rustc_parse/parser/
path.rs

1use std::mem;
2
3use ast::token::IdentIsRaw;
4use rustc_ast::ptr::P;
5use rustc_ast::token::{self, MetaVarKind, Token, TokenKind};
6use rustc_ast::{
7    self as ast, AngleBracketedArg, AngleBracketedArgs, AnonConst, AssocItemConstraint,
8    AssocItemConstraintKind, BlockCheckMode, GenericArg, GenericArgs, Generics, ParenthesizedArgs,
9    Path, PathSegment, QSelf,
10};
11use rustc_errors::{Applicability, Diag, PResult};
12use rustc_span::{BytePos, Ident, Span, kw, sym};
13use thin_vec::ThinVec;
14use tracing::debug;
15
16use super::ty::{AllowPlus, RecoverQPath, RecoverReturnSign};
17use super::{Parser, Restrictions, TokenType};
18use crate::ast::{PatKind, TyKind};
19use crate::errors::{
20    self, FnPathFoundNamedParams, PathFoundAttributeInParams, PathFoundCVariadicParams,
21    PathSingleColon, PathTripleColon,
22};
23use crate::exp;
24use crate::parser::{CommaRecoveryMode, RecoverColon, RecoverComma};
25
26/// Specifies how to parse a path.
27#[derive(Copy, Clone, PartialEq)]
28pub(super) enum PathStyle {
29    /// In some contexts, notably in expressions, paths with generic arguments are ambiguous
30    /// with something else. For example, in expressions `segment < ....` can be interpreted
31    /// as a comparison and `segment ( ....` can be interpreted as a function call.
32    /// In all such contexts the non-path interpretation is preferred by default for practical
33    /// reasons, but the path interpretation can be forced by the disambiguator `::`, e.g.
34    /// `x<y>` - comparisons, `x::<y>` - unambiguously a path.
35    ///
36    /// Also, a path may never be followed by a `:`. This means that we can eagerly recover if
37    /// we encounter it.
38    Expr,
39    /// The same as `Expr`, but may be followed by a `:`.
40    /// For example, this code:
41    /// ```rust
42    /// struct S;
43    ///
44    /// let S: S;
45    /// //  ^ Followed by a `:`
46    /// ```
47    Pat,
48    /// In other contexts, notably in types, no ambiguity exists and paths can be written
49    /// without the disambiguator, e.g., `x<y>` - unambiguously a path.
50    /// Paths with disambiguators are still accepted, `x::<Y>` - unambiguously a path too.
51    Type,
52    /// A path with generic arguments disallowed, e.g., `foo::bar::Baz`, used in imports,
53    /// visibilities or attributes.
54    /// Technically, this variant is unnecessary and e.g., `Expr` can be used instead
55    /// (paths in "mod" contexts have to be checked later for absence of generic arguments
56    /// anyway, due to macros), but it is used to avoid weird suggestions about expected
57    /// tokens when something goes wrong.
58    Mod,
59}
60
61impl PathStyle {
62    fn has_generic_ambiguity(&self) -> bool {
63        matches!(self, Self::Expr | Self::Pat)
64    }
65}
66
67impl<'a> Parser<'a> {
68    /// Parses a qualified path.
69    /// Assumes that the leading `<` has been parsed already.
70    ///
71    /// `qualified_path = <type [as trait_ref]>::path`
72    ///
73    /// # Examples
74    /// `<T>::default`
75    /// `<T as U>::a`
76    /// `<T as U>::F::a<S>` (without disambiguator)
77    /// `<T as U>::F::a::<S>` (with disambiguator)
78    pub(super) fn parse_qpath(&mut self, style: PathStyle) -> PResult<'a, (P<QSelf>, Path)> {
79        let lo = self.prev_token.span;
80        let ty = self.parse_ty()?;
81
82        // `path` will contain the prefix of the path up to the `>`,
83        // if any (e.g., `U` in the `<T as U>::*` examples
84        // above). `path_span` has the span of that path, or an empty
85        // span in the case of something like `<T>::Bar`.
86        let (mut path, path_span);
87        if self.eat_keyword(exp!(As)) {
88            let path_lo = self.token.span;
89            path = self.parse_path(PathStyle::Type)?;
90            path_span = path_lo.to(self.prev_token.span);
91        } else {
92            path_span = self.token.span.to(self.token.span);
93            path = ast::Path { segments: ThinVec::new(), span: path_span, tokens: None };
94        }
95
96        // See doc comment for `unmatched_angle_bracket_count`.
97        self.expect(exp!(Gt))?;
98        if self.unmatched_angle_bracket_count > 0 {
99            self.unmatched_angle_bracket_count -= 1;
100            debug!("parse_qpath: (decrement) count={:?}", self.unmatched_angle_bracket_count);
101        }
102
103        let is_import_coupler = self.is_import_coupler();
104        if !is_import_coupler && !self.recover_colon_before_qpath_proj() {
105            self.expect(exp!(PathSep))?;
106        }
107
108        let qself = P(QSelf { ty, path_span, position: path.segments.len() });
109        if !is_import_coupler {
110            self.parse_path_segments(&mut path.segments, style, None)?;
111        }
112
113        Ok((
114            qself,
115            Path { segments: path.segments, span: lo.to(self.prev_token.span), tokens: None },
116        ))
117    }
118
119    /// Recover from an invalid single colon, when the user likely meant a qualified path.
120    /// We avoid emitting this if not followed by an identifier, as our assumption that the user
121    /// intended this to be a qualified path may not be correct.
122    ///
123    /// ```ignore (diagnostics)
124    /// <Bar as Baz<T>>:Qux
125    ///                ^ help: use double colon
126    /// ```
127    fn recover_colon_before_qpath_proj(&mut self) -> bool {
128        if !self.check_noexpect(&TokenKind::Colon)
129            || self.look_ahead(1, |t| !t.is_non_reserved_ident())
130        {
131            return false;
132        }
133
134        self.bump(); // colon
135
136        self.dcx()
137            .struct_span_err(
138                self.prev_token.span,
139                "found single colon before projection in qualified path",
140            )
141            .with_span_suggestion(
142                self.prev_token.span,
143                "use double colon",
144                "::",
145                Applicability::MachineApplicable,
146            )
147            .emit();
148
149        true
150    }
151
152    pub(super) fn parse_path(&mut self, style: PathStyle) -> PResult<'a, Path> {
153        self.parse_path_inner(style, None)
154    }
155
156    /// Parses simple paths.
157    ///
158    /// `path = [::] segment+`
159    /// `segment = ident | ident[::]<args> | ident[::](args) [-> type]`
160    ///
161    /// # Examples
162    /// `a::b::C<D>` (without disambiguator)
163    /// `a::b::C::<D>` (with disambiguator)
164    /// `Fn(Args)` (without disambiguator)
165    /// `Fn::(Args)` (with disambiguator)
166    pub(super) fn parse_path_inner(
167        &mut self,
168        style: PathStyle,
169        ty_generics: Option<&Generics>,
170    ) -> PResult<'a, Path> {
171        let reject_generics_if_mod_style = |parser: &Parser<'_>, path: Path| {
172            // Ensure generic arguments don't end up in attribute paths, such as:
173            //
174            //     macro_rules! m {
175            //         ($p:path) => { #[$p] struct S; }
176            //     }
177            //
178            //     m!(inline<u8>); //~ ERROR: unexpected generic arguments in path
179            //
180            if style == PathStyle::Mod && path.segments.iter().any(|segment| segment.args.is_some())
181            {
182                let span = path
183                    .segments
184                    .iter()
185                    .filter_map(|segment| segment.args.as_ref())
186                    .map(|arg| arg.span())
187                    .collect::<Vec<_>>();
188                parser.dcx().emit_err(errors::GenericsInPath { span });
189                // Ignore these arguments to prevent unexpected behaviors.
190                let segments = path
191                    .segments
192                    .iter()
193                    .map(|segment| PathSegment { ident: segment.ident, id: segment.id, args: None })
194                    .collect();
195                Path { segments, ..path }
196            } else {
197                path
198            }
199        };
200
201        if let Some(path) =
202            self.eat_metavar_seq(MetaVarKind::Path, |this| this.parse_path(PathStyle::Type))
203        {
204            return Ok(reject_generics_if_mod_style(self, path));
205        }
206
207        // If we have a `ty` metavar in the form of a path, reparse it directly as a path, instead
208        // of reparsing it as a `ty` and then extracting the path.
209        if let Some(path) = self.eat_metavar_seq(MetaVarKind::Ty { is_path: true }, |this| {
210            this.parse_path(PathStyle::Type)
211        }) {
212            return Ok(reject_generics_if_mod_style(self, path));
213        }
214
215        let lo = self.token.span;
216        let mut segments = ThinVec::new();
217        let mod_sep_ctxt = self.token.span.ctxt();
218        if self.eat_path_sep() {
219            segments.push(PathSegment::path_root(lo.shrink_to_lo().with_ctxt(mod_sep_ctxt)));
220        }
221        self.parse_path_segments(&mut segments, style, ty_generics)?;
222        Ok(Path { segments, span: lo.to(self.prev_token.span), tokens: None })
223    }
224
225    pub(super) fn parse_path_segments(
226        &mut self,
227        segments: &mut ThinVec<PathSegment>,
228        style: PathStyle,
229        ty_generics: Option<&Generics>,
230    ) -> PResult<'a, ()> {
231        loop {
232            let segment = self.parse_path_segment(style, ty_generics)?;
233            if style.has_generic_ambiguity() {
234                // In order to check for trailing angle brackets, we must have finished
235                // recursing (`parse_path_segment` can indirectly call this function),
236                // that is, the next token must be the highlighted part of the below example:
237                //
238                // `Foo::<Bar as Baz<T>>::Qux`
239                //                      ^ here
240                //
241                // As opposed to the below highlight (if we had only finished the first
242                // recursion):
243                //
244                // `Foo::<Bar as Baz<T>>::Qux`
245                //                     ^ here
246                //
247                // `PathStyle::Expr` is only provided at the root invocation and never in
248                // `parse_path_segment` to recurse and therefore can be checked to maintain
249                // this invariant.
250                self.check_trailing_angle_brackets(&segment, &[exp!(PathSep)]);
251            }
252            segments.push(segment);
253
254            if self.is_import_coupler() || !self.eat_path_sep() {
255                // IMPORTANT: We can *only ever* treat single colons as typo'ed double colons in
256                // expression contexts (!) since only there paths cannot possibly be followed by
257                // a colon and still form a syntactically valid construct. In pattern contexts,
258                // a path may be followed by a type annotation. E.g., `let pat:ty`. In type
259                // contexts, a path may be followed by a list of bounds. E.g., `where ty:bound`.
260                if self.may_recover()
261                    && style == PathStyle::Expr // (!)
262                    && self.token == token::Colon
263                    && self.look_ahead(1, |token| token.is_non_reserved_ident())
264                {
265                    // Emit a special error message for `a::b:c` to help users
266                    // otherwise, `a: c` might have meant to introduce a new binding
267                    if self.token.span.lo() == self.prev_token.span.hi()
268                        && self.look_ahead(1, |token| self.token.span.hi() == token.span.lo())
269                    {
270                        self.bump(); // bump past the colon
271                        self.dcx().emit_err(PathSingleColon {
272                            span: self.prev_token.span,
273                            suggestion: self.prev_token.span.shrink_to_hi(),
274                        });
275                    }
276                    continue;
277                }
278
279                return Ok(());
280            }
281        }
282    }
283
284    /// Eat `::` or, potentially, `:::`.
285    #[must_use]
286    pub(super) fn eat_path_sep(&mut self) -> bool {
287        let result = self.eat(exp!(PathSep));
288        if result && self.may_recover() {
289            if self.eat_noexpect(&token::Colon) {
290                self.dcx().emit_err(PathTripleColon { span: self.prev_token.span });
291            }
292        }
293        result
294    }
295
296    pub(super) fn parse_path_segment(
297        &mut self,
298        style: PathStyle,
299        ty_generics: Option<&Generics>,
300    ) -> PResult<'a, PathSegment> {
301        let ident = self.parse_path_segment_ident()?;
302        let is_args_start = |token: &Token| {
303            matches!(token.kind, token::Lt | token::Shl | token::OpenParen | token::LArrow)
304        };
305        let check_args_start = |this: &mut Self| {
306            this.expected_token_types.insert(TokenType::Lt);
307            this.expected_token_types.insert(TokenType::OpenParen);
308            is_args_start(&this.token)
309        };
310
311        Ok(
312            if style == PathStyle::Type && check_args_start(self)
313                || style != PathStyle::Mod && self.check_path_sep_and_look_ahead(is_args_start)
314            {
315                // We use `style == PathStyle::Expr` to check if this is in a recursion or not. If
316                // it isn't, then we reset the unmatched angle bracket count as we're about to start
317                // parsing a new path.
318                if style == PathStyle::Expr {
319                    self.unmatched_angle_bracket_count = 0;
320                }
321
322                // Generic arguments are found - `<`, `(`, `::<` or `::(`.
323                // First, eat `::` if it exists.
324                let _ = self.eat_path_sep();
325
326                let lo = self.token.span;
327                let args = if self.eat_lt() {
328                    // `<'a, T, A = U>`
329                    let args = self.parse_angle_args_with_leading_angle_bracket_recovery(
330                        style,
331                        lo,
332                        ty_generics,
333                    )?;
334                    self.expect_gt().map_err(|mut err| {
335                        // Try to recover a `:` into a `::`
336                        if self.token == token::Colon
337                            && self.look_ahead(1, |token| token.is_non_reserved_ident())
338                        {
339                            err.cancel();
340                            err = self.dcx().create_err(PathSingleColon {
341                                span: self.token.span,
342                                suggestion: self.prev_token.span.shrink_to_hi(),
343                            });
344                        }
345                        // Attempt to find places where a missing `>` might belong.
346                        else if let Some(arg) = args
347                            .iter()
348                            .rev()
349                            .find(|arg| !matches!(arg, AngleBracketedArg::Constraint(_)))
350                        {
351                            err.span_suggestion_verbose(
352                                arg.span().shrink_to_hi(),
353                                "you might have meant to end the type parameters here",
354                                ">",
355                                Applicability::MaybeIncorrect,
356                            );
357                        }
358                        err
359                    })?;
360                    let span = lo.to(self.prev_token.span);
361                    AngleBracketedArgs { args, span }.into()
362                } else if self.token == token::OpenParen
363                    // FIXME(return_type_notation): Could also recover `...` here.
364                    && self.look_ahead(1, |t| *t == token::DotDot)
365                {
366                    self.bump(); // (
367                    self.bump(); // ..
368                    self.expect(exp!(CloseParen))?;
369                    let span = lo.to(self.prev_token.span);
370
371                    self.psess.gated_spans.gate(sym::return_type_notation, span);
372
373                    let prev_lo = self.prev_token.span.shrink_to_hi();
374                    if self.eat_noexpect(&token::RArrow) {
375                        let lo = self.prev_token.span;
376                        let ty = self.parse_ty()?;
377                        let span = lo.to(ty.span);
378                        let suggestion = prev_lo.to(ty.span);
379                        self.dcx()
380                            .emit_err(errors::BadReturnTypeNotationOutput { span, suggestion });
381                    }
382
383                    P(ast::GenericArgs::ParenthesizedElided(span))
384                } else {
385                    // `(T, U) -> R`
386
387                    let prev_token_before_parsing = self.prev_token;
388                    let token_before_parsing = self.token;
389                    let mut snapshot = None;
390                    if self.may_recover()
391                        && prev_token_before_parsing == token::PathSep
392                        && (style == PathStyle::Expr && self.token.can_begin_expr()
393                            || style == PathStyle::Pat
394                                && self.token.can_begin_pattern(token::NtPatKind::PatParam {
395                                    inferred: false,
396                                }))
397                    {
398                        snapshot = Some(self.create_snapshot_for_diagnostic());
399                    }
400
401                    let dcx = self.dcx();
402                    let parse_params_result = self.parse_paren_comma_seq(|p| {
403                        let param = p.parse_param_general(|_| false, false, false);
404                        param.map(move |param| {
405                            if !matches!(param.pat.kind, PatKind::Missing) {
406                                dcx.emit_err(FnPathFoundNamedParams {
407                                    named_param_span: param.pat.span,
408                                });
409                            }
410                            if matches!(param.ty.kind, TyKind::CVarArgs) {
411                                dcx.emit_err(PathFoundCVariadicParams { span: param.pat.span });
412                            }
413                            if !param.attrs.is_empty() {
414                                dcx.emit_err(PathFoundAttributeInParams {
415                                    span: param.attrs[0].span,
416                                });
417                            }
418                            param.ty
419                        })
420                    });
421
422                    let (inputs, _) = match parse_params_result {
423                        Ok(output) => output,
424                        Err(mut error) if prev_token_before_parsing == token::PathSep => {
425                            error.span_label(
426                                prev_token_before_parsing.span.to(token_before_parsing.span),
427                                "while parsing this parenthesized list of type arguments starting here",
428                            );
429
430                            if let Some(mut snapshot) = snapshot {
431                                snapshot.recover_fn_call_leading_path_sep(
432                                    style,
433                                    prev_token_before_parsing,
434                                    &mut error,
435                                )
436                            }
437
438                            return Err(error);
439                        }
440                        Err(error) => return Err(error),
441                    };
442                    let inputs_span = lo.to(self.prev_token.span);
443                    let output =
444                        self.parse_ret_ty(AllowPlus::No, RecoverQPath::No, RecoverReturnSign::No)?;
445                    let span = ident.span.to(self.prev_token.span);
446                    ParenthesizedArgs { span, inputs, inputs_span, output }.into()
447                };
448
449                PathSegment { ident, args: Some(args), id: ast::DUMMY_NODE_ID }
450            } else {
451                // Generic arguments are not found.
452                PathSegment::from_ident(ident)
453            },
454        )
455    }
456
457    pub(super) fn parse_path_segment_ident(&mut self) -> PResult<'a, Ident> {
458        match self.token.ident() {
459            Some((ident, IdentIsRaw::No)) if ident.is_path_segment_keyword() => {
460                self.bump();
461                Ok(ident)
462            }
463            _ => self.parse_ident(),
464        }
465    }
466
467    /// Recover `$path::(...)` as `$path(...)`.
468    ///
469    /// ```ignore (diagnostics)
470    /// foo::(420, "bar")
471    ///    ^^ remove extra separator to make the function call
472    /// // or
473    /// match x {
474    ///    Foo::(420, "bar") => { ... },
475    ///       ^^ remove extra separator to turn this into tuple struct pattern
476    ///    _ => { ... },
477    /// }
478    /// ```
479    fn recover_fn_call_leading_path_sep(
480        &mut self,
481        style: PathStyle,
482        prev_token_before_parsing: Token,
483        error: &mut Diag<'_>,
484    ) {
485        match style {
486            PathStyle::Expr
487                if let Ok(_) = self
488                    .parse_paren_comma_seq(|p| p.parse_expr())
489                    .map_err(|error| error.cancel()) => {}
490            PathStyle::Pat
491                if let Ok(_) = self
492                    .parse_paren_comma_seq(|p| {
493                        p.parse_pat_allow_top_guard(
494                            None,
495                            RecoverComma::No,
496                            RecoverColon::No,
497                            CommaRecoveryMode::LikelyTuple,
498                        )
499                    })
500                    .map_err(|error| error.cancel()) => {}
501            _ => {
502                return;
503            }
504        }
505
506        if let token::PathSep | token::RArrow = self.token.kind {
507            return;
508        }
509
510        error.span_suggestion_verbose(
511            prev_token_before_parsing.span,
512            format!(
513                "consider removing the `::` here to {}",
514                match style {
515                    PathStyle::Expr => "call the expression",
516                    PathStyle::Pat => "turn this into a tuple struct pattern",
517                    _ => {
518                        return;
519                    }
520                }
521            ),
522            "",
523            Applicability::MaybeIncorrect,
524        );
525    }
526
527    /// Parses generic args (within a path segment) with recovery for extra leading angle brackets.
528    /// For the purposes of understanding the parsing logic of generic arguments, this function
529    /// can be thought of being the same as just calling `self.parse_angle_args()` if the source
530    /// had the correct amount of leading angle brackets.
531    ///
532    /// ```ignore (diagnostics)
533    /// bar::<<<<T as Foo>::Output>();
534    ///      ^^ help: remove extra angle brackets
535    /// ```
536    fn parse_angle_args_with_leading_angle_bracket_recovery(
537        &mut self,
538        style: PathStyle,
539        lo: Span,
540        ty_generics: Option<&Generics>,
541    ) -> PResult<'a, ThinVec<AngleBracketedArg>> {
542        // We need to detect whether there are extra leading left angle brackets and produce an
543        // appropriate error and suggestion. This cannot be implemented by looking ahead at
544        // upcoming tokens for a matching `>` character - if there are unmatched `<` tokens
545        // then there won't be matching `>` tokens to find.
546        //
547        // To explain how this detection works, consider the following example:
548        //
549        // ```ignore (diagnostics)
550        // bar::<<<<T as Foo>::Output>();
551        //      ^^ help: remove extra angle brackets
552        // ```
553        //
554        // Parsing of the left angle brackets starts in this function. We start by parsing the
555        // `<` token (incrementing the counter of unmatched angle brackets on `Parser` via
556        // `eat_lt`):
557        //
558        // *Upcoming tokens:* `<<<<T as Foo>::Output>;`
559        // *Unmatched count:* 1
560        // *`parse_path_segment` calls deep:* 0
561        //
562        // This has the effect of recursing as this function is called if a `<` character
563        // is found within the expected generic arguments:
564        //
565        // *Upcoming tokens:* `<<<T as Foo>::Output>;`
566        // *Unmatched count:* 2
567        // *`parse_path_segment` calls deep:* 1
568        //
569        // Eventually we will have recursed until having consumed all of the `<` tokens and
570        // this will be reflected in the count:
571        //
572        // *Upcoming tokens:* `T as Foo>::Output>;`
573        // *Unmatched count:* 4
574        // `parse_path_segment` calls deep:* 3
575        //
576        // The parser will continue until reaching the first `>` - this will decrement the
577        // unmatched angle bracket count and return to the parent invocation of this function
578        // having succeeded in parsing:
579        //
580        // *Upcoming tokens:* `::Output>;`
581        // *Unmatched count:* 3
582        // *`parse_path_segment` calls deep:* 2
583        //
584        // This will continue until the next `>` character which will also return successfully
585        // to the parent invocation of this function and decrement the count:
586        //
587        // *Upcoming tokens:* `;`
588        // *Unmatched count:* 2
589        // *`parse_path_segment` calls deep:* 1
590        //
591        // At this point, this function will expect to find another matching `>` character but
592        // won't be able to and will return an error. This will continue all the way up the
593        // call stack until the first invocation:
594        //
595        // *Upcoming tokens:* `;`
596        // *Unmatched count:* 2
597        // *`parse_path_segment` calls deep:* 0
598        //
599        // In doing this, we have managed to work out how many unmatched leading left angle
600        // brackets there are, but we cannot recover as the unmatched angle brackets have
601        // already been consumed. To remedy this, we keep a snapshot of the parser state
602        // before we do the above. We can then inspect whether we ended up with a parsing error
603        // and unmatched left angle brackets and if so, restore the parser state before we
604        // consumed any `<` characters to emit an error and consume the erroneous tokens to
605        // recover by attempting to parse again.
606        //
607        // In practice, the recursion of this function is indirect and there will be other
608        // locations that consume some `<` characters - as long as we update the count when
609        // this happens, it isn't an issue.
610
611        let is_first_invocation = style == PathStyle::Expr;
612        // Take a snapshot before attempting to parse - we can restore this later.
613        let snapshot = is_first_invocation.then(|| self.clone());
614
615        self.angle_bracket_nesting += 1;
616        debug!("parse_generic_args_with_leading_angle_bracket_recovery: (snapshotting)");
617        match self.parse_angle_args(ty_generics) {
618            Ok(args) => {
619                self.angle_bracket_nesting -= 1;
620                Ok(args)
621            }
622            Err(e) if self.angle_bracket_nesting > 10 => {
623                self.angle_bracket_nesting -= 1;
624                // When encountering severely malformed code where there are several levels of
625                // nested unclosed angle args (`f::<f::<f::<f::<...`), we avoid severe O(n^2)
626                // behavior by bailing out earlier (#117080).
627                e.emit().raise_fatal();
628            }
629            Err(e) if is_first_invocation && self.unmatched_angle_bracket_count > 0 => {
630                self.angle_bracket_nesting -= 1;
631
632                // Swap `self` with our backup of the parser state before attempting to parse
633                // generic arguments.
634                let snapshot = mem::replace(self, snapshot.unwrap());
635
636                // Eat the unmatched angle brackets.
637                let all_angle_brackets = (0..snapshot.unmatched_angle_bracket_count)
638                    .fold(true, |a, _| a && self.eat_lt());
639
640                if !all_angle_brackets {
641                    // If there are other tokens in between the extraneous `<`s, we cannot simply
642                    // suggest to remove them. This check also prevents us from accidentally ending
643                    // up in the middle of a multibyte character (issue #84104).
644                    let _ = mem::replace(self, snapshot);
645                    Err(e)
646                } else {
647                    // Cancel error from being unable to find `>`. We know the error
648                    // must have been this due to a non-zero unmatched angle bracket
649                    // count.
650                    e.cancel();
651
652                    debug!(
653                        "parse_generic_args_with_leading_angle_bracket_recovery: (snapshot failure) \
654                         snapshot.count={:?}",
655                        snapshot.unmatched_angle_bracket_count,
656                    );
657
658                    // Make a span over ${unmatched angle bracket count} characters.
659                    // This is safe because `all_angle_brackets` ensures that there are only `<`s,
660                    // i.e. no multibyte characters, in this range.
661                    let span = lo
662                        .with_hi(lo.lo() + BytePos(snapshot.unmatched_angle_bracket_count.into()));
663                    self.dcx().emit_err(errors::UnmatchedAngle {
664                        span,
665                        plural: snapshot.unmatched_angle_bracket_count > 1,
666                    });
667
668                    // Try again without unmatched angle bracket characters.
669                    self.parse_angle_args(ty_generics)
670                }
671            }
672            Err(e) => {
673                self.angle_bracket_nesting -= 1;
674                Err(e)
675            }
676        }
677    }
678
679    /// Parses (possibly empty) list of generic arguments / associated item constraints,
680    /// possibly including trailing comma.
681    pub(super) fn parse_angle_args(
682        &mut self,
683        ty_generics: Option<&Generics>,
684    ) -> PResult<'a, ThinVec<AngleBracketedArg>> {
685        let mut args = ThinVec::new();
686        while let Some(arg) = self.parse_angle_arg(ty_generics)? {
687            args.push(arg);
688            if !self.eat(exp!(Comma)) {
689                if self.check_noexpect(&TokenKind::Semi)
690                    && self.look_ahead(1, |t| t.is_ident() || t.is_lifetime())
691                {
692                    // Add `>` to the list of expected tokens.
693                    self.check(exp!(Gt));
694                    // Handle `,` to `;` substitution
695                    let mut err = self.unexpected().unwrap_err();
696                    self.bump();
697                    err.span_suggestion_verbose(
698                        self.prev_token.span.until(self.token.span),
699                        "use a comma to separate type parameters",
700                        ", ",
701                        Applicability::MachineApplicable,
702                    );
703                    err.emit();
704                    continue;
705                }
706                if !self.token.kind.should_end_const_arg()
707                    && self.handle_ambiguous_unbraced_const_arg(&mut args)?
708                {
709                    // We've managed to (partially) recover, so continue trying to parse
710                    // arguments.
711                    continue;
712                }
713                break;
714            }
715        }
716        Ok(args)
717    }
718
719    /// Parses a single argument in the angle arguments `<...>` of a path segment.
720    fn parse_angle_arg(
721        &mut self,
722        ty_generics: Option<&Generics>,
723    ) -> PResult<'a, Option<AngleBracketedArg>> {
724        let lo = self.token.span;
725        let arg = self.parse_generic_arg(ty_generics)?;
726        match arg {
727            Some(arg) => {
728                // we are using noexpect here because we first want to find out if either `=` or `:`
729                // is present and then use that info to push the other token onto the tokens list
730                let separated =
731                    self.check_noexpect(&token::Colon) || self.check_noexpect(&token::Eq);
732                if separated && (self.check(exp!(Colon)) | self.check(exp!(Eq))) {
733                    let arg_span = arg.span();
734                    let (binder, ident, gen_args) = match self.get_ident_from_generic_arg(&arg) {
735                        Ok(ident_gen_args) => ident_gen_args,
736                        Err(()) => return Ok(Some(AngleBracketedArg::Arg(arg))),
737                    };
738                    if binder {
739                        // FIXME(compiler-errors): this could be improved by suggesting lifting
740                        // this up to the trait, at least before this becomes real syntax.
741                        // e.g. `Trait<for<'a> Assoc = Ty>` -> `for<'a> Trait<Assoc = Ty>`
742                        return Err(self.dcx().struct_span_err(
743                            arg_span,
744                            "`for<...>` is not allowed on associated type bounds",
745                        ));
746                    }
747                    let kind = if self.eat(exp!(Colon)) {
748                        AssocItemConstraintKind::Bound { bounds: self.parse_generic_bounds()? }
749                    } else if self.eat(exp!(Eq)) {
750                        self.parse_assoc_equality_term(
751                            ident,
752                            gen_args.as_ref(),
753                            self.prev_token.span,
754                        )?
755                    } else {
756                        unreachable!();
757                    };
758
759                    let span = lo.to(self.prev_token.span);
760
761                    let constraint =
762                        AssocItemConstraint { id: ast::DUMMY_NODE_ID, ident, gen_args, kind, span };
763                    Ok(Some(AngleBracketedArg::Constraint(constraint)))
764                } else {
765                    // we only want to suggest `:` and `=` in contexts where the previous token
766                    // is an ident and the current token or the next token is an ident
767                    if self.prev_token.is_ident()
768                        && (self.token.is_ident() || self.look_ahead(1, |token| token.is_ident()))
769                    {
770                        self.check(exp!(Colon));
771                        self.check(exp!(Eq));
772                    }
773                    Ok(Some(AngleBracketedArg::Arg(arg)))
774                }
775            }
776            _ => Ok(None),
777        }
778    }
779
780    /// Parse the term to the right of an associated item equality constraint.
781    ///
782    /// That is, parse `$term` in `Item = $term` where `$term` is a type or
783    /// a const expression (wrapped in curly braces if complex).
784    fn parse_assoc_equality_term(
785        &mut self,
786        ident: Ident,
787        gen_args: Option<&GenericArgs>,
788        eq: Span,
789    ) -> PResult<'a, AssocItemConstraintKind> {
790        let arg = self.parse_generic_arg(None)?;
791        let span = ident.span.to(self.prev_token.span);
792        let term = match arg {
793            Some(GenericArg::Type(ty)) => ty.into(),
794            Some(GenericArg::Const(c)) => {
795                self.psess.gated_spans.gate(sym::associated_const_equality, span);
796                c.into()
797            }
798            Some(GenericArg::Lifetime(lt)) => {
799                let guar = self.dcx().emit_err(errors::LifetimeInEqConstraint {
800                    span: lt.ident.span,
801                    lifetime: lt.ident,
802                    binding_label: span,
803                    colon_sugg: gen_args
804                        .map_or(ident.span, |args| args.span())
805                        .between(lt.ident.span),
806                });
807                self.mk_ty(lt.ident.span, ast::TyKind::Err(guar)).into()
808            }
809            None => {
810                let after_eq = eq.shrink_to_hi();
811                let before_next = self.token.span.shrink_to_lo();
812                let mut err = self
813                    .dcx()
814                    .struct_span_err(after_eq.to(before_next), "missing type to the right of `=`");
815                if matches!(self.token.kind, token::Comma | token::Gt) {
816                    err.span_suggestion(
817                        self.psess.source_map().next_point(eq).to(before_next),
818                        "to constrain the associated type, add a type after `=`",
819                        " TheType",
820                        Applicability::HasPlaceholders,
821                    );
822                    err.span_suggestion(
823                        eq.to(before_next),
824                        format!("remove the `=` if `{ident}` is a type"),
825                        "",
826                        Applicability::MaybeIncorrect,
827                    )
828                } else {
829                    err.span_label(
830                        self.token.span,
831                        format!("expected type, found {}", super::token_descr(&self.token)),
832                    )
833                };
834                return Err(err);
835            }
836        };
837        Ok(AssocItemConstraintKind::Equality { term })
838    }
839
840    /// We do not permit arbitrary expressions as const arguments. They must be one of:
841    /// - An expression surrounded in `{}`.
842    /// - A literal.
843    /// - A numeric literal prefixed by `-`.
844    /// - A single-segment path.
845    pub(super) fn expr_is_valid_const_arg(&self, expr: &P<rustc_ast::Expr>) -> bool {
846        match &expr.kind {
847            ast::ExprKind::Block(_, _)
848            | ast::ExprKind::Lit(_)
849            | ast::ExprKind::IncludedBytes(..) => true,
850            ast::ExprKind::Unary(ast::UnOp::Neg, expr) => {
851                matches!(expr.kind, ast::ExprKind::Lit(_))
852            }
853            // We can only resolve single-segment paths at the moment, because multi-segment paths
854            // require type-checking: see `visit_generic_arg` in `src/librustc_resolve/late.rs`.
855            ast::ExprKind::Path(None, path)
856                if let [segment] = path.segments.as_slice()
857                    && segment.args.is_none() =>
858            {
859                true
860            }
861            _ => false,
862        }
863    }
864
865    /// Parse a const argument, e.g. `<3>`. It is assumed the angle brackets will be parsed by
866    /// the caller.
867    pub(super) fn parse_const_arg(&mut self) -> PResult<'a, AnonConst> {
868        // Parse const argument.
869        let value = if self.token.kind == token::OpenBrace {
870            self.parse_expr_block(None, self.token.span, BlockCheckMode::Default)?
871        } else {
872            self.handle_unambiguous_unbraced_const_arg()?
873        };
874        Ok(AnonConst { id: ast::DUMMY_NODE_ID, value })
875    }
876
877    /// Parse a generic argument in a path segment.
878    /// This does not include constraints, e.g., `Item = u8`, which is handled in `parse_angle_arg`.
879    pub(super) fn parse_generic_arg(
880        &mut self,
881        ty_generics: Option<&Generics>,
882    ) -> PResult<'a, Option<GenericArg>> {
883        let start = self.token.span;
884        let arg = if self.check_lifetime() && self.look_ahead(1, |t| !t.is_like_plus()) {
885            // Parse lifetime argument.
886            GenericArg::Lifetime(self.expect_lifetime())
887        } else if self.check_const_arg() {
888            // Parse const argument.
889            GenericArg::Const(self.parse_const_arg()?)
890        } else if self.check_type() {
891            // Parse type argument.
892
893            // Proactively create a parser snapshot enabling us to rewind and try to reparse the
894            // input as a const expression in case we fail to parse a type. If we successfully
895            // do so, we will report an error that it needs to be wrapped in braces.
896            let mut snapshot = None;
897            if self.may_recover() && self.token.can_begin_expr() {
898                snapshot = Some(self.create_snapshot_for_diagnostic());
899            }
900
901            match self.parse_ty() {
902                Ok(ty) => {
903                    // Since the type parser recovers from some malformed slice and array types and
904                    // successfully returns a type, we need to look for `TyKind::Err`s in the
905                    // type to determine if error recovery has occurred and if the input is not a
906                    // syntactically valid type after all.
907                    if let ast::TyKind::Slice(inner_ty) | ast::TyKind::Array(inner_ty, _) = &ty.kind
908                        && let ast::TyKind::Err(_) = inner_ty.kind
909                        && let Some(snapshot) = snapshot
910                        && let Some(expr) =
911                            self.recover_unbraced_const_arg_that_can_begin_ty(snapshot)
912                    {
913                        return Ok(Some(
914                            self.dummy_const_arg_needs_braces(
915                                self.dcx()
916                                    .struct_span_err(expr.span, "invalid const generic expression"),
917                                expr.span,
918                            ),
919                        ));
920                    }
921
922                    GenericArg::Type(ty)
923                }
924                Err(err) => {
925                    if let Some(snapshot) = snapshot
926                        && let Some(expr) =
927                            self.recover_unbraced_const_arg_that_can_begin_ty(snapshot)
928                    {
929                        return Ok(Some(self.dummy_const_arg_needs_braces(err, expr.span)));
930                    }
931                    // Try to recover from possible `const` arg without braces.
932                    return self.recover_const_arg(start, err).map(Some);
933                }
934            }
935        } else if self.token.is_keyword(kw::Const) {
936            return self.recover_const_param_declaration(ty_generics);
937        } else {
938            // Fall back by trying to parse a const-expr expression. If we successfully do so,
939            // then we should report an error that it needs to be wrapped in braces.
940            let snapshot = self.create_snapshot_for_diagnostic();
941            let attrs = self.parse_outer_attributes()?;
942            match self.parse_expr_res(Restrictions::CONST_EXPR, attrs) {
943                Ok((expr, _)) => {
944                    return Ok(Some(self.dummy_const_arg_needs_braces(
945                        self.dcx().struct_span_err(expr.span, "invalid const generic expression"),
946                        expr.span,
947                    )));
948                }
949                Err(err) => {
950                    self.restore_snapshot(snapshot);
951                    err.cancel();
952                    return Ok(None);
953                }
954            }
955        };
956        Ok(Some(arg))
957    }
958
959    /// Given a arg inside of generics, we try to destructure it as if it were the LHS in
960    /// `LHS = ...`, i.e. an associated item binding.
961    /// This returns a bool indicating if there are any `for<'a, 'b>` binder args, the
962    /// identifier, and any GAT arguments.
963    fn get_ident_from_generic_arg(
964        &self,
965        gen_arg: &GenericArg,
966    ) -> Result<(bool, Ident, Option<GenericArgs>), ()> {
967        if let GenericArg::Type(ty) = gen_arg {
968            if let ast::TyKind::Path(qself, path) = &ty.kind
969                && qself.is_none()
970                && let [seg] = path.segments.as_slice()
971            {
972                return Ok((false, seg.ident, seg.args.as_deref().cloned()));
973            } else if let ast::TyKind::TraitObject(bounds, ast::TraitObjectSyntax::None) = &ty.kind
974                && let [ast::GenericBound::Trait(trait_ref)] = bounds.as_slice()
975                && trait_ref.modifiers == ast::TraitBoundModifiers::NONE
976                && let [seg] = trait_ref.trait_ref.path.segments.as_slice()
977            {
978                return Ok((true, seg.ident, seg.args.as_deref().cloned()));
979            }
980        }
981        Err(())
982    }
983}