect,
1794                    )
1795                    .emit()
1796            });
1797        let name = ident.without_first_quote().name;
1798        mk_lit_char(name, ident.span)
1799    }
1800
1801    /// Recover on the syntax `do catch { ... }` suggesting `try { ... }` instead.
1802    fn recover_do_catch(&mut self) -> PResult<'a, P<Expr>> {
1803        let lo = self.token.span;
1804
1805        self.bump(); // `do`
1806        self.bump(); // `catch`
1807
1808        let span = lo.to(self.prev_token.span);
1809        self.dcx().emit_err(errors::DoCatchSyntaxRemoved { span });
1810
1811        self.parse_try_block(lo)
1812    }
1813
1814    /// Parse an expression if the token can begin one.
1815    fn parse_expr_opt(&mut self) -> PResult<'a, Option<P<Expr>>> {
1816        Ok(if self.token.can_begin_expr() { Some(self.parse_expr()?) } else { None })
1817    }
1818
1819    /// Parse `"return" expr?`.
1820    fn parse_expr_return(&mut self) -> PResult<'a, P<Expr>> {
1821        let lo = self.prev_token.span;
1822        let kind = ExprKind::Ret(self.parse_expr_opt()?);
1823        let expr = self.mk_expr(lo.to(self.prev_token.span), kind);
1824        self.maybe_recover_from_bad_qpath(expr)
1825    }
1826
1827    /// Parse `"do" "yeet" expr?`.
1828    fn parse_expr_yeet(&mut self) -> PResult<'a, P<Expr>> {
1829        let lo = self.token.span;
1830
1831        self.bump(); // `do`
1832        self.bump(); // `yeet`
1833
1834        let kind = ExprKind::Yeet(self.parse_expr_opt()?);
1835
1836        let span = lo.to(self.prev_token.span);
1837        self.psess.gated_spans.gate(sym::yeet_expr, span);
1838        let expr = self.mk_expr(span, kind);
1839        self.maybe_recover_from_bad_qpath(expr)
1840    }
1841
1842    /// Parse `"become" expr`, with `"become"` token already eaten.
1843    fn parse_expr_become(&mut self) -> PResult<'a, P<Expr>> {
1844        let lo = self.prev_token.span;
1845        let kind = ExprKind::Become(self.parse_expr()?);
1846        let span = lo.to(self.prev_token.span);
1847        self.psess.gated_spans.gate(sym::explicit_tail_calls, span);
1848        let expr = self.mk_expr(span, kind);
1849        self.maybe_recover_from_bad_qpath(expr)
1850    }
1851
1852    /// Parse `"break" (('label (:? expr)?) | expr?)` with `"break"` token already eaten.
1853    /// If the label is followed immediately by a `:` token, the label and `:` are
1854    /// parsed as part of the expression (i.e. a labeled loop). The language team has
1855    /// decided in #87026 to require parentheses as a visual aid to avoid confusion if
1856    /// the break expression of an unlabeled break is a labeled loop (as in
1857    /// `break 'lbl: loop {}`); a labeled break with an unlabeled loop as its value
1858    /// expression only gets a warning for compatibility reasons; and a labeled break
1859    /// with a labeled loop does not even get a warning because there is no ambiguity.
1860    fn parse_expr_break(&mut self) -> PResult<'a, P<Expr>> {
1861        let lo = self.prev_token.span;
1862        let mut label = self.eat_label();
1863        let kind = if self.token == token::Colon
1864            && let Some(label) = label.take()
1865        {
1866            // The value expression can be a labeled loop, see issue #86948, e.g.:
1867            // `loop { break 'label: loop { break 'label 42; }; }`
1868            let lexpr = self.parse_expr_labeled(label, true)?;
1869            self.dcx().emit_err(errors::LabeledLoopInBreak {
1870                span: lexpr.span,
1871                sub: errors::WrapInParentheses::Expression {
1872                    left: lexpr.span.shrink_to_lo(),
1873                    right: lexpr.span.shrink_to_hi(),
1874                },
1875            });
1876            Some(lexpr)
1877        } else if self.token != token::OpenBrace
1878            || !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
1879        {
1880            let mut expr = self.parse_expr_opt()?;
1881            if let Some(expr) = &mut expr {
1882                if label.is_some()
1883                    && match &expr.kind {
1884                        ExprKind::While(_, _, None)
1885                        | ExprKind::ForLoop { label: None, .. }
1886                        | ExprKind::Loop(_, None, _) => true,
1887                        ExprKind::Block(block, None) => {
1888                            matches!(block.rules, BlockCheckMode::Default)
1889                        }
1890                        _ => false,
1891                    }
1892                {
1893                    self.psess.buffer_lint(
1894                        BREAK_WITH_LABEL_AND_LOOP,
1895                        lo.to(expr.span),
1896                        ast::CRATE_NODE_ID,
1897                        BuiltinLintDiag::BreakWithLabelAndLoop(expr.span),
1898                    );
1899                }
1900
1901                // Recover `break label aaaaa`
1902                if self.may_recover()
1903                    && let ExprKind::Path(None, p) = &expr.kind
1904                    && let [segment] = &*p.segments
1905                    && let &ast::PathSegment { ident, args: None, .. } = segment
1906                    && let Some(next) = self.parse_expr_opt()?
1907                {
1908                    label = Some(self.recover_ident_into_label(ident));
1909                    *expr = next;
1910                }
1911            }
1912
1913            expr
1914        } else {
1915            None
1916        };
1917        let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Break(label, kind));
1918        self.maybe_recover_from_bad_qpath(expr)
1919    }
1920
1921    /// Parse `"continue" label?`.
1922    fn parse_expr_continue(&mut self, lo: Span) -> PResult<'a, P<Expr>> {
1923        let mut label = self.eat_label();
1924
1925        // Recover `continue label` -> `continue 'label`
1926        if self.may_recover()
1927            && label.is_none()
1928            && let Some((ident, _)) = self.token.ident()
1929        {
1930            self.bump();
1931            label = Some(self.recover_ident_into_label(ident));
1932        }
1933
1934        let kind = ExprKind::Continue(label);
1935        Ok(self.mk_expr(lo.to(self.prev_token.span), kind))
1936    }
1937
1938    /// Parse `"yield" expr?`.
1939    fn parse_expr_yield(&mut self) -> PResult<'a, P<Expr>> {
1940        let lo = self.prev_token.span;
1941        let kind = ExprKind::Yield(YieldKind::Prefix(self.parse_expr_opt()?));
1942        let span = lo.to(self.prev_token.span);
1943        self.psess.gated_spans.gate(sym::yield_expr, span);
1944        let expr = self.mk_expr(span, kind);
1945        self.maybe_recover_from_bad_qpath(expr)
1946    }
1947
1948    /// Parse `builtin # ident(args,*)`.
1949    fn parse_expr_builtin(&mut self) -> PResult<'a, P<Expr>> {
1950        self.parse_builtin(|this, lo, ident| {
1951            Ok(match ident.name {
1952                sym::offset_of => Some(this.parse_expr_offset_of(lo)?),
1953                sym::type_ascribe => Some(this.parse_expr_type_ascribe(lo)?),
1954                sym::wrap_binder => {
1955                    Some(this.parse_expr_unsafe_binder_cast(lo, UnsafeBinderCastKind::Wrap)?)
1956                }
1957                sym::unwrap_binder => {
1958                    Some(this.parse_expr_unsafe_binder_cast(lo, UnsafeBinderCastKind::Unwrap)?)
1959                }
1960                _ => None,
1961            })
1962        })
1963    }
1964
1965    pub(crate) fn parse_builtin<T>(
1966        &mut self,
1967        parse: impl FnOnce(&mut Parser<'a>, Span, Ident) -> PResult<'a, Option<T>>,
1968    ) -> PResult<'a, T> {
1969        let lo = self.token.span;
1970
1971        self.bump(); // `builtin`
1972        self.bump(); // `#`
1973
1974        let Some((ident, IdentIsRaw::No)) = self.token.ident() else {
1975            let err = self.dcx().create_err(errors::ExpectedBuiltinIdent { span: self.token.span });
1976            return Err(err);
1977        };
1978        self.psess.gated_spans.gate(sym::builtin_syntax, ident.span);
1979        self.bump();
1980
1981        self.expect(exp!(OpenParen))?;
1982        let ret = if let Some(res) = parse(self, lo, ident)? {
1983            Ok(res)
1984        } else {
1985            let err = self.dcx().create_err(errors::UnknownBuiltinConstruct {
1986                span: lo.to(ident.span),
1987                name: ident,
1988            });
1989            return Err(err);
1990        };
1991        self.expect(exp!(CloseParen))?;
1992
1993        ret
1994    }
1995
1996    /// Built-in macro for `offset_of!` expressions.
1997    pub(crate) fn parse_expr_offset_of(&mut self, lo: Span) -> PResult<'a, P<Expr>> {
1998        let container = self.parse_ty()?;
1999        self.expect(exp!(Comma))?;
2000
2001        let fields = self.parse_floating_field_access()?;
2002        let trailing_comma = self.eat_noexpect(&TokenKind::Comma);
2003
2004        if let Err(mut e) = self.expect_one_of(&[], &[exp!(CloseParen)]) {
2005            if trailing_comma {
2006                e.note("unexpected third argument to offset_of");
2007            } else {
2008                e.note("offset_of expects dot-separated field and variant names");
2009            }
2010            e.emit();
2011        }
2012
2013        // Eat tokens until the macro call ends.
2014        if self.may_recover() {
2015            while !self.token.kind.is_close_delim_or_eof() {
2016                self.bump();
2017            }
2018        }
2019
2020        let span = lo.to(self.token.span);
2021        Ok(self.mk_expr(span, ExprKind::OffsetOf(container, fields)))
2022    }
2023
2024    /// Built-in macro for type ascription expressions.
2025    pub(crate) fn parse_expr_type_ascribe(&mut self, lo: Span) -> PResult<'a, P<Expr>> {
2026        let expr = self.parse_expr()?;
2027        self.expect(exp!(Comma))?;
2028        let ty = self.parse_ty()?;
2029        let span = lo.to(self.token.span);
2030        Ok(self.mk_expr(span, ExprKind::Type(expr, ty)))
2031    }
2032
2033    pub(crate) fn parse_expr_unsafe_binder_cast(
2034        &mut self,
2035        lo: Span,
2036        kind: UnsafeBinderCastKind,
2037    ) -> PResult<'a, P<Expr>> {
2038        let expr = self.parse_expr()?;
2039        let ty = if self.eat(exp!(Comma)) { Some(self.parse_ty()?) } else { None };
2040        let span = lo.to(self.token.span);
2041        Ok(self.mk_expr(span, ExprKind::UnsafeBinderCast(kind, expr, ty)))
2042    }
2043
2044    /// Returns a string literal if the next token is a string literal.
2045    /// In case of error returns `Some(lit)` if the next token is a literal with a wrong kind,
2046    /// and returns `None` if the next token is not literal at all.
2047    pub fn parse_str_lit(&mut self) -> Result<ast::StrLit, Option<MetaItemLit>> {
2048        match self.parse_opt_meta_item_lit() {
2049            Some(lit) => match lit.kind {
2050                ast::LitKind::Str(symbol_unescaped, style) => Ok(ast::StrLit {
2051                    style,
2052                    symbol: lit.symbol,
2053                    suffix: lit.suffix,
2054                    span: lit.span,
2055                    symbol_unescaped,
2056                }),
2057                _ => Err(Some(lit)),
2058            },
2059            None => Err(None),
2060        }
2061    }
2062
2063    pub(crate) fn mk_token_lit_char(name: Symbol, span: Span) -> (token::Lit, Span) {
2064        (token::Lit { symbol: name, suffix: None, kind: token::Char }, span)
2065    }
2066
2067    fn mk_meta_item_lit_char(name: Symbol, span: Span) -> MetaItemLit {
2068        ast::MetaItemLit {
2069            symbol: name,
2070            suffix: None,
2071            kind: ast::LitKind::Char(name.as_str().chars().next().unwrap_or('_')),
2072            span,
2073        }
2074    }
2075
2076    fn handle_missing_lit<L>(
2077        &mut self,
2078        mk_lit_char: impl FnOnce(Symbol, Span) -> L,
2079    ) -> PResult<'a, L> {
2080        let token = self.token;
2081        let err = |self_: &Self| {
2082            let msg = format!("unexpected token: {}", super::token_descr(&token));
2083            self_.dcx().struct_span_err(token.span, msg)
2084        };
2085        // On an error path, eagerly consider a lifetime to be an unclosed character lit, if that
2086        // makes sense.
2087        if let Some((ident, IdentIsRaw::No)) = self.token.lifetime()
2088            && could_be_unclosed_char_literal(ident)
2089        {
2090            let lt = self.expect_lifetime();
2091            Ok(self.recover_unclosed_char(lt.ident, mk_lit_char, err))
2092        } else {
2093            Err(err(self))
2094        }
2095    }
2096
2097    pub(super) fn parse_token_lit(&mut self) -> PResult<'a, (token::Lit, Span)> {
2098        self.parse_opt_token_lit()
2099            .ok_or(())
2100            .or_else(|()| self.handle_missing_lit(Parser::mk_token_lit_char))
2101    }
2102
2103    pub(super) fn parse_meta_item_lit(&mut self) -> PResult<'a, MetaItemLit> {
2104        self.parse_opt_meta_item_lit()
2105            .ok_or(())
2106            .or_else(|()| self.handle_missing_lit(Parser::mk_meta_item_lit_char))
2107    }
2108
2109    fn recover_after_dot(&mut self) {
2110        if self.token == token::Dot {
2111            // Attempt to recover `.4` as `0.4`. We don't currently have any syntax where
2112            // dot would follow an optional literal, so we do this unconditionally.
2113            let recovered = self.look_ahead(1, |next_token| {
2114                // If it's an integer that looks like a float, then recover as such.
2115                //
2116                // We will never encounter the exponent part of a floating
2117                // point literal here, since there's no use of the exponent
2118                // syntax that also constitutes a valid integer, so we need
2119                // not check for that.
2120                if let token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) =
2121                    next_token.kind
2122                    && suffix.is_none_or(|s| s == sym::f32 || s == sym::f64)
2123                    && symbol.as_str().chars().all(|c| c.is_numeric() || c == '_')
2124                    && self.token.span.hi() == next_token.span.lo()
2125                {
2126                    let s = String::from("0.") + symbol.as_str();
2127                    let kind = TokenKind::lit(token::Float, Symbol::intern(&s), suffix);
2128                    Some(Token::new(kind, self.token.span.to(next_token.span)))
2129                } else {
2130                    None
2131                }
2132            });
2133            if let Some(recovered) = recovered {
2134                self.dcx().emit_err(errors::FloatLiteralRequiresIntegerPart {
2135                    span: recovered.span,
2136                    suggestion: recovered.span.shrink_to_lo(),
2137                });
2138                self.bump();
2139                self.token = recovered;
2140            }
2141        }
2142    }
2143
2144    /// Keep this in sync with `Token::can_begin_literal_maybe_minus` and
2145    /// `Lit::from_token` (excluding unary negation).
2146    fn eat_token_lit(&mut self) -> Option<token::Lit> {
2147        let check_expr = |expr: P<Expr>| {
2148            if let ast::ExprKind::Lit(token_lit) = expr.kind {
2149                Some(token_lit)
2150            } else if let ast::ExprKind::Unary(UnOp::Neg, inner) = &expr.kind
2151                && let ast::Expr { kind: ast::ExprKind::Lit(_), .. } = **inner
2152            {
2153                None
2154            } else {
2155                panic!("unexpected reparsed expr/literal: {:?}", expr.kind);
2156            }
2157        };
2158        match self.token.uninterpolate().kind {
2159            token::Ident(name, IdentIsRaw::No) if name.is_bool_lit() => {
2160                self.bump();
2161                Some(token::Lit::new(token::Bool, name, None))
2162            }
2163            token::Literal(token_lit) => {
2164                self.bump();
2165                Some(token_lit)
2166            }
2167            token::OpenInvisible(InvisibleOrigin::MetaVar(MetaVarKind::Literal)) => {
2168                let lit = self
2169                    .eat_metavar_seq(MetaVarKind::Literal, |this| this.parse_literal_maybe_minus())
2170                    .expect("metavar seq literal");
2171                check_expr(lit)
2172            }
2173            token::OpenInvisible(InvisibleOrigin::MetaVar(
2174                mv_kind @ MetaVarKind::Expr { can_begin_literal_maybe_minus: true, .. },
2175            )) => {
2176                let expr = self
2177                    .eat_metavar_seq(mv_kind, |this| this.parse_expr())
2178                    .expect("metavar seq expr");
2179                check_expr(expr)
2180            }
2181            _ => None,
2182        }
2183    }
2184
2185    /// Matches `lit = true | false | token_lit`.
2186    /// Returns `None` if the next token is not a literal.
2187    fn parse_opt_token_lit(&mut self) -> Option<(token::Lit, Span)> {
2188        self.recover_after_dot();
2189        let span = self.token.span;
2190        self.eat_token_lit().map(|token_lit| (token_lit, span))
2191    }
2192
2193    /// Matches `lit = true | false | token_lit`.
2194    /// Returns `None` if the next token is not a literal.
2195    fn parse_opt_meta_item_lit(&mut self) -> Option<MetaItemLit> {
2196        self.recover_after_dot();
2197        let span = self.token.span;
2198        let uninterpolated_span = self.token_uninterpolated_span();
2199        self.eat_token_lit().map(|token_lit| {
2200            match MetaItemLit::from_token_lit(token_lit, span) {
2201                Ok(lit) => lit,
2202                Err(err) => {
2203                    let guar = report_lit_error(&self.psess, err, token_lit, uninterpolated_span);
2204                    // Pack possible quotes and prefixes from the original literal into
2205                    // the error literal's symbol so they can be pretty-printed faithfully.
2206                    let suffixless_lit = token::Lit::new(token_lit.kind, token_lit.symbol, None);
2207                    let symbol = Symbol::intern(&suffixless_lit.to_string());
2208                    let token_lit = token::Lit::new(token::Err(guar), symbol, token_lit.suffix);
2209                    MetaItemLit::from_token_lit(token_lit, uninterpolated_span).unwrap()
2210                }
2211            }
2212        })
2213    }
2214
2215    pub(super) fn expect_no_tuple_index_suffix(&self, span: Span, suffix: Symbol) {
2216        if [sym::i32, sym::u32, sym::isize, sym::usize].contains(&suffix) {
2217            // #59553: warn instead of reject out of hand to allow the fix to percolate
2218            // through the ecosystem when people fix their macros
2219            self.dcx().emit_warn(errors::InvalidLiteralSuffixOnTupleIndex {
2220                span,
2221                suffix,
2222                exception: true,
2223            });
2224        } else {
2225            self.dcx().emit_err(errors::InvalidLiteralSuffixOnTupleIndex {
2226                span,
2227                suffix,
2228                exception: false,
2229            });
2230        }
2231    }
2232
2233    /// Matches `'-' lit | lit` (cf. `ast_validation::AstValidator::check_expr_within_pat`).
2234    /// Keep this in sync with `Token::can_begin_literal_maybe_minus`.
2235    pub fn parse_literal_maybe_minus(&mut self) -> PResult<'a, P<Expr>> {
2236        if let Some(expr) = self.eat_metavar_seq_with_matcher(
2237            |mv_kind| matches!(mv_kind, MetaVarKind::Expr { .. }),
2238            |this| {
2239                // FIXME(nnethercote) The `expr` case should only match if
2240                // `e` is an `ExprKind::Lit` or an `ExprKind::Unary` containing
2241                // an `UnOp::Neg` and an `ExprKind::Lit`, like how
2242                // `can_begin_literal_maybe_minus` works. But this method has
2243                // been over-accepting for a long time, and to make that change
2244                // here requires also changing some `parse_literal_maybe_minus`
2245                // call sites to accept additional expression kinds. E.g.
2246                // `ExprKind::Path` must be accepted when parsing range
2247                // patterns. That requires some care. So for now, we continue
2248                // being less strict here than we should be.
2249                this.parse_expr()
2250            },
2251        ) {
2252            return Ok(expr);
2253        } else if let Some(lit) =
2254            self.eat_metavar_seq(MetaVarKind::Literal, |this| this.parse_literal_maybe_minus())
2255        {
2256            return Ok(lit);
2257        }
2258
2259        let lo = self.token.span;
2260        let minus_present = self.eat(exp!(Minus));
2261        let (token_lit, span) = self.parse_token_lit()?;
2262        let expr = self.mk_expr(span, ExprKind::Lit(token_lit));
2263
2264        if minus_present {
2265            Ok(self.mk_expr(lo.to(self.prev_token.span), self.mk_unary(UnOp::Neg, expr)))
2266        } else {
2267            Ok(expr)
2268        }
2269    }
2270
2271    fn is_array_like_block(&mut self) -> bool {
2272        self.token.kind == TokenKind::OpenBrace
2273            && self
2274                .look_ahead(1, |t| matches!(t.kind, TokenKind::Ident(..) | TokenKind::Literal(_)))
2275            && self.look_ahead(2, |t| t == &token::Comma)
2276            && self.look_ahead(3, |t| t.can_begin_expr())
2277    }
2278
2279    /// Emits a suggestion if it looks like the user meant an array but
2280    /// accidentally used braces, causing the code to be interpreted as a block
2281    /// expression.
2282    fn maybe_suggest_brackets_instead_of_braces(&mut self, lo: Span) -> Option<P<Expr>> {
2283        let mut snapshot = self.create_snapshot_for_diagnostic();
2284        match snapshot.parse_expr_array_or_repeat(exp!(CloseBrace)) {
2285            Ok(arr) => {
2286                let guar = self.dcx().emit_err(errors::ArrayBracketsInsteadOfBraces {
2287                    span: arr.span,
2288                    sub: errors::ArrayBracketsInsteadOfBracesSugg {
2289                        left: lo,
2290                        right: snapshot.prev_token.span,
2291                    },
2292                });
2293
2294                self.restore_snapshot(snapshot);
2295                Some(self.mk_expr_err(arr.span, guar))
2296            }
2297            Err(e) => {
2298                e.cancel();
2299                None
2300            }
2301        }
2302    }
2303
2304    fn suggest_missing_semicolon_before_array(
2305        &self,
2306        prev_span: Span,
2307        open_delim_span: Span,
2308    ) -> PResult<'a, ()> {
2309        if !self.may_recover() {
2310            return Ok(());
2311        }
2312
2313        if self.token == token::Comma {
2314            if !self.psess.source_map().is_multiline(prev_span.until(self.token.span)) {
2315                return Ok(());
2316            }
2317            let mut snapshot = self.create_snapshot_for_diagnostic();
2318            snapshot.bump();
2319            match snapshot.parse_seq_to_before_end(
2320                exp!(CloseBracket),
2321                SeqSep::trailing_allowed(exp!(Comma)),
2322                |p| p.parse_expr(),
2323            ) {
2324                Ok(_)
2325                    // When the close delim is `)`, `token.kind` is expected to be `token::CloseParen`,
2326                    // but the actual `token.kind` is `token::CloseBracket`.
2327                    // This is because the `token.kind` of the close delim is treated as the same as
2328                    // that of the open delim in `TokenTreesReader::parse_token_tree`, even if the delimiters of them are different.
2329                    // Therefore, `token.kind` should not be compared here.
2330                    if snapshot
2331                        .span_to_snippet(snapshot.token.span)
2332                        .is_ok_and(|snippet| snippet == "]") =>
2333                {
2334                    return Err(self.dcx().create_err(errors::MissingSemicolonBeforeArray {
2335                        open_delim: open_delim_span,
2336                        semicolon: prev_span.shrink_to_hi(),
2337                    }));
2338                }
2339                Ok(_) => (),
2340                Err(err) => err.cancel(),
2341            }
2342        }
2343        Ok(())
2344    }
2345
2346    /// Parses a block or unsafe block.
2347    pub(super) fn parse_expr_block(
2348        &mut self,
2349        opt_label: Option<Label>,
2350        lo: Span,
2351        blk_mode: BlockCheckMode,
2352    ) -> PResult<'a, P<Expr>> {
2353        if self.may_recover() && self.is_array_like_block() {
2354            if let Some(arr) = self.maybe_suggest_brackets_instead_of_braces(lo) {
2355                return Ok(arr);
2356            }
2357        }
2358
2359        if self.token.is_metavar_block() {
2360            self.dcx().emit_err(errors::InvalidBlockMacroSegment {
2361                span: self.token.span,
2362                context: lo.to(self.token.span),
2363                wrap: errors::WrapInExplicitBlock {
2364                    lo: self.token.span.shrink_to_lo(),
2365                    hi: self.token.span.shrink_to_hi(),
2366                },
2367            });
2368        }
2369
2370        let (attrs, blk) = self.parse_block_common(lo, blk_mode, None)?;
2371        Ok(self.mk_expr_with_attrs(blk.span, ExprKind::Block(blk, opt_label), attrs))
2372    }
2373
2374    /// Parse a block which takes no attributes and has no label
2375    fn parse_simple_block(&mut self) -> PResult<'a, P<Expr>> {
2376        let blk = self.parse_block()?;
2377        Ok(self.mk_expr(blk.span, ExprKind::Block(blk, None)))
2378    }
2379
2380    /// Parses a closure expression (e.g., `move |args| expr`).
2381    fn parse_expr_closure(&mut self) -> PResult<'a, P<Expr>> {
2382        let lo = self.token.span;
2383
2384        let before = self.prev_token;
2385        let binder = if self.check_keyword(exp!(For)) {
2386            let lo = self.token.span;
2387            let (lifetime_defs, _) = self.parse_late_bound_lifetime_defs()?;
2388            let span = lo.to(self.prev_token.span);
2389
2390            self.psess.gated_spans.gate(sym::closure_lifetime_binder, span);
2391
2392            ClosureBinder::For { span, generic_params: lifetime_defs }
2393        } else {
2394            ClosureBinder::NotPresent
2395        };
2396
2397        let constness = self.parse_closure_constness();
2398
2399        let movability =
2400            if self.eat_keyword(exp!(Static)) { Movability::Static } else { Movability::Movable };
2401
2402        let coroutine_kind = if self.token_uninterpolated_span().at_least_rust_2018() {
2403            self.parse_coroutine_kind(Case::Sensitive)
2404        } else {
2405            None
2406        };
2407
2408        if let ClosureBinder::NotPresent = binder
2409            && coroutine_kind.is_some()
2410        {
2411            // coroutine closures and generators can have the same qualifiers, so we might end up
2412            // in here if there is a missing `|` but also no `{`. Adjust the expectations in that case.
2413            self.expected_token_types.insert(TokenType::OpenBrace);
2414        }
2415
2416        let capture_clause = self.parse_capture_clause()?;
2417        let (fn_decl, fn_arg_span) = self.parse_fn_block_decl()?;
2418        let decl_hi = self.prev_token.span;
2419        let mut body = match &fn_decl.output {
2420            // No return type.
2421            FnRetTy::Default(_) => {
2422                let restrictions =
2423                    self.restrictions - Restrictions::STMT_EXPR - Restrictions::ALLOW_LET;
2424                let prev = self.prev_token;
2425                let token = self.token;
2426                let attrs = self.parse_outer_attributes()?;
2427                match self.parse_expr_res(restrictions, attrs) {
2428                    Ok((expr, _)) => expr,
2429                    Err(err) => self.recover_closure_body(err, before, prev, token, lo, decl_hi)?,
2430                }
2431            }
2432            // Explicit return type (`->`) needs block `-> T { }`.
2433            FnRetTy::Ty(ty) => self.parse_closure_block_body(ty.span)?,
2434        };
2435
2436        match coroutine_kind {
2437            Some(CoroutineKind::Async { .. }) => {}
2438            Some(CoroutineKind::Gen { span, .. }) | Some(CoroutineKind::AsyncGen { span, .. }) => {
2439                // Feature-gate `gen ||` and `async gen ||` closures.
2440                // FIXME(gen_blocks): This perhaps should be a different gate.
2441                self.psess.gated_spans.gate(sym::gen_blocks, span);
2442            }
2443            None => {}
2444        }
2445
2446        if self.token == TokenKind::Semi
2447            && let Some(last) = self.token_cursor.stack.last()
2448            && let Some(TokenTree::Delimited(_, _, Delimiter::Parenthesis, _)) = last.curr()
2449            && self.may_recover()
2450        {
2451            // It is likely that the closure body is a block but where the
2452            // braces have been removed. We will recover and eat the next
2453            // statements later in the parsing process.
2454            body = self.mk_expr_err(
2455                body.span,
2456                self.dcx().span_delayed_bug(body.span, "recovered a closure body as a block"),
2457            );
2458        }
2459
2460        let body_span = body.span;
2461
2462        let closure = self.mk_expr(
2463            lo.to(body.span),
2464            ExprKind::Closure(Box::new(ast::Closure {
2465                binder,
2466                capture_clause,
2467                constness,
2468                coroutine_kind,
2469                movability,
2470                fn_decl,
2471                body,
2472                fn_decl_span: lo.to(decl_hi),
2473                fn_arg_span,
2474            })),
2475        );
2476
2477        // Disable recovery for closure body
2478        let spans =
2479            ClosureSpans { whole_closure: closure.span, closing_pipe: decl_hi, body: body_span };
2480        self.current_closure = Some(spans);
2481
2482        Ok(closure)
2483    }
2484
2485    /// If an explicit return type is given, require a block to appear (RFC 968).
2486    fn parse_closure_block_body(&mut self, ret_span: Span) -> PResult<'a, P<Expr>> {
2487        if self.may_recover()
2488            && self.token.can_begin_expr()
2489            && self.token.kind != TokenKind::OpenBrace
2490            && !self.token.is_metavar_block()
2491        {
2492            let snapshot = self.create_snapshot_for_diagnostic();
2493            let restrictions =
2494                self.restrictions - Restrictions::STMT_EXPR - Restrictions::ALLOW_LET;
2495            let tok = self.token.clone();
2496            match self.parse_expr_res(restrictions, AttrWrapper::empty()) {
2497                Ok((expr, _)) => {
2498                    let descr = super::token_descr(&tok);
2499                    let mut diag = self
2500                        .dcx()
2501                        .struct_span_err(tok.span, format!("expected `{{`, found {descr}"));
2502                    diag.span_label(
2503                        ret_span,
2504                        "explicit return type requires closure body to be enclosed in braces",
2505                    );
2506                    diag.multipart_suggestion_verbose(
2507                        "wrap the expression in curly braces",
2508                        vec![
2509                            (expr.span.shrink_to_lo(), "{ ".to_string()),
2510                            (expr.span.shrink_to_hi(), " }".to_string()),
2511                        ],
2512                        Applicability::MachineApplicable,
2513                    );
2514                    diag.emit();
2515                    return Ok(expr);
2516                }
2517                Err(diag) => {
2518                    diag.cancel();
2519                    self.restore_snapshot(snapshot);
2520                }
2521            }
2522        }
2523
2524        let body_lo = self.token.span;
2525        self.parse_expr_block(None, body_lo, BlockCheckMode::Default)
2526    }
2527
2528    /// Parses an optional `move` or `use` prefix to a closure-like construct.
2529    fn parse_capture_clause(&mut self) -> PResult<'a, CaptureBy> {
2530        if self.eat_keyword(exp!(Move)) {
2531            let move_kw_span = self.prev_token.span;
2532            // Check for `move async` and recover
2533            if self.check_keyword(exp!(Async)) {
2534                let move_async_span = self.token.span.with_lo(self.prev_token.span.data().lo);
2535                Err(self
2536                    .dcx()
2537                    .create_err(errors::AsyncMoveOrderIncorrect { span: move_async_span }))
2538            } else {
2539                Ok(CaptureBy::Value { move_kw: move_kw_span })
2540            }
2541        } else if self.eat_keyword(exp!(Use)) {
2542            let use_kw_span = self.prev_token.span;
2543            self.psess.gated_spans.gate(sym::ergonomic_clones, use_kw_span);
2544            // Check for `use async` and recover
2545            if self.check_keyword(exp!(Async)) {
2546                let use_async_span = self.token.span.with_lo(self.prev_token.span.data().lo);
2547                Err(self.dcx().create_err(errors::AsyncUseOrderIncorrect { span: use_async_span }))
2548            } else {
2549                Ok(CaptureBy::Use { use_kw: use_kw_span })
2550            }
2551        } else {
2552            Ok(CaptureBy::Ref)
2553        }
2554    }
2555
2556    /// Parses the `|arg, arg|` header of a closure.
2557    fn parse_fn_block_decl(&mut self) -> PResult<'a, (P<FnDecl>, Span)> {
2558        let arg_start = self.token.span.lo();
2559
2560        let inputs = if self.eat(exp!(OrOr)) {
2561            ThinVec::new()
2562        } else {
2563            self.expect(exp!(Or))?;
2564            let args = self
2565                .parse_seq_to_before_tokens(
2566                    &[exp!(Or)],
2567                    &[&token::OrOr],
2568                    SeqSep::trailing_allowed(exp!(Comma)),
2569                    |p| p.parse_fn_block_param(),
2570                )?
2571                .0;
2572            self.expect_or()?;
2573            args
2574        };
2575        let arg_span = self.prev_token.span.with_lo(arg_start);
2576        let output =
2577            self.parse_ret_ty(AllowPlus::Yes, RecoverQPath::Yes, RecoverReturnSign::Yes)?;
2578
2579        Ok((P(FnDecl { inputs, output }), arg_span))
2580    }
2581
2582    /// Parses a parameter in a closure header (e.g., `|arg, arg|`).
2583    fn parse_fn_block_param(&mut self) -> PResult<'a, Param> {
2584        let lo = self.token.span;
2585        let attrs = self.parse_outer_attributes()?;
2586        self.collect_tokens(None, attrs, ForceCollect::No, |this, attrs| {
2587            let pat = this.parse_pat_no_top_alt(Some(Expected::ParameterName), None)?;
2588            let ty = if this.eat(exp!(Colon)) {
2589                this.parse_ty()?
2590            } else {
2591                this.mk_ty(pat.span, TyKind::Infer)
2592            };
2593
2594            Ok((
2595                Param {
2596                    attrs,
2597                    ty,
2598                    pat,
2599                    span: lo.to(this.prev_token.span),
2600                    id: DUMMY_NODE_ID,
2601                    is_placeholder: false,
2602                },
2603                Trailing::from(this.token == token::Comma),
2604                UsePreAttrPos::No,
2605            ))
2606        })
2607    }
2608
2609    /// Parses an `if` expression (`if` token already eaten).
2610    fn parse_expr_if(&mut self) -> PResult<'a, P<Expr>> {
2611        let lo = self.prev_token.span;
2612        // Scoping code checks the top level edition of the `if`; let's match it here.
2613        // The `CondChecker` also checks the edition of the `let` itself, just to make sure.
2614        let let_chains_policy = LetChainsPolicy::EditionDependent { current_edition: lo.edition() };
2615        let cond = self.parse_expr_cond(let_chains_policy)?;
2616        self.parse_if_after_cond(lo, cond)
2617    }
2618
2619    fn parse_if_after_cond(&mut self, lo: Span, mut cond: P<Expr>) -> PResult<'a, P<Expr>> {
2620        let cond_span = cond.span;
2621        // Tries to interpret `cond` as either a missing expression if it's a block,
2622        // or as an unfinished expression if it's a binop and the RHS is a block.
2623        // We could probably add more recoveries here too...
2624        let mut recover_block_from_condition = |this: &mut Self| {
2625            let block = match &mut cond.kind {
2626                ExprKind::Binary(Spanned { span: binop_span, .. }, _, right)
2627                    if let ExprKind::Block(_, None) = right.kind =>
2628                {
2629                    let guar = this.dcx().emit_err(errors::IfExpressionMissingThenBlock {
2630                        if_span: lo,
2631                        missing_then_block_sub:
2632                            errors::IfExpressionMissingThenBlockSub::UnfinishedCondition(
2633                                cond_span.shrink_to_lo().to(*binop_span),
2634                            ),
2635                        let_else_sub: None,
2636                    });
2637                    std::mem::replace(right, this.mk_expr_err(binop_span.shrink_to_hi(), guar))
2638                }
2639                ExprKind::Block(_, None) => {
2640                    let guar = this.dcx().emit_err(errors::IfExpressionMissingCondition {
2641                        if_span: lo.with_neighbor(cond.span).shrink_to_hi(),
2642                        block_span: self.psess.source_map().start_point(cond_span),
2643                    });
2644                    std::mem::replace(&mut cond, this.mk_expr_err(cond_span.shrink_to_hi(), guar))
2645                }
2646                _ => {
2647                    return None;
2648                }
2649            };
2650            if let ExprKind::Block(block, _) = &block.kind {
2651                Some(block.clone())
2652            } else {
2653                unreachable!()
2654            }
2655        };
2656        // Parse then block
2657        let thn = if self.token.is_keyword(kw::Else) {
2658            if let Some(block) = recover_block_from_condition(self) {
2659                block
2660            } else {
2661                let let_else_sub = matches!(cond.kind, ExprKind::Let(..))
2662                    .then(|| errors::IfExpressionLetSomeSub { if_span: lo.until(cond_span) });
2663
2664                let guar = self.dcx().emit_err(errors::IfExpressionMissingThenBlock {
2665                    if_span: lo,
2666                    missing_then_block_sub: errors::IfExpressionMissingThenBlockSub::AddThenBlock(
2667                        cond_span.shrink_to_hi(),
2668                    ),
2669                    let_else_sub,
2670                });
2671                self.mk_block_err(cond_span.shrink_to_hi(), guar)
2672            }
2673        } else {
2674            let attrs = self.parse_outer_attributes()?; // For recovery.
2675            let maybe_fatarrow = self.token;
2676            let block = if self.check(exp!(OpenBrace)) {
2677                self.parse_block()?
2678            } else if let Some(block) = recover_block_from_condition(self) {
2679                block
2680            } else {
2681                self.error_on_extra_if(&cond)?;
2682                // Parse block, which will always fail, but we can add a nice note to the error
2683                self.parse_block().map_err(|mut err| {
2684                        if self.prev_token == token::Semi
2685                            && self.token == token::AndAnd
2686                            && let maybe_let = self.look_ahead(1, |t| t.clone())
2687                            && maybe_let.is_keyword(kw::Let)
2688                        {
2689                            err.span_suggestion(
2690                                self.prev_token.span,
2691                                "consider removing this semicolon to parse the `let` as part of the same chain",
2692                                "",
2693                                Applicability::MachineApplicable,
2694                            ).span_note(
2695                                self.token.span.to(maybe_let.span),
2696                                "you likely meant to continue parsing the let-chain starting here",
2697                            );
2698                        } else {
2699                            // Look for usages of '=>' where '>=' might be intended
2700                            if maybe_fatarrow == token::FatArrow {
2701                                err.span_suggestion(
2702                                    maybe_fatarrow.span,
2703                                    "you might have meant to write a \"greater than or equal to\" comparison",
2704                                    ">=",
2705                                    Applicability::MaybeIncorrect,
2706                                );
2707                            }
2708                            err.span_note(
2709                                cond_span,
2710                                "the `if` expression is missing a block after this condition",
2711                            );
2712                        }
2713                        err
2714                    })?
2715            };
2716            self.error_on_if_block_attrs(lo, false, block.span, attrs);
2717            block
2718        };
2719        let els = if self.eat_keyword(exp!(Else)) { Some(self.parse_expr_else()?) } else { None };
2720        Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::If(cond, thn, els)))
2721    }
2722
2723    /// Parses the condition of a `if` or `while` expression.
2724    ///
2725    /// The specified `edition` in `let_chains_policy` should be that of the whole `if` construct,
2726    /// i.e. the same span we use to later decide whether the drop behaviour should be that of
2727    /// edition `..=2021` or that of `2024..`.
2728    // Public because it is used in rustfmt forks such as https://github.com/tucant/rustfmt/blob/30c83df9e1db10007bdd16dafce8a86b404329b2/src/parse/macros/html.rs#L57 for custom if expressions.
2729    pub fn parse_expr_cond(&mut self, let_chains_policy: LetChainsPolicy) -> PResult<'a, P<Expr>> {
2730        let attrs = self.parse_outer_attributes()?;
2731        let (mut cond, _) =
2732            self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL | Restrictions::ALLOW_LET, attrs)?;
2733
2734        CondChecker::new(self, let_chains_policy).visit_expr(&mut cond);
2735
2736        Ok(cond)
2737    }
2738
2739    /// Parses a `let $pat = $expr` pseudo-expression.
2740    fn parse_expr_let(&mut self, restrictions: Restrictions) -> PResult<'a, P<Expr>> {
2741        let recovered = if !restrictions.contains(Restrictions::ALLOW_LET) {
2742            let err = errors::ExpectedExpressionFoundLet {
2743                span: self.token.span,
2744                reason: ForbiddenLetReason::OtherForbidden,
2745                missing_let: None,
2746                comparison: None,
2747            };
2748            if self.prev_token == token::Or {
2749                // This was part of a closure, the that part of the parser recover.
2750                return Err(self.dcx().create_err(err));
2751            } else {
2752                Recovered::Yes(self.dcx().emit_err(err))
2753            }
2754        } else {
2755            Recovered::No
2756        };
2757        self.bump(); // Eat `let` token
2758        let lo = self.prev_token.span;
2759        let pat = self.parse_pat_no_top_guard(
2760            None,
2761            RecoverComma::Yes,
2762            RecoverColon::Yes,
2763            CommaRecoveryMode::LikelyTuple,
2764        )?;
2765        if self.token == token::EqEq {
2766            self.dcx().emit_err(errors::ExpectedEqForLetExpr {
2767                span: self.token.span,
2768                sugg_span: self.token.span,
2769            });
2770            self.bump();
2771        } else {
2772            self.expect(exp!(Eq))?;
2773        }
2774        let attrs = self.parse_outer_attributes()?;
2775        let (expr, _) =
2776            self.parse_expr_assoc_with(Bound::Excluded(prec_let_scrutinee_needs_par()), attrs)?;
2777        let span = lo.to(expr.span);
2778        Ok(self.mk_expr(span, ExprKind::Let(pat, expr, span, recovered)))
2779    }
2780
2781    /// Parses an `else { ... }` expression (`else` token already eaten).
2782    fn parse_expr_else(&mut self) -> PResult<'a, P<Expr>> {
2783        let else_span = self.prev_token.span; // `else`
2784        let attrs = self.parse_outer_attributes()?; // For recovery.
2785        let expr = if self.eat_keyword(exp!(If)) {
2786            ensure_sufficient_stack(|| self.parse_expr_if())?
2787        } else if self.check(exp!(OpenBrace)) {
2788            self.parse_simple_block()?
2789        } else {
2790            let snapshot = self.create_snapshot_for_diagnostic();
2791            let first_tok = super::token_descr(&self.token);
2792            let first_tok_span = self.token.span;
2793            match self.parse_expr() {
2794                Ok(cond)
2795                // Try to guess the difference between a "condition-like" vs
2796                // "statement-like" expression.
2797                //
2798                // We are seeing the following code, in which $cond is neither
2799                // ExprKind::Block nor ExprKind::If (the 2 cases wherein this
2800                // would be valid syntax).
2801                //
2802                //     if ... {
2803                //     } else $cond
2804                //
2805                // If $cond is "condition-like" such as ExprKind::Binary, we
2806                // want to suggest inserting `if`.
2807                //
2808                //     if ... {
2809                //     } else if a == b {
2810                //            ^^
2811                //     }
2812                //
2813                // We account for macro calls that were meant as conditions as well.
2814                //
2815                //     if ... {
2816                //     } else if macro! { foo bar } {
2817                //            ^^
2818                //     }
2819                //
2820                // If $cond is "statement-like" such as ExprKind::While then we
2821                // want to suggest wrapping in braces.
2822                //
2823                //     if ... {
2824                //     } else {
2825                //            ^
2826                //         while true {}
2827                //     }
2828                //     ^
2829                    if self.check(exp!(OpenBrace))
2830                        && (classify::expr_requires_semi_to_be_stmt(&cond)
2831                            || matches!(cond.kind, ExprKind::MacCall(..)))
2832                    =>
2833                {
2834                    self.dcx().emit_err(errors::ExpectedElseBlock {
2835                        first_tok_span,
2836                        first_tok,
2837                        else_span,
2838                        condition_start: cond.span.shrink_to_lo(),
2839                    });
2840                    self.parse_if_after_cond(cond.span.shrink_to_lo(), cond)?
2841                }
2842                Err(e) => {
2843                    e.cancel();
2844                    self.restore_snapshot(snapshot);
2845                    self.parse_simple_block()?
2846                },
2847                Ok(_) => {
2848                    self.restore_snapshot(snapshot);
2849                    self.parse_simple_block()?
2850                },
2851            }
2852        };
2853        self.error_on_if_block_attrs(else_span, true, expr.span, attrs);
2854        Ok(expr)
2855    }
2856
2857    fn error_on_if_block_attrs(
2858        &self,
2859        ctx_span: Span,
2860        is_ctx_else: bool,
2861        branch_span: Span,
2862        attrs: AttrWrapper,
2863    ) {
2864        if !attrs.is_empty()
2865            && let [x0 @ xn] | [x0, .., xn] = &*attrs.take_for_recovery(self.psess)
2866        {
2867            let attributes = x0.span.until(branch_span);
2868            let last = xn.span;
2869            let ctx = if is_ctx_else { "else" } else { "if" };
2870            self.dcx().emit_err(errors::OuterAttributeNotAllowedOnIfElse {
2871                last,
2872                branch_span,
2873                ctx_span,
2874                ctx: ctx.to_string(),
2875                attributes,
2876            });
2877        }
2878    }
2879
2880    fn error_on_extra_if(&mut self, cond: &P<Expr>) -> PResult<'a, ()> {
2881        if let ExprKind::Binary(Spanned { span: binop_span, node: binop }, _, right) = &cond.kind
2882            && let BinOpKind::And = binop
2883            && let ExprKind::If(cond, ..) = &right.kind
2884        {
2885            Err(self.dcx().create_err(errors::UnexpectedIfWithIf(
2886                binop_span.shrink_to_hi().to(cond.span.shrink_to_lo()),
2887            )))
2888        } else {
2889            Ok(())
2890        }
2891    }
2892
2893    fn parse_for_head(&mut self) -> PResult<'a, (P<Pat>, P<Expr>)> {
2894        let begin_paren = if self.token == token::OpenParen {
2895            // Record whether we are about to parse `for (`.
2896            // This is used below for recovery in case of `for ( $stuff ) $block`
2897            // in which case we will suggest `for $stuff $block`.
2898            let start_span = self.token.span;
2899            let left = self.prev_token.span.between(self.look_ahead(1, |t| t.span));
2900            Some((start_span, left))
2901        } else {
2902            None
2903        };
2904        // Try to parse the pattern `for ($PAT) in $EXPR`.
2905        let pat = match (
2906            self.parse_pat_allow_top_guard(
2907                None,
2908                RecoverComma::Yes,
2909                RecoverColon::Yes,
2910                CommaRecoveryMode::LikelyTuple,
2911            ),
2912            begin_paren,
2913        ) {
2914            (Ok(pat), _) => pat, // Happy path.
2915            (Err(err), Some((start_span, left))) if self.eat_keyword(exp!(In)) => {
2916                // We know for sure we have seen `for ($SOMETHING in`. In the happy path this would
2917                // happen right before the return of this method.
2918                let attrs = self.parse_outer_attributes()?;
2919                let (expr, _) = match self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, attrs) {
2920                    Ok(expr) => expr,
2921                    Err(expr_err) => {
2922                        // We don't know what followed the `in`, so cancel and bubble up the
2923                        // original error.
2924                        expr_err.cancel();
2925                        return Err(err);
2926                    }
2927                };
2928                return if self.token == token::CloseParen {
2929                    // We know for sure we have seen `for ($SOMETHING in $EXPR)`, so we recover the
2930                    // parser state and emit a targeted suggestion.
2931                    let span = vec![start_span, self.token.span];
2932                    let right = self.prev_token.span.between(self.look_ahead(1, |t| t.span));
2933                    self.bump(); // )
2934                    err.cancel();
2935                    self.dcx().emit_err(errors::ParenthesesInForHead {
2936                        span,
2937                        // With e.g. `for (x) in y)` this would replace `(x) in y)`
2938                        // with `x) in y)` which is syntactically invalid.
2939                        // However, this is prevented before we get here.
2940                        sugg: errors::ParenthesesInForHeadSugg { left, right },
2941                    });
2942                    Ok((self.mk_pat(start_span.to(right), ast::PatKind::Wild), expr))
2943                } else {
2944                    Err(err) // Some other error, bubble up.
2945                };
2946            }
2947            (Err(err), _) => return Err(err), // Some other error, bubble up.
2948        };
2949        if !self.eat_keyword(exp!(In)) {
2950            self.error_missing_in_for_loop();
2951        }
2952        self.check_for_for_in_in_typo(self.prev_token.span);
2953        let attrs = self.parse_outer_attributes()?;
2954        let (expr, _) = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, attrs)?;
2955        Ok((pat, expr))
2956    }
2957
2958    /// Parses `for await? <src_pat> in <src_expr> <src_loop_block>` (`for` token already eaten).
2959    fn parse_expr_for(&mut self, opt_label: Option<Label>, lo: Span) -> PResult<'a, P<Expr>> {
2960        let is_await =
2961            self.token_uninterpolated_span().at_least_rust_2018() && self.eat_keyword(exp!(Await));
2962
2963        if is_await {
2964            self.psess.gated_spans.gate(sym::async_for_loop, self.prev_token.span);
2965        }
2966
2967        let kind = if is_await { ForLoopKind::ForAwait } else { ForLoopKind::For };
2968
2969        let (pat, expr) = self.parse_for_head()?;
2970        // Recover from missing expression in `for` loop
2971        if matches!(expr.kind, ExprKind::Block(..))
2972            && self.token.kind != token::OpenBrace
2973            && self.may_recover()
2974        {
2975            let guar = self
2976                .dcx()
2977                .emit_err(errors::MissingExpressionInForLoop { span: expr.span.shrink_to_lo() });
2978            let err_expr = self.mk_expr(expr.span, ExprKind::Err(guar));
2979            let block = self.mk_block(thin_vec![], BlockCheckMode::Default, self.prev_token.span);
2980            return Ok(self.mk_expr(
2981                lo.to(self.prev_token.span),
2982                ExprKind::ForLoop { pat, iter: err_expr, body: block, label: opt_label, kind },
2983            ));
2984        }
2985
2986        let (attrs, loop_block) = self.parse_inner_attrs_and_block(
2987            // Only suggest moving erroneous block label to the loop header
2988            // if there is not already a label there
2989            opt_label.is_none().then_some(lo),
2990        )?;
2991
2992        let kind = ExprKind::ForLoop { pat, iter: expr, body: loop_block, label: opt_label, kind };
2993
2994        self.recover_loop_else("for", lo)?;
2995
2996        Ok(self.mk_expr_with_attrs(lo.to(self.prev_token.span), kind, attrs))
2997    }
2998
2999    /// Recovers from an `else` clause after a loop (`for...else`, `while...else`)
3000    fn recover_loop_else(&mut self, loop_kind: &'static str, loop_kw: Span) -> PResult<'a, ()> {
3001        if self.token.is_keyword(kw::Else) && self.may_recover() {
3002            let else_span = self.token.span;
3003            self.bump();
3004            let else_clause = self.parse_expr_else()?;
3005            self.dcx().emit_err(errors::LoopElseNotSupported {
3006                span: else_span.to(else_clause.span),
3007                loop_kind,
3008                loop_kw,
3009            });
3010        }
3011        Ok(())
3012    }
3013
3014    fn error_missing_in_for_loop(&mut self) {
3015        let (span, sub): (_, fn(_) -> _) = if self.token.is_ident_named(sym::of) {
3016            // Possibly using JS syntax (#75311).
3017            let span = self.token.span;
3018            self.bump();
3019            (span, errors::MissingInInForLoopSub::InNotOf)
3020        } else {
3021            (self.prev_token.span.between(self.token.span), errors::MissingInInForLoopSub::AddIn)
3022        };
3023
3024        self.dcx().emit_err(errors::MissingInInForLoop { span, sub: sub(span) });
3025    }
3026
3027    /// Parses a `while` or `while let` expression (`while` token already eaten).
3028    fn parse_expr_while(&mut self, opt_label: Option<Label>, lo: Span) -> PResult<'a, P<Expr>> {
3029        let policy = LetChainsPolicy::EditionDependent { current_edition: lo.edition() };
3030        let cond = self.parse_expr_cond(policy).map_err(|mut err| {
3031            err.span_label(lo, "while parsing the condition of this `while` expression");
3032            err
3033        })?;
3034        let (attrs, body) = self
3035            .parse_inner_attrs_and_block(
3036                // Only suggest moving erroneous block label to the loop header
3037                // if there is not already a label there
3038                opt_label.is_none().then_some(lo),
3039            )
3040            .map_err(|mut err| {
3041                err.span_label(lo, "while parsing the body of this `while` expression");
3042                err.span_label(cond.span, "this `while` condition successfully parsed");
3043                err
3044            })?;
3045
3046        self.recover_loop_else("while", lo)?;
3047
3048        Ok(self.mk_expr_with_attrs(
3049            lo.to(self.prev_token.span),
3050            ExprKind::While(cond, body, opt_label),
3051            attrs,
3052        ))
3053    }
3054
3055    /// Parses `loop { ... }` (`loop` token already eaten).
3056    fn parse_expr_loop(&mut self, opt_label: Option<Label>, lo: Span) -> PResult<'a, P<Expr>> {
3057        let loop_span = self.prev_token.span;
3058        let (attrs, body) = self.parse_inner_attrs_and_block(
3059            // Only suggest moving erroneous block label to the loop header
3060            // if there is not already a label there
3061            opt_label.is_none().then_some(lo),
3062        )?;
3063        self.recover_loop_else("loop", lo)?;
3064        Ok(self.mk_expr_with_attrs(
3065            lo.to(self.prev_token.span),
3066            ExprKind::Loop(body, opt_label, loop_span),
3067            attrs,
3068        ))
3069    }
3070
3071    pub(crate) fn eat_label(&mut self) -> Option<Label> {
3072        if let Some((ident, is_raw)) = self.token.lifetime() {
3073            // Disallow `'fn`, but with a better error message than `expect_lifetime`.
3074            if matches!(is_raw, IdentIsRaw::No) && ident.without_first_quote().is_reserved() {
3075                self.dcx().emit_err(errors::InvalidLabel { span: ident.span, name: ident.name });
3076            }
3077
3078            self.bump();
3079            Some(Label { ident })
3080        } else {
3081            None
3082        }
3083    }
3084
3085    /// Parses a `match ... { ... }` expression (`match` token already eaten).
3086    fn parse_expr_match(&mut self) -> PResult<'a, P<Expr>> {
3087        let match_span = self.prev_token.span;
3088        let attrs = self.parse_outer_attributes()?;
3089        let (scrutinee, _) = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, attrs)?;
3090
3091        self.parse_match_block(match_span, match_span, scrutinee, MatchKind::Prefix)
3092    }
3093
3094    /// Parses the block of a `match expr { ... }` or a `expr.match { ... }`
3095    /// expression. This is after the match token and scrutinee are eaten
3096    fn parse_match_block(
3097        &mut self,
3098        lo: Span,
3099        match_span: Span,
3100        scrutinee: P<Expr>,
3101        match_kind: MatchKind,
3102    ) -> PResult<'a, P<Expr>> {
3103        if let Err(mut e) = self.expect(exp!(OpenBrace)) {
3104            if self.token == token::Semi {
3105                e.span_suggestion_short(
3106                    match_span,
3107                    "try removing this `match`",
3108                    "",
3109                    Applicability::MaybeIncorrect, // speculative
3110                );
3111            }
3112            if self.maybe_recover_unexpected_block_label(None) {
3113                e.cancel();
3114                self.bump();
3115            } else {
3116                return Err(e);
3117            }
3118        }
3119        let attrs = self.parse_inner_attributes()?;
3120
3121        let mut arms = ThinVec::new();
3122        while self.token != token::CloseBrace {
3123            match self.parse_arm() {
3124                Ok(arm) => arms.push(arm),
3125                Err(e) => {
3126                    // Recover by skipping to the end of the block.
3127                    let guar = e.emit();
3128                    self.recover_stmt();
3129                    let span = lo.to(self.token.span);
3130                    if self.token == token::CloseBrace {
3131                        self.bump();
3132                    }
3133                    // Always push at least one arm to make the match non-empty
3134                    arms.push(Arm {
3135                        attrs: Default::default(),
3136                        pat: self.mk_pat(span, ast::PatKind::Err(guar)),
3137                        guard: None,
3138                        body: Some(self.mk_expr_err(span, guar)),
3139                        span,
3140                        id: DUMMY_NODE_ID,
3141                        is_placeholder: false,
3142                    });
3143                    return Ok(self.mk_expr_with_attrs(
3144                        span,
3145                        ExprKind::Match(scrutinee, arms, match_kind),
3146                        attrs,
3147                    ));
3148                }
3149            }
3150        }
3151        let hi = self.token.span;
3152        self.bump();
3153        Ok(self.mk_expr_with_attrs(lo.to(hi), ExprKind::Match(scrutinee, arms, match_kind), attrs))
3154    }
3155
3156    /// Attempt to recover from match arm body with statements and no surrounding braces.
3157    fn parse_arm_body_missing_braces(
3158        &mut self,
3159        first_expr: &P<Expr>,
3160        arrow_span: Span,
3161    ) -> Option<(Span, ErrorGuaranteed)> {
3162        if self.token != token::Semi {
3163            return None;
3164        }
3165        let start_snapshot = self.create_snapshot_for_diagnostic();
3166        let semi_sp = self.token.span;
3167        self.bump(); // `;`
3168        let mut stmts =
3169            vec![self.mk_stmt(first_expr.span, ast::StmtKind::Expr(first_expr.clone()))];
3170        let err = |this: &Parser<'_>, stmts: Vec<ast::Stmt>| {
3171            let span = stmts[0].span.to(stmts[stmts.len() - 1].span);
3172
3173            let guar = this.dcx().emit_err(errors::MatchArmBodyWithoutBraces {
3174                statements: span,
3175                arrow: arrow_span,
3176                num_statements: stmts.len(),
3177                sub: if stmts.len() > 1 {
3178                    errors::MatchArmBodyWithoutBracesSugg::AddBraces {
3179                        left: span.shrink_to_lo(),
3180                        right: span.shrink_to_hi(),
3181                    }
3182                } else {
3183                    errors::MatchArmBodyWithoutBracesSugg::UseComma { semicolon: semi_sp }
3184                },
3185            });
3186            (span, guar)
3187        };
3188        // We might have either a `,` -> `;` typo, or a block without braces. We need
3189        // a more subtle parsing strategy.
3190        loop {
3191            if self.token == token::CloseBrace {
3192                // We have reached the closing brace of the `match` expression.
3193                return Some(err(self, stmts));
3194            }
3195            if self.token == token::Comma {
3196                self.restore_snapshot(start_snapshot);
3197                return None;
3198            }
3199            let pre_pat_snapshot = self.create_snapshot_for_diagnostic();
3200            match self.parse_pat_no_top_alt(None, None) {
3201                Ok(_pat) => {
3202                    if self.token == token::FatArrow {
3203                        // Reached arm end.
3204                        self.restore_snapshot(pre_pat_snapshot);
3205                        return Some(err(self, stmts));
3206                    }
3207                }
3208                Err(err) => {
3209                    err.cancel();
3210                }
3211            }
3212
3213            self.restore_snapshot(pre_pat_snapshot);
3214            match self.parse_stmt_without_recovery(true, ForceCollect::No, false) {
3215                // Consume statements for as long as possible.
3216                Ok(Some(stmt)) => {
3217                    stmts.push(stmt);
3218                }
3219                Ok(None) => {
3220                    self.restore_snapshot(start_snapshot);
3221                    break;
3222                }
3223                // We couldn't parse either yet another statement missing it's
3224                // enclosing block nor the next arm's pattern or closing brace.
3225                Err(stmt_err) => {
3226                    stmt_err.cancel();
3227                    self.restore_snapshot(start_snapshot);
3228                    break;
3229                }
3230            }
3231        }
3232        None
3233    }
3234
3235    pub(super) fn parse_arm(&mut self) -> PResult<'a, Arm> {
3236        let attrs = self.parse_outer_attributes()?;
3237        self.collect_tokens(None, attrs, ForceCollect::No, |this, attrs| {
3238            let lo = this.token.span;
3239            let (pat, guard) = this.parse_match_arm_pat_and_guard()?;
3240
3241            let span_before_body = this.prev_token.span;
3242            let arm_body;
3243            let is_fat_arrow = this.check(exp!(FatArrow));
3244            let is_almost_fat_arrow =
3245                TokenKind::FatArrow.similar_tokens().contains(&this.token.kind);
3246
3247            // this avoids the compiler saying that a `,` or `}` was expected even though
3248            // the pattern isn't a never pattern (and thus an arm body is required)
3249            let armless = (!is_fat_arrow && !is_almost_fat_arrow && pat.could_be_never_pattern())
3250                || matches!(this.token.kind, token::Comma | token::CloseBrace);
3251
3252            let mut result = if armless {
3253                // A pattern without a body, allowed for never patterns.
3254                arm_body = None;
3255                let span = lo.to(this.prev_token.span);
3256                this.expect_one_of(&[exp!(Comma)], &[exp!(CloseBrace)]).map(|x| {
3257                    // Don't gate twice
3258                    if !pat.contains_never_pattern() {
3259                        this.psess.gated_spans.gate(sym::never_patterns, span);
3260                    }
3261                    x
3262                })
3263            } else {
3264                if let Err(mut err) = this.expect(exp!(FatArrow)) {
3265                    // We might have a `=>` -> `=` or `->` typo (issue #89396).
3266                    if is_almost_fat_arrow {
3267                        err.span_suggestion(
3268                            this.token.span,
3269                            "use a fat arrow to start a match arm",
3270                            "=>",
3271                            Applicability::MachineApplicable,
3272                        );
3273                        if matches!(
3274                            (&this.prev_token.kind, &this.token.kind),
3275                            (token::DotDotEq, token::Gt)
3276                        ) {
3277                            // `error_inclusive_range_match_arrow` handles cases like `0..=> {}`,
3278                            // so we suppress the error here
3279                            err.delay_as_bug();
3280                        } else {
3281                            err.emit();
3282                        }
3283                        this.bump();
3284                    } else {
3285                        return Err(err);
3286                    }
3287                }
3288                let arrow_span = this.prev_token.span;
3289                let arm_start_span = this.token.span;
3290
3291                let attrs = this.parse_outer_attributes()?;
3292                let (expr, _) =
3293                    this.parse_expr_res(Restrictions::STMT_EXPR, attrs).map_err(|mut err| {
3294                        err.span_label(arrow_span, "while parsing the `match` arm starting here");
3295                        err
3296                    })?;
3297
3298                let require_comma =
3299                    !classify::expr_is_complete(&expr) && this.token != token::CloseBrace;
3300
3301                if !require_comma {
3302                    arm_body = Some(expr);
3303                    // Eat a comma if it exists, though.
3304                    let _ = this.eat(exp!(Comma));
3305                    Ok(Recovered::No)
3306                } else if let Some((span, guar)) =
3307                    this.parse_arm_body_missing_braces(&expr, arrow_span)
3308                {
3309                    let body = this.mk_expr_err(span, guar);
3310                    arm_body = Some(body);
3311                    Ok(Recovered::Yes(guar))
3312                } else {
3313                    let expr_span = expr.span;
3314                    arm_body = Some(expr);
3315                    this.expect_one_of(&[exp!(Comma)], &[exp!(CloseBrace)]).map_err(|mut err| {
3316                        if this.token == token::FatArrow {
3317                            let sm = this.psess.source_map();
3318                            if let Ok(expr_lines) = sm.span_to_lines(expr_span)
3319                                && let Ok(arm_start_lines) = sm.span_to_lines(arm_start_span)
3320                                && expr_lines.lines.len() == 2
3321                            {
3322                                if arm_start_lines.lines[0].end_col == expr_lines.lines[0].end_col {
3323                                    // We check whether there's any trailing code in the parse span,
3324                                    // if there isn't, we very likely have the following:
3325                                    //
3326                                    // X |     &Y => "y"
3327                                    //   |        --    - missing comma
3328                                    //   |        |
3329                                    //   |        arrow_span
3330                                    // X |     &X => "x"
3331                                    //   |      - ^^ self.token.span
3332                                    //   |      |
3333                                    //   |      parsed until here as `"y" & X`
3334                                    err.span_suggestion_short(
3335                                        arm_start_span.shrink_to_hi(),
3336                                        "missing a comma here to end this `match` arm",
3337                                        ",",
3338                                        Applicability::MachineApplicable,
3339                                    );
3340                                } else if arm_start_lines.lines[0].end_col + rustc_span::CharPos(1)
3341                                    == expr_lines.lines[0].end_col
3342                                {
3343                                    // similar to the above, but we may typo a `.` or `/` at the end of the line
3344                                    let comma_span = arm_start_span
3345                                        .shrink_to_hi()
3346                                        .with_hi(arm_start_span.hi() + rustc_span::BytePos(1));
3347                                    if let Ok(res) = sm.span_to_snippet(comma_span)
3348                                        && (res == "." || res == "/")
3349                                    {
3350                                        err.span_suggestion_short(
3351                                            comma_span,
3352                                            "you might have meant to write a `,` to end this `match` arm",
3353                                            ",",
3354                                            Applicability::MachineApplicable,
3355                                        );
3356                                    }
3357                                }
3358                            }
3359                        } else {
3360                            err.span_label(
3361                                arrow_span,
3362                                "while parsing the `match` arm starting here",
3363                            );
3364                        }
3365                        err
3366                    })
3367                }
3368            };
3369
3370            let hi_span = arm_body.as_ref().map_or(span_before_body, |body| body.span);
3371            let arm_span = lo.to(hi_span);
3372
3373            // We want to recover:
3374            // X |     Some(_) => foo()
3375            //   |                     - missing comma
3376            // X |     None => "x"
3377            //   |     ^^^^ self.token.span
3378            // as well as:
3379            // X |     Some(!)
3380            //   |            - missing comma
3381            // X |     None => "x"
3382            //   |     ^^^^ self.token.span
3383            // But we musn't recover
3384            // X |     pat[0] => {}
3385            //   |        ^ self.token.span
3386            let recover_missing_comma = arm_body.is_some() || pat.could_be_never_pattern();
3387            if recover_missing_comma {
3388                result = result.or_else(|err| {
3389                    // FIXME(compiler-errors): We could also recover `; PAT =>` here
3390
3391                    // Try to parse a following `PAT =>`, if successful
3392                    // then we should recover.
3393                    let mut snapshot = this.create_snapshot_for_diagnostic();
3394                    let pattern_follows = snapshot
3395                        .parse_pat_no_top_guard(
3396                            None,
3397                            RecoverComma::Yes,
3398                            RecoverColon::Yes,
3399                            CommaRecoveryMode::EitherTupleOrPipe,
3400                        )
3401                        .map_err(|err| err.cancel())
3402                        .is_ok();
3403                    if pattern_follows && snapshot.check(exp!(FatArrow)) {
3404                        err.cancel();
3405                        let guar = this.dcx().emit_err(errors::MissingCommaAfterMatchArm {
3406                            span: arm_span.shrink_to_hi(),
3407                        });
3408                        return Ok(Recovered::Yes(guar));
3409                    }
3410                    Err(err)
3411                });
3412            }
3413            result?;
3414
3415            Ok((
3416                ast::Arm {
3417                    attrs,
3418                    pat,
3419                    guard,
3420                    body: arm_body,
3421                    span: arm_span,
3422                    id: DUMMY_NODE_ID,
3423                    is_placeholder: false,
3424                },
3425                Trailing::No,
3426                UsePreAttrPos::No,
3427            ))
3428        })
3429    }
3430
3431    fn parse_match_arm_guard(&mut self) -> PResult<'a, Option<P<Expr>>> {
3432        // Used to check the `if_let_guard` feature mostly by scanning
3433        // `&&` tokens.
3434        fn has_let_expr(expr: &Expr) -> bool {
3435            match &expr.kind {
3436                ExprKind::Binary(BinOp { node: BinOpKind::And, .. }, lhs, rhs) => {
3437                    let lhs_rslt = has_let_expr(lhs);
3438                    let rhs_rslt = has_let_expr(rhs);
3439                    lhs_rslt || rhs_rslt
3440                }
3441                ExprKind::Let(..) => true,
3442                _ => false,
3443            }
3444        }
3445        if !self.eat_keyword(exp!(If)) {
3446            // No match arm guard present.
3447            return Ok(None);
3448        }
3449
3450        let if_span = self.prev_token.span;
3451        let mut cond = self.parse_match_guard_condition()?;
3452
3453        CondChecker::new(self, LetChainsPolicy::AlwaysAllowed).visit_expr(&mut cond);
3454
3455        if has_let_expr(&cond) {
3456            let span = if_span.to(cond.span);
3457            self.psess.gated_spans.gate(sym::if_let_guard, span);
3458        }
3459        Ok(Some(cond))
3460    }
3461
3462    fn parse_match_arm_pat_and_guard(&mut self) -> PResult<'a, (P<Pat>, Option<P<Expr>>)> {
3463        if self.token == token::OpenParen {
3464            let left = self.token.span;
3465            let pat = self.parse_pat_no_top_guard(
3466                None,
3467                RecoverComma::Yes,
3468                RecoverColon::Yes,
3469                CommaRecoveryMode::EitherTupleOrPipe,
3470            )?;
3471            if let ast::PatKind::Paren(subpat) = &pat.kind
3472                && let ast::PatKind::Guard(..) = &subpat.kind
3473            {
3474                // Detect and recover from `($pat if $cond) => $arm`.
3475                // FIXME(guard_patterns): convert this to a normal guard instead
3476                let span = pat.span;
3477                let ast::PatKind::Paren(subpat) = pat.kind else { unreachable!() };
3478                let ast::PatKind::Guard(_, mut cond) = subpat.kind else { unreachable!() };
3479                self.psess.gated_spans.ungate_last(sym::guard_patterns, cond.span);
3480                CondChecker::new(self, LetChainsPolicy::AlwaysAllowed).visit_expr(&mut cond);
3481                let right = self.prev_token.span;
3482                self.dcx().emit_err(errors::ParenthesesInMatchPat {
3483                    span: vec![left, right],
3484                    sugg: errors::ParenthesesInMatchPatSugg { left, right },
3485                });
3486                Ok((self.mk_pat(span, ast::PatKind::Wild), Some(cond)))
3487            } else {
3488                Ok((pat, self.parse_match_arm_guard()?))
3489            }
3490        } else {
3491            // Regular parser flow:
3492            let pat = self.parse_pat_no_top_guard(
3493                None,
3494                RecoverComma::Yes,
3495                RecoverColon::Yes,
3496                CommaRecoveryMode::EitherTupleOrPipe,
3497            )?;
3498            Ok((pat, self.parse_match_arm_guard()?))
3499        }
3500    }
3501
3502    fn parse_match_guard_condition(&mut self) -> PResult<'a, P<Expr>> {
3503        let attrs = self.parse_outer_attributes()?;
3504        match self.parse_expr_res(Restrictions::ALLOW_LET | Restrictions::IN_IF_GUARD, attrs) {
3505            Ok((expr, _)) => Ok(expr),
3506            Err(mut err) => {
3507                if self.prev_token == token::OpenBrace {
3508                    let sugg_sp = self.prev_token.span.shrink_to_lo();
3509                    // Consume everything within the braces, let's avoid further parse
3510                    // errors.
3511                    self.recover_stmt_(SemiColonMode::Ignore, BlockMode::Ignore);
3512                    let msg = "you might have meant to start a match arm after the match guard";
3513                    if self.eat(exp!(CloseBrace)) {
3514                        let applicability = if self.token != token::FatArrow {
3515                            // We have high confidence that we indeed didn't have a struct
3516                            // literal in the match guard, but rather we had some operation
3517                            // that ended in a path, immediately followed by a block that was
3518                            // meant to be the match arm.
3519                            Applicability::MachineApplicable
3520                        } else {
3521                            Applicability::MaybeIncorrect
3522                        };
3523                        err.span_suggestion_verbose(sugg_sp, msg, "=> ", applicability);
3524                    }
3525                }
3526                Err(err)
3527            }
3528        }
3529    }
3530
3531    pub(crate) fn is_builtin(&self) -> bool {
3532        self.token.is_keyword(kw::Builtin) && self.look_ahead(1, |t| *t == token::Pound)
3533    }
3534
3535    /// Parses a `try {...}` expression (`try` token already eaten).
3536    fn parse_try_block(&mut self, span_lo: Span) -> PResult<'a, P<Expr>> {
3537        let (attrs, body) = self.parse_inner_attrs_and_block(None)?;
3538        if self.eat_keyword(exp!(Catch)) {
3539            Err(self.dcx().create_err(errors::CatchAfterTry { span: self.prev_token.span }))
3540        } else {
3541            let span = span_lo.to(body.span);
3542            self.psess.gated_spans.gate(sym::try_blocks, span);
3543            Ok(self.mk_expr_with_attrs(span, ExprKind::TryBlock(body), attrs))
3544        }
3545    }
3546
3547    fn is_do_catch_block(&self) -> bool {
3548        self.token.is_keyword(kw::Do)
3549            && self.is_keyword_ahead(1, &[kw::Catch])
3550            && self.look_ahead(2, |t| *t == token::OpenBrace || t.is_metavar_block())
3551            && !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
3552    }
3553
3554    fn is_do_yeet(&self) -> bool {
3555        self.token.is_keyword(kw::Do) && self.is_keyword_ahead(1, &[kw::Yeet])
3556    }
3557
3558    fn is_try_block(&self) -> bool {
3559        self.token.is_keyword(kw::Try)
3560            && self.look_ahead(1, |t| *t == token::OpenBrace || t.is_metavar_block())
3561            && self.token_uninterpolated_span().at_least_rust_2018()
3562    }
3563
3564    /// Parses an `async move? {...}` or `gen move? {...}` expression.
3565    fn parse_gen_block(&mut self) -> PResult<'a, P<Expr>> {
3566        let lo = self.token.span;
3567        let kind = if self.eat_keyword(exp!(Async)) {
3568            if self.eat_keyword(exp!(Gen)) { GenBlockKind::AsyncGen } else { GenBlockKind::Async }
3569        } else {
3570            assert!(self.eat_keyword(exp!(Gen)));
3571            GenBlockKind::Gen
3572        };
3573        match kind {
3574            GenBlockKind::Async => {
3575                // `async` blocks are stable
3576            }
3577            GenBlockKind::Gen | GenBlockKind::AsyncGen => {
3578                self.psess.gated_spans.gate(sym::gen_blocks, lo.to(self.prev_token.span));
3579            }
3580        }
3581        let capture_clause = self.parse_capture_clause()?;
3582        let decl_span = lo.to(self.prev_token.span);
3583        let (attrs, body) = self.parse_inner_attrs_and_block(None)?;
3584        let kind = ExprKind::Gen(capture_clause, body, kind, decl_span);
3585        Ok(self.mk_expr_with_attrs(lo.to(self.prev_token.span), kind, attrs))
3586    }
3587
3588    fn is_gen_block(&self, kw: Symbol, lookahead: usize) -> bool {
3589        self.is_keyword_ahead(lookahead, &[kw])
3590            && ((
3591                // `async move {`
3592                self.is_keyword_ahead(lookahead + 1, &[kw::Move, kw::Use])
3593                    && self.look_ahead(lookahead + 2, |t| {
3594                        *t == token::OpenBrace || t.is_metavar_block()
3595                    })
3596            ) || (
3597                // `async {`
3598                self.look_ahead(lookahead + 1, |t| *t == token::OpenBrace || t.is_metavar_block())
3599            ))
3600    }
3601
3602    pub(super) fn is_async_gen_block(&self) -> bool {
3603        self.token.is_keyword(kw::Async) && self.is_gen_block(kw::Gen, 1)
3604    }
3605
3606    fn is_certainly_not_a_block(&self) -> bool {
3607        // `{ ident, ` and `{ ident: ` cannot start a block.
3608        self.look_ahead(1, |t| t.is_ident())
3609            && self.look_ahead(2, |t| t == &token::Comma || t == &token::Colon)
3610    }
3611
3612    fn maybe_parse_struct_expr(
3613        &mut self,
3614        qself: &Option<P<ast::QSelf>>,
3615        path: &ast::Path,
3616    ) -> Option<PResult<'a, P<Expr>>> {
3617        let struct_allowed = !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
3618        if struct_allowed || self.is_certainly_not_a_block() {
3619            if let Err(err) = self.expect(exp!(OpenBrace)) {
3620                return Some(Err(err));
3621            }
3622            let expr = self.parse_expr_struct(qself.clone(), path.clone(), true);
3623            if let (Ok(expr), false) = (&expr, struct_allowed) {
3624                // This is a struct literal, but we don't can't accept them here.
3625                self.dcx().emit_err(errors::StructLiteralNotAllowedHere {
3626                    span: expr.span,
3627                    sub: errors::StructLiteralNotAllowedHereSugg {
3628                        left: path.span.shrink_to_lo(),
3629                        right: expr.span.shrink_to_hi(),
3630                    },
3631                });
3632            }
3633            return Some(expr);
3634        }
3635        None
3636    }
3637
3638    pub(super) fn parse_struct_fields(
3639        &mut self,
3640        pth: ast::Path,
3641        recover: bool,
3642        close: ExpTokenPair<'_>,
3643    ) -> PResult<
3644        'a,
3645        (
3646            ThinVec<ExprField>,
3647            ast::StructRest,
3648            Option<ErrorGuaranteed>, /* async blocks are forbidden in Rust 2015 */
3649        ),
3650    > {
3651        let mut fields = ThinVec::new();
3652        let mut base = ast::StructRest::None;
3653        let mut recovered_async = None;
3654        let in_if_guard = self.restrictions.contains(Restrictions::IN_IF_GUARD);
3655
3656        let async_block_err = |e: &mut Diag<'_>, span: Span| {
3657            errors::AsyncBlockIn2015 { span }.add_to_diag(e);
3658            errors::HelpUseLatestEdition::new().add_to_diag(e);
3659        };
3660
3661        while self.token != *close.tok {
3662            if self.eat(exp!(DotDot)) || self.recover_struct_field_dots(close.tok) {
3663                let exp_span = self.prev_token.span;
3664                // We permit `.. }` on the left-hand side of a destructuring assignment.
3665                if self.check(close) {
3666                    base = ast::StructRest::Rest(self.prev_token.span);
3667                    break;
3668                }
3669                match self.parse_expr() {
3670                    Ok(e) => base = ast::StructRest::Base(e),
3671                    Err(e) if recover => {
3672                        e.emit();
3673                        self.recover_stmt();
3674                    }
3675                    Err(e) => return Err(e),
3676                }
3677                self.recover_struct_comma_after_dotdot(exp_span);
3678                break;
3679            }
3680
3681            // Peek the field's ident before parsing its expr in order to emit better diagnostics.
3682            let peek = self
3683                .token
3684                .ident()
3685                .filter(|(ident, is_raw)| {
3686                    (!ident.is_reserved() || matches!(is_raw, IdentIsRaw::Yes))
3687                        && self.look_ahead(1, |tok| *tok == token::Colon)
3688                })
3689                .map(|(ident, _)| ident);
3690
3691            // We still want a field even if its expr didn't parse.
3692            let field_ident = |this: &Self, guar: ErrorGuaranteed| {
3693                peek.map(|ident| {
3694                    let span = ident.span;
3695                    ExprField {
3696                        ident,
3697                        span,
3698                        expr: this.mk_expr_err(span, guar),
3699                        is_shorthand: false,
3700                        attrs: AttrVec::new(),
3701                        id: DUMMY_NODE_ID,
3702                        is_placeholder: false,
3703                    }
3704                })
3705            };
3706
3707            let parsed_field = match self.parse_expr_field() {
3708                Ok(f) => Ok(f),
3709                Err(mut e) => {
3710                    if pth == kw::Async {
3711                        async_block_err(&mut e, pth.span);
3712                    } else {
3713                        e.span_label(pth.span, "while parsing this struct");
3714                    }
3715
3716                    if let Some((ident, _)) = self.token.ident()
3717                        && !self.token.is_reserved_ident()
3718                        && self.look_ahead(1, |t| {
3719                            AssocOp::from_token(t).is_some()
3720                                || matches!(
3721                                    t.kind,
3722                                    token::OpenParen | token::OpenBracket | token::OpenBrace
3723                                )
3724                                || *t == token::Dot
3725                        })
3726                    {
3727                        // Looks like they tried to write a shorthand, complex expression,
3728                        // E.g.: `n + m`, `f(a)`, `a[i]`, `S { x: 3 }`, or `x.y`.
3729                        e.span_suggestion_verbose(
3730                            self.token.span.shrink_to_lo(),
3731                            "try naming a field",
3732                            &format!("{ident}: ",),
3733                            Applicability::MaybeIncorrect,
3734                        );
3735                    }
3736                    if in_if_guard && close.token_type == TokenType::CloseBrace {
3737                        return Err(e);
3738                    }
3739
3740                    if !recover {
3741                        return Err(e);
3742                    }
3743
3744                    let guar = e.emit();
3745                    if pth == kw::Async {
3746                        recovered_async = Some(guar);
3747                    }
3748
3749                    // If the next token is a comma, then try to parse
3750                    // what comes next as additional fields, rather than
3751                    // bailing out until next `}`.
3752                    if self.token != token::Comma {
3753                        self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
3754                        if self.token != token::Comma {
3755                            break;
3756                        }
3757                    }
3758
3759                    Err(guar)
3760                }
3761            };
3762
3763            let is_shorthand = parsed_field.as_ref().is_ok_and(|f| f.is_shorthand);
3764            // A shorthand field can be turned into a full field with `:`.
3765            // We should point this out.
3766            self.check_or_expected(!is_shorthand, TokenType::Colon);
3767
3768            match self.expect_one_of(&[exp!(Comma)], &[close]) {
3769                Ok(_) => {
3770                    if let Ok(f) = parsed_field.or_else(|guar| field_ident(self, guar).ok_or(guar))
3771                    {
3772                        // Only include the field if there's no parse error for the field name.
3773                        fields.push(f);
3774                    }
3775                }
3776                Err(mut e) => {
3777                    if pth == kw::Async {
3778                        async_block_err(&mut e, pth.span);
3779                    } else {
3780                        e.span_label(pth.span, "while parsing this struct");
3781                        if peek.is_some() {
3782                            e.span_suggestion(
3783                                self.prev_token.span.shrink_to_hi(),
3784                                "try adding a comma",
3785                                ",",
3786                                Applicability::MachineApplicable,
3787                            );
3788                        }
3789                    }
3790                    if !recover {
3791                        return Err(e);
3792                    }
3793                    let guar = e.emit();
3794                    if pth == kw::Async {
3795                        recovered_async = Some(guar);
3796                    } else if let Some(f) = field_ident(self, guar) {
3797                        fields.push(f);
3798                    }
3799                    self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
3800                    let _ = self.eat(exp!(Comma));
3801                }
3802            }
3803        }
3804        Ok((fields, base, recovered_async))
3805    }
3806
3807    /// Precondition: already parsed the '{'.
3808    pub(super) fn parse_expr_struct(
3809        &mut self,
3810        qself: Option<P<ast::QSelf>>,
3811        pth: ast::Path,
3812        recover: bool,
3813    ) -> PResult<'a, P<Expr>> {
3814        let lo = pth.span;
3815        let (fields, base, recovered_async) =
3816            self.parse_struct_fields(pth.clone(), recover, exp!(CloseBrace))?;
3817        let span = lo.to(self.token.span);
3818        self.expect(exp!(CloseBrace))?;
3819        let expr = if let Some(guar) = recovered_async {
3820            ExprKind::Err(guar)
3821        } else {
3822            ExprKind::Struct(P(ast::StructExpr { qself, path: pth, fields, rest: base }))
3823        };
3824        Ok(self.mk_expr(span, expr))
3825    }
3826
3827    fn recover_struct_comma_after_dotdot(&mut self, span: Span) {
3828        if self.token != token::Comma {
3829            return;
3830        }
3831        self.dcx().emit_err(errors::CommaAfterBaseStruct {
3832            span: span.to(self.prev_token.span),
3833            comma: self.token.span,
3834        });
3835        self.recover_stmt();
3836    }
3837
3838    fn recover_struct_field_dots(&mut self, close: &TokenKind) -> bool {
3839        if !self.look_ahead(1, |t| t == close) && self.eat(exp!(DotDotDot)) {
3840            // recover from typo of `...`, suggest `..`
3841            let span = self.prev_token.span;
3842            self.dcx().emit_err(errors::MissingDotDot { token_span: span, sugg_span: span });
3843            return true;
3844        }
3845        false
3846    }
3847
3848    /// Converts an ident into 'label and emits an "expected a label, found an identifier" error.
3849    fn recover_ident_into_label(&mut self, ident: Ident) -> Label {
3850        // Convert `label` -> `'label`,
3851        // so that nameres doesn't complain about non-existing label
3852        let label = format!("'{}", ident.name);
3853        let ident = Ident::new(Symbol::intern(&label), ident.span);
3854
3855        self.dcx().emit_err(errors::ExpectedLabelFoundIdent {
3856            span: ident.span,
3857            start: ident.span.shrink_to_lo(),
3858        });
3859
3860        Label { ident }
3861    }
3862
3863    /// Parses `ident (COLON expr)?`.
3864    fn parse_expr_field(&mut self) -> PResult<'a, ExprField> {
3865        let attrs = self.parse_outer_attributes()?;
3866        self.recover_vcs_conflict_marker();
3867        self.collect_tokens(None, attrs, ForceCollect::No, |this, attrs| {
3868            let lo = this.token.span;
3869
3870            // Check if a colon exists one ahead. This means we're parsing a fieldname.
3871            let is_shorthand = !this.look_ahead(1, |t| t == &token::Colon || t == &token::Eq);
3872            // Proactively check whether parsing the field will be incorrect.
3873            let is_wrong = this.token.is_ident()
3874                && !this.token.is_reserved_ident()
3875                && !this.look_ahead(1, |t| {
3876                    t == &token::Colon
3877                        || t == &token::Eq
3878                        || t == &token::Comma
3879                        || t == &token::CloseBrace
3880                        || t == &token::CloseParen
3881                });
3882            if is_wrong {
3883                return Err(this.dcx().create_err(errors::ExpectedStructField {
3884                    span: this.look_ahead(1, |t| t.span),
3885                    ident_span: this.token.span,
3886                    token: this.look_ahead(1, |t| *t),
3887                }));
3888            }
3889            let (ident, expr) = if is_shorthand {
3890                // Mimic `x: x` for the `x` field shorthand.
3891                let ident = this.parse_ident_common(false)?;
3892                let path = ast::Path::from_ident(ident);
3893                (ident, this.mk_expr(ident.span, ExprKind::Path(None, path)))
3894            } else {
3895                let ident = this.parse_field_name()?;
3896                this.error_on_eq_field_init(ident);
3897                this.bump(); // `:`
3898                (ident, this.parse_expr()?)
3899            };
3900
3901            Ok((
3902                ast::ExprField {
3903                    ident,
3904                    span: lo.to(expr.span),
3905                    expr,
3906                    is_shorthand,
3907                    attrs,
3908                    id: DUMMY_NODE_ID,
3909                    is_placeholder: false,
3910                },
3911                Trailing::from(this.token == token::Comma),
3912                UsePreAttrPos::No,
3913            ))
3914        })
3915    }
3916
3917    /// Check for `=`. This means the source incorrectly attempts to
3918    /// initialize a field with an eq rather than a colon.
3919    fn error_on_eq_field_init(&self, field_name: Ident) {
3920        if self.token != token::Eq {
3921            return;
3922        }
3923
3924        self.dcx().emit_err(errors::EqFieldInit {
3925            span: self.token.span,
3926            eq: field_name.span.shrink_to_hi().to(self.token.span),
3927        });
3928    }
3929
3930    fn err_dotdotdot_syntax(&self, span: Span) {
3931        self.dcx().emit_err(errors::DotDotDot { span });
3932    }
3933
3934    fn err_larrow_operator(&self, span: Span) {
3935        self.dcx().emit_err(errors::LeftArrowOperator { span });
3936    }
3937
3938    fn mk_assign_op(&self, assign_op: AssignOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
3939        ExprKind::AssignOp(assign_op, lhs, rhs)
3940    }
3941
3942    fn mk_range(
3943        &mut self,
3944        start: Option<P<Expr>>,
3945        end: Option<P<Expr>>,
3946        limits: RangeLimits,
3947    ) -> ExprKind {
3948        if end.is_none() && limits == RangeLimits::Closed {
3949            let guar = self.inclusive_range_with_incorrect_end();
3950            ExprKind::Err(guar)
3951        } else {
3952            ExprKind::Range(start, end, limits)
3953        }
3954    }
3955
3956    fn mk_unary(&self, unop: UnOp, expr: P<Expr>) -> ExprKind {
3957        ExprKind::Unary(unop, expr)
3958    }
3959
3960    fn mk_binary(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
3961        ExprKind::Binary(binop, lhs, rhs)
3962    }
3963
3964    fn mk_index(&self, expr: P<Expr>, idx: P<Expr>, brackets_span: Span) -> ExprKind {
3965        ExprKind::Index(expr, idx, brackets_span)
3966    }
3967
3968    fn mk_call(&self, f: P<Expr>, args: ThinVec<P<Expr>>) -> ExprKind {
3969        ExprKind::Call(f, args)
3970    }
3971
3972    fn mk_await_expr(&mut self, self_arg: P<Expr>, lo: Span) -> P<Expr> {
3973        let span = lo.to(self.prev_token.span);
3974        let await_expr = self.mk_expr(span, ExprKind::Await(self_arg, self.prev_token.span));
3975        self.recover_from_await_method_call();
3976        await_expr
3977    }
3978
3979    fn mk_use_expr(&mut self, self_arg: P<Expr>, lo: Span) -> P<Expr> {
3980        let span = lo.to(self.prev_token.span);
3981        let use_expr = self.mk_expr(span, ExprKind::Use(self_arg, self.prev_token.span));
3982        self.recover_from_use();
3983        use_expr
3984    }
3985
3986    pub(crate) fn mk_expr_with_attrs(&self, span: Span, kind: ExprKind, attrs: AttrVec) -> P<Expr> {
3987        P(Expr { kind, span, attrs, id: DUMMY_NODE_ID, tokens: None })
3988    }
3989
3990    pub(crate) fn mk_expr(&self, span: Span, kind: ExprKind) -> P<Expr> {
3991        self.mk_expr_with_attrs(span, kind, AttrVec::new())
3992    }
3993
3994    pub(super) fn mk_expr_err(&self, span: Span, guar: ErrorGuaranteed) -> P<Expr> {
3995        self.mk_expr(span, ExprKind::Err(guar))
3996    }
3997
3998    /// Create expression span ensuring the span of the parent node
3999    /// is larger than the span of lhs and rhs, including the attributes.
4000    fn mk_expr_sp(&self, lhs: &P<Expr>, lhs_span: Span, rhs_span: Span) -> Span {
4001        lhs.attrs
4002            .iter()
4003            .find(|a| a.style == AttrStyle::Outer)
4004            .map_or(lhs_span, |a| a.span)
4005            .to(rhs_span)
4006    }
4007
4008    fn collect_tokens_for_expr(
4009        &mut self,
4010        attrs: AttrWrapper,
4011        f: impl FnOnce(&mut Self, ast::AttrVec) -> PResult<'a, P<Expr>>,
4012    ) -> PResult<'a, P<Expr>> {
4013        self.collect_tokens(None, attrs, ForceCollect::No, |this, attrs| {
4014            let res = f(this, attrs)?;
4015            let trailing = Trailing::from(
4016                this.restrictions.contains(Restrictions::STMT_EXPR)
4017                     && this.token == token::Semi
4018                // FIXME: pass an additional condition through from the place
4019                // where we know we need a comma, rather than assuming that
4020                // `#[attr] expr,` always captures a trailing comma.
4021                || this.token == token::Comma,
4022            );
4023            Ok((res, trailing, UsePreAttrPos::No))
4024        })
4025    }
4026}
4027
4028/// Could this lifetime/label be an unclosed char literal? For example, `'a`
4029/// could be, but `'abc` could not.
4030pub(crate) fn could_be_unclosed_char_literal(ident: Ident) -> bool {
4031    ident.name.as_str().starts_with('\'')
4032        && unescape_char(ident.without_first_quote().name.as_str()).is_ok()
4033}
4034
4035/// Used to forbid `let` expressions in certain syntactic locations.
4036#[derive(Clone, Copy, Subdiagnostic)]
4037pub(crate) enum ForbiddenLetReason {
4038    /// `let` is not valid and the source environment is not important
4039    OtherForbidden,
4040    /// A let chain with the `||` operator
4041    #[note(parse_not_supported_or)]
4042    NotSupportedOr(#[primary_span] Span),
4043    /// A let chain with invalid parentheses
4044    ///
4045    /// For example, `let 1 = 1 && (expr && expr)` is allowed
4046    /// but `(let 1 = 1 && (let 1 = 1 && (let 1 = 1))) && let a = 1` is not
4047    #[note(parse_not_supported_parentheses)]
4048    NotSupportedParentheses(#[primary_span] Span),
4049}
4050
4051/// Whether let chains are allowed on all editions, or it's edition dependent (allowed only on
4052/// 2024 and later). In case of edition dependence, specify the currently present edition.
4053pub enum LetChainsPolicy {
4054    AlwaysAllowed,
4055    EditionDependent { current_edition: Edition },
4056}
4057
4058/// Visitor to check for invalid use of `ExprKind::Let` that can't
4059/// easily be caught in parsing. For example:
4060///
4061/// ```rust,ignore (example)
4062/// // Only know that the let isn't allowed once the `||` token is reached
4063/// if let Some(x) = y || true {}
4064/// // Only know that the let isn't allowed once the second `=` token is reached.
4065/// if let Some(x) = y && z = 1 {}
4066/// ```
4067struct CondChecker<'a> {
4068    parser: &'a Parser<'a>,
4069    let_chains_policy: LetChainsPolicy,
4070    depth: u32,
4071    forbid_let_reason: Option<ForbiddenLetReason>,
4072    missing_let: Option<errors::MaybeMissingLet>,
4073    comparison: Option<errors::MaybeComparison>,
4074}
4075
4076impl<'a> CondChecker<'a> {
4077    fn new(parser: &'a Parser<'a>, let_chains_policy: LetChainsPolicy) -> Self {
4078        CondChecker {
4079            parser,
4080            forbid_let_reason: None,
4081            missing_let: None,
4082            comparison: None,
4083            let_chains_policy,
4084            depth: 0,
4085        }
4086    }
4087}
4088
4089impl MutVisitor for CondChecker<'_> {
4090    fn visit_expr(&mut self, e: &mut P<Expr>) {
4091        self.depth += 1;
4092        use ForbiddenLetReason::*;
4093
4094        let span = e.span;
4095        match e.kind {
4096            ExprKind::Let(_, _, _, ref mut recovered @ Recovered::No) => {
4097                if let Some(reason) = self.forbid_let_reason {
4098                    let error = match reason {
4099                        NotSupportedOr(or_span) => {
4100                            self.parser.dcx().emit_err(errors::OrInLetChain { span: or_span })
4101                        }
4102                        _ => self.parser.dcx().emit_err(errors::ExpectedExpressionFoundLet {
4103                            span,
4104                            reason,
4105                            missing_let: self.missing_let,
4106                            comparison: self.comparison,
4107                        }),
4108                    };
4109                    *recovered = Recovered::Yes(error);
4110                } else if self.depth > 1 {
4111                    // Top level `let` is always allowed; only gate chains
4112                    match self.let_chains_policy {
4113                        LetChainsPolicy::AlwaysAllowed => (),
4114                        LetChainsPolicy::EditionDependent { current_edition } => {
4115                            if !current_edition.at_least_rust_2024() || !span.at_least_rust_2024() {
4116                                self.parser.psess.gated_spans.gate(sym::let_chains, span);
4117                            }
4118                        }
4119                    }
4120                }
4121            }
4122            ExprKind::Binary(Spanned { node: BinOpKind::And, .. }, _, _) => {
4123                mut_visit::walk_expr(self, e);
4124            }
4125            ExprKind::Binary(Spanned { node: BinOpKind::Or, span: or_span }, _, _)
4126                if let None | Some(NotSupportedOr(_)) = self.forbid_let_reason =>
4127            {
4128                let forbid_let_reason = self.forbid_let_reason;
4129                self.forbid_let_reason = Some(NotSupportedOr(or_span));
4130                mut_visit::walk_expr(self, e);
4131                self.forbid_let_reason = forbid_let_reason;
4132            }
4133            ExprKind::Paren(ref inner)
4134                if let None | Some(NotSupportedParentheses(_)) = self.forbid_let_reason =>
4135            {
4136                let forbid_let_reason = self.forbid_let_reason;
4137                self.forbid_let_reason = Some(NotSupportedParentheses(inner.span));
4138                mut_visit::walk_expr(self, e);
4139                self.forbid_let_reason = forbid_let_reason;
4140            }
4141            ExprKind::Assign(ref lhs, _, span) => {
4142                let forbid_let_reason = self.forbid_let_reason;
4143                self.forbid_let_reason = Some(OtherForbidden);
4144                let missing_let = self.missing_let;
4145                if let ExprKind::Binary(_, _, rhs) = &lhs.kind
4146                    && let ExprKind::Path(_, _)
4147                    | ExprKind::Struct(_)
4148                    | ExprKind::Call(_, _)
4149                    | ExprKind::Array(_) = rhs.kind
4150                {
4151                    self.missing_let =
4152                        Some(errors::MaybeMissingLet { span: rhs.span.shrink_to_lo() });
4153                }
4154                let comparison = self.comparison;
4155                self.comparison = Some(errors::MaybeComparison { span: span.shrink_to_hi() });
4156                mut_visit::walk_expr(self, e);
4157                self.forbid_let_reason = forbid_let_reason;
4158                self.missing_let = missing_let;
4159                self.comparison = comparison;
4160            }
4161            ExprKind::Unary(_, _)
4162            | ExprKind::Await(_, _)
4163            | ExprKind::Use(_, _)
4164            | ExprKind::AssignOp(_, _, _)
4165            | ExprKind::Range(_, _, _)
4166            | ExprKind::Try(_)
4167            | ExprKind::AddrOf(_, _, _)
4168            | ExprKind::Binary(_, _, _)
4169            | ExprKind::Field(_, _)
4170            | ExprKind::Index(_, _, _)
4171            | ExprKind::Call(_, _)
4172            | ExprKind::MethodCall(_)
4173            | ExprKind::Tup(_)
4174            | ExprKind::Paren(_) => {
4175                let forbid_let_reason = self.forbid_let_reason;
4176                self.forbid_let_reason = Some(OtherForbidden);
4177                mut_visit::walk_expr(self, e);
4178                self.forbid_let_reason = forbid_let_reason;
4179            }
4180            ExprKind::Cast(ref mut op, _)
4181            | ExprKind::Type(ref mut op, _)
4182            | ExprKind::UnsafeBinderCast(_, ref mut op, _) => {
4183                let forbid_let_reason = self.forbid_let_reason;
4184                self.forbid_let_reason = Some(OtherForbidden);
4185                self.visit_expr(op);
4186                self.forbid_let_reason = forbid_let_reason;
4187            }
4188            ExprKind::Let(_, _, _, Recovered::Yes(_))
4189            | ExprKind::Array(_)
4190            | ExprKind::ConstBlock(_)
4191            | ExprKind::Lit(_)
4192            | ExprKind::If(_, _, _)
4193            | ExprKind::While(_, _, _)
4194            | ExprKind::ForLoop { .. }
4195            | ExprKind::Loop(_, _, _)
4196            | ExprKind::Match(_, _, _)
4197            | ExprKind::Closure(_)
4198            | ExprKind::Block(_, _)
4199            | ExprKind::Gen(_, _, _, _)
4200            | ExprKind::TryBlock(_)
4201            | ExprKind::Underscore
4202            | ExprKind::Path(_, _)
4203            | ExprKind::Break(_, _)
4204            | ExprKind::Continue(_)
4205            | ExprKind::Ret(_)
4206            | ExprKind::InlineAsm(_)
4207            | ExprKind::OffsetOf(_, _)
4208            | ExprKind::MacCall(_)
4209            | ExprKind::Struct(_)
4210            | ExprKind::Repeat(_, _)
4211            | ExprKind::Yield(_)
4212            | ExprKind::Yeet(_)
4213            | ExprKind::Become(_)
4214            | ExprKind::IncludedBytes(_)
4215            | ExprKind::FormatArgs(_)
4216            | ExprKind::Err(_)
4217            | ExprKind::Dummy => {
4218                // These would forbid any let expressions they contain already.
4219            }
4220        }
4221        self.depth -= 1;
4222    }
4223}