rustdoc/clean/
mod.rs

1//! This module defines the primary IR[^1] used in rustdoc together with the procedures that
2//! transform rustc data types into it.
3//!
4//! This IR — commonly referred to as the *cleaned AST* — is modeled after the [AST][ast].
5//!
6//! There are two kinds of transformation — *cleaning* — procedures:
7//!
8//! 1. Cleans [HIR][hir] types. Used for user-written code and inlined local re-exports
9//!    both found in the local crate.
10//! 2. Cleans [`rustc_middle::ty`] types. Used for inlined cross-crate re-exports and anything
11//!    output by the trait solver (e.g., when synthesizing blanket and auto-trait impls).
12//!    They usually have `ty` or `middle` in their name.
13//!
14//! Their name is prefixed by `clean_`.
15//!
16//! Both the HIR and the `rustc_middle::ty` IR are quite removed from the source code.
17//! The cleaned AST on the other hand is closer to it which simplifies the rendering process.
18//! Furthermore, operating on a single IR instead of two avoids duplicating efforts down the line.
19//!
20//! This IR is consumed by both the HTML and the JSON backend.
21//!
22//! [^1]: Intermediate representation.
23
24mod auto_trait;
25mod blanket_impl;
26pub(crate) mod cfg;
27pub(crate) mod inline;
28mod render_macro_matchers;
29mod simplify;
30pub(crate) mod types;
31pub(crate) mod utils;
32
33use std::borrow::Cow;
34use std::collections::BTreeMap;
35use std::mem;
36
37use rustc_ast::token::{Token, TokenKind};
38use rustc_ast::tokenstream::{TokenStream, TokenTree};
39use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap, FxIndexSet, IndexEntry};
40use rustc_errors::codes::*;
41use rustc_errors::{FatalError, struct_span_code_err};
42use rustc_hir::def::{CtorKind, DefKind, Res};
43use rustc_hir::def_id::{DefId, DefIdMap, DefIdSet, LOCAL_CRATE, LocalDefId};
44use rustc_hir::{LangItem, PredicateOrigin};
45use rustc_hir_analysis::hir_ty_lowering::FeedConstTy;
46use rustc_hir_analysis::{lower_const_arg_for_rustdoc, lower_ty};
47use rustc_middle::metadata::Reexport;
48use rustc_middle::middle::resolve_bound_vars as rbv;
49use rustc_middle::ty::{self, AdtKind, GenericArgsRef, Ty, TyCtxt, TypeVisitableExt, TypingMode};
50use rustc_middle::{bug, span_bug};
51use rustc_span::ExpnKind;
52use rustc_span::hygiene::{AstPass, MacroKind};
53use rustc_span::symbol::{Ident, Symbol, kw, sym};
54use rustc_trait_selection::traits::wf::object_region_bounds;
55use thin_vec::ThinVec;
56use tracing::{debug, instrument};
57use utils::*;
58use {rustc_ast as ast, rustc_hir as hir};
59
60pub(crate) use self::types::*;
61pub(crate) use self::utils::{krate, register_res, synthesize_auto_trait_and_blanket_impls};
62use crate::core::DocContext;
63use crate::formats::item_type::ItemType;
64use crate::visit_ast::Module as DocModule;
65
66pub(crate) fn clean_doc_module<'tcx>(doc: &DocModule<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
67    let mut items: Vec<Item> = vec![];
68    let mut inserted = FxHashSet::default();
69    items.extend(doc.foreigns.iter().map(|(item, renamed, import_id)| {
70        let item = clean_maybe_renamed_foreign_item(cx, item, *renamed, *import_id);
71        if let Some(name) = item.name
72            && (cx.render_options.document_hidden || !item.is_doc_hidden())
73        {
74            inserted.insert((item.type_(), name));
75        }
76        item
77    }));
78    items.extend(doc.mods.iter().filter_map(|x| {
79        if !inserted.insert((ItemType::Module, x.name)) {
80            return None;
81        }
82        let item = clean_doc_module(x, cx);
83        if !cx.render_options.document_hidden && item.is_doc_hidden() {
84            // Hidden modules are stripped at a later stage.
85            // If a hidden module has the same name as a visible one, we want
86            // to keep both of them around.
87            inserted.remove(&(ItemType::Module, x.name));
88        }
89        Some(item)
90    }));
91
92    // Split up glob imports from all other items.
93    //
94    // This covers the case where somebody does an import which should pull in an item,
95    // but there's already an item with the same namespace and same name. Rust gives
96    // priority to the not-imported one, so we should, too.
97    items.extend(doc.items.values().flat_map(|(item, renamed, import_ids)| {
98        // First, lower everything other than glob imports.
99        if matches!(item.kind, hir::ItemKind::Use(_, hir::UseKind::Glob)) {
100            return Vec::new();
101        }
102        let v = clean_maybe_renamed_item(cx, item, *renamed, import_ids);
103        for item in &v {
104            if let Some(name) = item.name
105                && (cx.render_options.document_hidden || !item.is_doc_hidden())
106            {
107                inserted.insert((item.type_(), name));
108            }
109        }
110        v
111    }));
112    items.extend(doc.inlined_foreigns.iter().flat_map(|((_, renamed), (res, local_import_id))| {
113        let Some(def_id) = res.opt_def_id() else { return Vec::new() };
114        let name = renamed.unwrap_or_else(|| cx.tcx.item_name(def_id));
115        let import = cx.tcx.hir_expect_item(*local_import_id);
116        match import.kind {
117            hir::ItemKind::Use(path, kind) => {
118                let hir::UsePath { segments, span, .. } = *path;
119                let path = hir::Path { segments, res: *res, span };
120                clean_use_statement_inner(
121                    import,
122                    Some(name),
123                    &path,
124                    kind,
125                    cx,
126                    &mut Default::default(),
127                )
128            }
129            _ => unreachable!(),
130        }
131    }));
132    items.extend(doc.items.values().flat_map(|(item, renamed, _)| {
133        // Now we actually lower the imports, skipping everything else.
134        if let hir::ItemKind::Use(path, hir::UseKind::Glob) = item.kind {
135            clean_use_statement(item, *renamed, path, hir::UseKind::Glob, cx, &mut inserted)
136        } else {
137            // skip everything else
138            Vec::new()
139        }
140    }));
141
142    // determine if we should display the inner contents or
143    // the outer `mod` item for the source code.
144
145    let span = Span::new({
146        let where_outer = doc.where_outer(cx.tcx);
147        let sm = cx.sess().source_map();
148        let outer = sm.lookup_char_pos(where_outer.lo());
149        let inner = sm.lookup_char_pos(doc.where_inner.lo());
150        if outer.file.start_pos == inner.file.start_pos {
151            // mod foo { ... }
152            where_outer
153        } else {
154            // mod foo; (and a separate SourceFile for the contents)
155            doc.where_inner
156        }
157    });
158
159    let kind = ModuleItem(Module { items, span });
160    generate_item_with_correct_attrs(
161        cx,
162        kind,
163        doc.def_id.to_def_id(),
164        doc.name,
165        doc.import_id.as_slice(),
166        doc.renamed,
167    )
168}
169
170fn is_glob_import(tcx: TyCtxt<'_>, import_id: LocalDefId) -> bool {
171    if let hir::Node::Item(item) = tcx.hir_node_by_def_id(import_id)
172        && let hir::ItemKind::Use(_, use_kind) = item.kind
173    {
174        use_kind == hir::UseKind::Glob
175    } else {
176        false
177    }
178}
179
180fn generate_item_with_correct_attrs(
181    cx: &mut DocContext<'_>,
182    kind: ItemKind,
183    def_id: DefId,
184    name: Symbol,
185    import_ids: &[LocalDefId],
186    renamed: Option<Symbol>,
187) -> Item {
188    let target_attrs = inline::load_attrs(cx, def_id);
189    let attrs = if !import_ids.is_empty() {
190        let mut attrs = Vec::with_capacity(import_ids.len());
191        let mut is_inline = false;
192
193        for import_id in import_ids.iter().copied() {
194            // glob reexports are treated the same as `#[doc(inline)]` items.
195            //
196            // For glob re-exports the item may or may not exist to be re-exported (potentially the
197            // cfgs on the path up until the glob can be removed, and only cfgs on the globbed item
198            // itself matter), for non-inlined re-exports see #85043.
199            let import_is_inline =
200                hir_attr_lists(inline::load_attrs(cx, import_id.to_def_id()), sym::doc)
201                    .get_word_attr(sym::inline)
202                    .is_some()
203                    || (is_glob_import(cx.tcx, import_id)
204                        && (cx.render_options.document_hidden || !cx.tcx.is_doc_hidden(def_id)));
205            attrs.extend(get_all_import_attributes(cx, import_id, def_id, is_inline));
206            is_inline = is_inline || import_is_inline;
207        }
208        add_without_unwanted_attributes(&mut attrs, target_attrs, is_inline, None);
209        attrs
210    } else {
211        // We only keep the item's attributes.
212        target_attrs.iter().map(|attr| (Cow::Borrowed(attr), None)).collect()
213    };
214    let cfg = extract_cfg_from_attrs(
215        attrs.iter().map(move |(attr, _)| match attr {
216            Cow::Borrowed(attr) => *attr,
217            Cow::Owned(attr) => attr,
218        }),
219        cx.tcx,
220        &cx.cache.hidden_cfg,
221    );
222    let attrs = Attributes::from_hir_iter(attrs.iter().map(|(attr, did)| (&**attr, *did)), false);
223
224    let name = renamed.or(Some(name));
225    let mut item = Item::from_def_id_and_attrs_and_parts(def_id, name, kind, attrs, cfg);
226    // FIXME (GuillaumeGomez): Should we also make `inline_stmt_id` a `Vec` instead of an `Option`?
227    item.inner.inline_stmt_id = import_ids.first().copied();
228    item
229}
230
231fn clean_generic_bound<'tcx>(
232    bound: &hir::GenericBound<'tcx>,
233    cx: &mut DocContext<'tcx>,
234) -> Option<GenericBound> {
235    Some(match bound {
236        hir::GenericBound::Outlives(lt) => GenericBound::Outlives(clean_lifetime(lt, cx)),
237        hir::GenericBound::Trait(t) => {
238            // `T: [const] Destruct` is hidden because `T: Destruct` is a no-op.
239            if let hir::BoundConstness::Maybe(_) = t.modifiers.constness
240                && cx.tcx.lang_items().destruct_trait() == Some(t.trait_ref.trait_def_id().unwrap())
241            {
242                return None;
243            }
244
245            GenericBound::TraitBound(clean_poly_trait_ref(t, cx), t.modifiers)
246        }
247        hir::GenericBound::Use(args, ..) => {
248            GenericBound::Use(args.iter().map(|arg| clean_precise_capturing_arg(arg, cx)).collect())
249        }
250    })
251}
252
253pub(crate) fn clean_trait_ref_with_constraints<'tcx>(
254    cx: &mut DocContext<'tcx>,
255    trait_ref: ty::PolyTraitRef<'tcx>,
256    constraints: ThinVec<AssocItemConstraint>,
257) -> Path {
258    let kind = cx.tcx.def_kind(trait_ref.def_id()).into();
259    if !matches!(kind, ItemType::Trait | ItemType::TraitAlias) {
260        span_bug!(cx.tcx.def_span(trait_ref.def_id()), "`TraitRef` had unexpected kind {kind:?}");
261    }
262    inline::record_extern_fqn(cx, trait_ref.def_id(), kind);
263    let path = clean_middle_path(
264        cx,
265        trait_ref.def_id(),
266        true,
267        constraints,
268        trait_ref.map_bound(|tr| tr.args),
269    );
270
271    debug!(?trait_ref);
272
273    path
274}
275
276fn clean_poly_trait_ref_with_constraints<'tcx>(
277    cx: &mut DocContext<'tcx>,
278    poly_trait_ref: ty::PolyTraitRef<'tcx>,
279    constraints: ThinVec<AssocItemConstraint>,
280) -> GenericBound {
281    GenericBound::TraitBound(
282        PolyTrait {
283            trait_: clean_trait_ref_with_constraints(cx, poly_trait_ref, constraints),
284            generic_params: clean_bound_vars(poly_trait_ref.bound_vars(), cx),
285        },
286        hir::TraitBoundModifiers::NONE,
287    )
288}
289
290fn clean_lifetime(lifetime: &hir::Lifetime, cx: &DocContext<'_>) -> Lifetime {
291    if let Some(
292        rbv::ResolvedArg::EarlyBound(did)
293        | rbv::ResolvedArg::LateBound(_, _, did)
294        | rbv::ResolvedArg::Free(_, did),
295    ) = cx.tcx.named_bound_var(lifetime.hir_id)
296        && let Some(lt) = cx.args.get(&did.to_def_id()).and_then(|arg| arg.as_lt())
297    {
298        return *lt;
299    }
300    Lifetime(lifetime.ident.name)
301}
302
303pub(crate) fn clean_precise_capturing_arg(
304    arg: &hir::PreciseCapturingArg<'_>,
305    cx: &DocContext<'_>,
306) -> PreciseCapturingArg {
307    match arg {
308        hir::PreciseCapturingArg::Lifetime(lt) => {
309            PreciseCapturingArg::Lifetime(clean_lifetime(lt, cx))
310        }
311        hir::PreciseCapturingArg::Param(param) => PreciseCapturingArg::Param(param.ident.name),
312    }
313}
314
315pub(crate) fn clean_const<'tcx>(
316    constant: &hir::ConstArg<'tcx>,
317    _cx: &mut DocContext<'tcx>,
318) -> ConstantKind {
319    match &constant.kind {
320        hir::ConstArgKind::Path(qpath) => {
321            ConstantKind::Path { path: qpath_to_string(qpath).into() }
322        }
323        hir::ConstArgKind::Anon(anon) => ConstantKind::Anonymous { body: anon.body },
324        hir::ConstArgKind::Infer(..) => ConstantKind::Infer,
325    }
326}
327
328pub(crate) fn clean_middle_const<'tcx>(
329    constant: ty::Binder<'tcx, ty::Const<'tcx>>,
330    _cx: &mut DocContext<'tcx>,
331) -> ConstantKind {
332    // FIXME: instead of storing the stringified expression, store `self` directly instead.
333    ConstantKind::TyConst { expr: constant.skip_binder().to_string().into() }
334}
335
336pub(crate) fn clean_middle_region<'tcx>(
337    region: ty::Region<'tcx>,
338    cx: &mut DocContext<'tcx>,
339) -> Option<Lifetime> {
340    region.get_name(cx.tcx).map(Lifetime)
341}
342
343fn clean_where_predicate<'tcx>(
344    predicate: &hir::WherePredicate<'tcx>,
345    cx: &mut DocContext<'tcx>,
346) -> Option<WherePredicate> {
347    if !predicate.kind.in_where_clause() {
348        return None;
349    }
350    Some(match predicate.kind {
351        hir::WherePredicateKind::BoundPredicate(wbp) => {
352            let bound_params = wbp
353                .bound_generic_params
354                .iter()
355                .map(|param| clean_generic_param(cx, None, param))
356                .collect();
357            WherePredicate::BoundPredicate {
358                ty: clean_ty(wbp.bounded_ty, cx),
359                bounds: wbp.bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
360                bound_params,
361            }
362        }
363
364        hir::WherePredicateKind::RegionPredicate(wrp) => WherePredicate::RegionPredicate {
365            lifetime: clean_lifetime(wrp.lifetime, cx),
366            bounds: wrp.bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
367        },
368
369        // We should never actually reach this case because these predicates should've already been
370        // rejected in an earlier compiler pass. This feature isn't fully implemented (#20041).
371        hir::WherePredicateKind::EqPredicate(_) => bug!("EqPredicate"),
372    })
373}
374
375pub(crate) fn clean_predicate<'tcx>(
376    predicate: ty::Clause<'tcx>,
377    cx: &mut DocContext<'tcx>,
378) -> Option<WherePredicate> {
379    let bound_predicate = predicate.kind();
380    match bound_predicate.skip_binder() {
381        ty::ClauseKind::Trait(pred) => clean_poly_trait_predicate(bound_predicate.rebind(pred), cx),
382        ty::ClauseKind::RegionOutlives(pred) => Some(clean_region_outlives_predicate(pred, cx)),
383        ty::ClauseKind::TypeOutlives(pred) => {
384            Some(clean_type_outlives_predicate(bound_predicate.rebind(pred), cx))
385        }
386        ty::ClauseKind::Projection(pred) => {
387            Some(clean_projection_predicate(bound_predicate.rebind(pred), cx))
388        }
389        // FIXME(generic_const_exprs): should this do something?
390        ty::ClauseKind::ConstEvaluatable(..)
391        | ty::ClauseKind::WellFormed(..)
392        | ty::ClauseKind::ConstArgHasType(..)
393        | ty::ClauseKind::UnstableFeature(..)
394        // FIXME(const_trait_impl): We can probably use this `HostEffect` pred to render `~const`.
395        | ty::ClauseKind::HostEffect(_) => None,
396    }
397}
398
399fn clean_poly_trait_predicate<'tcx>(
400    pred: ty::PolyTraitPredicate<'tcx>,
401    cx: &mut DocContext<'tcx>,
402) -> Option<WherePredicate> {
403    // `T: [const] Destruct` is hidden because `T: Destruct` is a no-op.
404    // FIXME(const_trait_impl) check constness
405    if Some(pred.skip_binder().def_id()) == cx.tcx.lang_items().destruct_trait() {
406        return None;
407    }
408
409    let poly_trait_ref = pred.map_bound(|pred| pred.trait_ref);
410    Some(WherePredicate::BoundPredicate {
411        ty: clean_middle_ty(poly_trait_ref.self_ty(), cx, None, None),
412        bounds: vec![clean_poly_trait_ref_with_constraints(cx, poly_trait_ref, ThinVec::new())],
413        bound_params: Vec::new(),
414    })
415}
416
417fn clean_region_outlives_predicate<'tcx>(
418    pred: ty::RegionOutlivesPredicate<'tcx>,
419    cx: &mut DocContext<'tcx>,
420) -> WherePredicate {
421    let ty::OutlivesPredicate(a, b) = pred;
422
423    WherePredicate::RegionPredicate {
424        lifetime: clean_middle_region(a, cx).expect("failed to clean lifetime"),
425        bounds: vec![GenericBound::Outlives(
426            clean_middle_region(b, cx).expect("failed to clean bounds"),
427        )],
428    }
429}
430
431fn clean_type_outlives_predicate<'tcx>(
432    pred: ty::Binder<'tcx, ty::TypeOutlivesPredicate<'tcx>>,
433    cx: &mut DocContext<'tcx>,
434) -> WherePredicate {
435    let ty::OutlivesPredicate(ty, lt) = pred.skip_binder();
436
437    WherePredicate::BoundPredicate {
438        ty: clean_middle_ty(pred.rebind(ty), cx, None, None),
439        bounds: vec![GenericBound::Outlives(
440            clean_middle_region(lt, cx).expect("failed to clean lifetimes"),
441        )],
442        bound_params: Vec::new(),
443    }
444}
445
446fn clean_middle_term<'tcx>(
447    term: ty::Binder<'tcx, ty::Term<'tcx>>,
448    cx: &mut DocContext<'tcx>,
449) -> Term {
450    match term.skip_binder().kind() {
451        ty::TermKind::Ty(ty) => Term::Type(clean_middle_ty(term.rebind(ty), cx, None, None)),
452        ty::TermKind::Const(c) => Term::Constant(clean_middle_const(term.rebind(c), cx)),
453    }
454}
455
456fn clean_hir_term<'tcx>(term: &hir::Term<'tcx>, cx: &mut DocContext<'tcx>) -> Term {
457    match term {
458        hir::Term::Ty(ty) => Term::Type(clean_ty(ty, cx)),
459        hir::Term::Const(c) => {
460            let ct = lower_const_arg_for_rustdoc(cx.tcx, c, FeedConstTy::No);
461            Term::Constant(clean_middle_const(ty::Binder::dummy(ct), cx))
462        }
463    }
464}
465
466fn clean_projection_predicate<'tcx>(
467    pred: ty::Binder<'tcx, ty::ProjectionPredicate<'tcx>>,
468    cx: &mut DocContext<'tcx>,
469) -> WherePredicate {
470    WherePredicate::EqPredicate {
471        lhs: clean_projection(pred.map_bound(|p| p.projection_term), cx, None),
472        rhs: clean_middle_term(pred.map_bound(|p| p.term), cx),
473    }
474}
475
476fn clean_projection<'tcx>(
477    proj: ty::Binder<'tcx, ty::AliasTerm<'tcx>>,
478    cx: &mut DocContext<'tcx>,
479    parent_def_id: Option<DefId>,
480) -> QPathData {
481    let trait_ = clean_trait_ref_with_constraints(
482        cx,
483        proj.map_bound(|proj| proj.trait_ref(cx.tcx)),
484        ThinVec::new(),
485    );
486    let self_type = clean_middle_ty(proj.map_bound(|proj| proj.self_ty()), cx, None, None);
487    let self_def_id = match parent_def_id {
488        Some(parent_def_id) => cx.tcx.opt_parent(parent_def_id).or(Some(parent_def_id)),
489        None => self_type.def_id(&cx.cache),
490    };
491    let should_fully_qualify = should_fully_qualify_path(self_def_id, &trait_, &self_type);
492
493    QPathData {
494        assoc: projection_to_path_segment(proj, cx),
495        self_type,
496        should_fully_qualify,
497        trait_: Some(trait_),
498    }
499}
500
501fn should_fully_qualify_path(self_def_id: Option<DefId>, trait_: &Path, self_type: &Type) -> bool {
502    !trait_.segments.is_empty()
503        && self_def_id
504            .zip(Some(trait_.def_id()))
505            .map_or(!self_type.is_self_type(), |(id, trait_)| id != trait_)
506}
507
508fn projection_to_path_segment<'tcx>(
509    proj: ty::Binder<'tcx, ty::AliasTerm<'tcx>>,
510    cx: &mut DocContext<'tcx>,
511) -> PathSegment {
512    let def_id = proj.skip_binder().def_id;
513    let generics = cx.tcx.generics_of(def_id);
514    PathSegment {
515        name: cx.tcx.item_name(def_id),
516        args: GenericArgs::AngleBracketed {
517            args: clean_middle_generic_args(
518                cx,
519                proj.map_bound(|ty| &ty.args[generics.parent_count..]),
520                false,
521                def_id,
522            ),
523            constraints: Default::default(),
524        },
525    }
526}
527
528fn clean_generic_param_def(
529    def: &ty::GenericParamDef,
530    defaults: ParamDefaults,
531    cx: &mut DocContext<'_>,
532) -> GenericParamDef {
533    let (name, kind) = match def.kind {
534        ty::GenericParamDefKind::Lifetime => {
535            (def.name, GenericParamDefKind::Lifetime { outlives: ThinVec::new() })
536        }
537        ty::GenericParamDefKind::Type { has_default, synthetic, .. } => {
538            let default = if let ParamDefaults::Yes = defaults
539                && has_default
540            {
541                Some(clean_middle_ty(
542                    ty::Binder::dummy(cx.tcx.type_of(def.def_id).instantiate_identity()),
543                    cx,
544                    Some(def.def_id),
545                    None,
546                ))
547            } else {
548                None
549            };
550            (
551                def.name,
552                GenericParamDefKind::Type {
553                    bounds: ThinVec::new(), // These are filled in from the where-clauses.
554                    default: default.map(Box::new),
555                    synthetic,
556                },
557            )
558        }
559        ty::GenericParamDefKind::Const { has_default, synthetic } => (
560            def.name,
561            GenericParamDefKind::Const {
562                ty: Box::new(clean_middle_ty(
563                    ty::Binder::dummy(
564                        cx.tcx
565                            .type_of(def.def_id)
566                            .no_bound_vars()
567                            .expect("const parameter types cannot be generic"),
568                    ),
569                    cx,
570                    Some(def.def_id),
571                    None,
572                )),
573                default: if let ParamDefaults::Yes = defaults
574                    && has_default
575                {
576                    Some(Box::new(
577                        cx.tcx.const_param_default(def.def_id).instantiate_identity().to_string(),
578                    ))
579                } else {
580                    None
581                },
582                synthetic,
583            },
584        ),
585    };
586
587    GenericParamDef { name, def_id: def.def_id, kind }
588}
589
590/// Whether to clean generic parameter defaults or not.
591enum ParamDefaults {
592    Yes,
593    No,
594}
595
596fn clean_generic_param<'tcx>(
597    cx: &mut DocContext<'tcx>,
598    generics: Option<&hir::Generics<'tcx>>,
599    param: &hir::GenericParam<'tcx>,
600) -> GenericParamDef {
601    let (name, kind) = match param.kind {
602        hir::GenericParamKind::Lifetime { .. } => {
603            let outlives = if let Some(generics) = generics {
604                generics
605                    .outlives_for_param(param.def_id)
606                    .filter(|bp| !bp.in_where_clause)
607                    .flat_map(|bp| bp.bounds)
608                    .map(|bound| match bound {
609                        hir::GenericBound::Outlives(lt) => clean_lifetime(lt, cx),
610                        _ => panic!(),
611                    })
612                    .collect()
613            } else {
614                ThinVec::new()
615            };
616            (param.name.ident().name, GenericParamDefKind::Lifetime { outlives })
617        }
618        hir::GenericParamKind::Type { ref default, synthetic } => {
619            let bounds = if let Some(generics) = generics {
620                generics
621                    .bounds_for_param(param.def_id)
622                    .filter(|bp| bp.origin != PredicateOrigin::WhereClause)
623                    .flat_map(|bp| bp.bounds)
624                    .filter_map(|x| clean_generic_bound(x, cx))
625                    .collect()
626            } else {
627                ThinVec::new()
628            };
629            (
630                param.name.ident().name,
631                GenericParamDefKind::Type {
632                    bounds,
633                    default: default.map(|t| clean_ty(t, cx)).map(Box::new),
634                    synthetic,
635                },
636            )
637        }
638        hir::GenericParamKind::Const { ty, default, synthetic } => (
639            param.name.ident().name,
640            GenericParamDefKind::Const {
641                ty: Box::new(clean_ty(ty, cx)),
642                default: default.map(|ct| {
643                    Box::new(lower_const_arg_for_rustdoc(cx.tcx, ct, FeedConstTy::No).to_string())
644                }),
645                synthetic,
646            },
647        ),
648    };
649
650    GenericParamDef { name, def_id: param.def_id.to_def_id(), kind }
651}
652
653/// Synthetic type-parameters are inserted after normal ones.
654/// In order for normal parameters to be able to refer to synthetic ones,
655/// scans them first.
656fn is_impl_trait(param: &hir::GenericParam<'_>) -> bool {
657    match param.kind {
658        hir::GenericParamKind::Type { synthetic, .. } => synthetic,
659        _ => false,
660    }
661}
662
663/// This can happen for `async fn`, e.g. `async fn f<'_>(&'_ self)`.
664///
665/// See `lifetime_to_generic_param` in `rustc_ast_lowering` for more information.
666fn is_elided_lifetime(param: &hir::GenericParam<'_>) -> bool {
667    matches!(
668        param.kind,
669        hir::GenericParamKind::Lifetime { kind: hir::LifetimeParamKind::Elided(_) }
670    )
671}
672
673pub(crate) fn clean_generics<'tcx>(
674    gens: &hir::Generics<'tcx>,
675    cx: &mut DocContext<'tcx>,
676) -> Generics {
677    let impl_trait_params = gens
678        .params
679        .iter()
680        .filter(|param| is_impl_trait(param))
681        .map(|param| {
682            let param = clean_generic_param(cx, Some(gens), param);
683            match param.kind {
684                GenericParamDefKind::Lifetime { .. } => unreachable!(),
685                GenericParamDefKind::Type { ref bounds, .. } => {
686                    cx.impl_trait_bounds.insert(param.def_id.into(), bounds.to_vec());
687                }
688                GenericParamDefKind::Const { .. } => unreachable!(),
689            }
690            param
691        })
692        .collect::<Vec<_>>();
693
694    let mut bound_predicates = FxIndexMap::default();
695    let mut region_predicates = FxIndexMap::default();
696    let mut eq_predicates = ThinVec::default();
697    for pred in gens.predicates.iter().filter_map(|x| clean_where_predicate(x, cx)) {
698        match pred {
699            WherePredicate::BoundPredicate { ty, bounds, bound_params } => {
700                match bound_predicates.entry(ty) {
701                    IndexEntry::Vacant(v) => {
702                        v.insert((bounds, bound_params));
703                    }
704                    IndexEntry::Occupied(mut o) => {
705                        // we merge both bounds.
706                        for bound in bounds {
707                            if !o.get().0.contains(&bound) {
708                                o.get_mut().0.push(bound);
709                            }
710                        }
711                        for bound_param in bound_params {
712                            if !o.get().1.contains(&bound_param) {
713                                o.get_mut().1.push(bound_param);
714                            }
715                        }
716                    }
717                }
718            }
719            WherePredicate::RegionPredicate { lifetime, bounds } => {
720                match region_predicates.entry(lifetime) {
721                    IndexEntry::Vacant(v) => {
722                        v.insert(bounds);
723                    }
724                    IndexEntry::Occupied(mut o) => {
725                        // we merge both bounds.
726                        for bound in bounds {
727                            if !o.get().contains(&bound) {
728                                o.get_mut().push(bound);
729                            }
730                        }
731                    }
732                }
733            }
734            WherePredicate::EqPredicate { lhs, rhs } => {
735                eq_predicates.push(WherePredicate::EqPredicate { lhs, rhs });
736            }
737        }
738    }
739
740    let mut params = ThinVec::with_capacity(gens.params.len());
741    // In this loop, we gather the generic parameters (`<'a, B: 'a>`) and check if they have
742    // bounds in the where predicates. If so, we move their bounds into the where predicates
743    // while also preventing duplicates.
744    for p in gens.params.iter().filter(|p| !is_impl_trait(p) && !is_elided_lifetime(p)) {
745        let mut p = clean_generic_param(cx, Some(gens), p);
746        match &mut p.kind {
747            GenericParamDefKind::Lifetime { outlives } => {
748                if let Some(region_pred) = region_predicates.get_mut(&Lifetime(p.name)) {
749                    // We merge bounds in the `where` clause.
750                    for outlive in outlives.drain(..) {
751                        let outlive = GenericBound::Outlives(outlive);
752                        if !region_pred.contains(&outlive) {
753                            region_pred.push(outlive);
754                        }
755                    }
756                }
757            }
758            GenericParamDefKind::Type { bounds, synthetic: false, .. } => {
759                if let Some(bound_pred) = bound_predicates.get_mut(&Type::Generic(p.name)) {
760                    // We merge bounds in the `where` clause.
761                    for bound in bounds.drain(..) {
762                        if !bound_pred.0.contains(&bound) {
763                            bound_pred.0.push(bound);
764                        }
765                    }
766                }
767            }
768            GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
769                // nothing to do here.
770            }
771        }
772        params.push(p);
773    }
774    params.extend(impl_trait_params);
775
776    Generics {
777        params,
778        where_predicates: bound_predicates
779            .into_iter()
780            .map(|(ty, (bounds, bound_params))| WherePredicate::BoundPredicate {
781                ty,
782                bounds,
783                bound_params,
784            })
785            .chain(
786                region_predicates
787                    .into_iter()
788                    .map(|(lifetime, bounds)| WherePredicate::RegionPredicate { lifetime, bounds }),
789            )
790            .chain(eq_predicates)
791            .collect(),
792    }
793}
794
795fn clean_ty_generics<'tcx>(cx: &mut DocContext<'tcx>, def_id: DefId) -> Generics {
796    clean_ty_generics_inner(cx, cx.tcx.generics_of(def_id), cx.tcx.explicit_predicates_of(def_id))
797}
798
799fn clean_ty_generics_inner<'tcx>(
800    cx: &mut DocContext<'tcx>,
801    gens: &ty::Generics,
802    preds: ty::GenericPredicates<'tcx>,
803) -> Generics {
804    // Don't populate `cx.impl_trait_bounds` before cleaning where clauses,
805    // since `clean_predicate` would consume them.
806    let mut impl_trait = BTreeMap::<u32, Vec<GenericBound>>::default();
807
808    let params: ThinVec<_> = gens
809        .own_params
810        .iter()
811        .filter(|param| match param.kind {
812            ty::GenericParamDefKind::Lifetime => !param.is_anonymous_lifetime(),
813            ty::GenericParamDefKind::Type { synthetic, .. } => {
814                if param.name == kw::SelfUpper {
815                    debug_assert_eq!(param.index, 0);
816                    return false;
817                }
818                if synthetic {
819                    impl_trait.insert(param.index, vec![]);
820                    return false;
821                }
822                true
823            }
824            ty::GenericParamDefKind::Const { .. } => true,
825        })
826        .map(|param| clean_generic_param_def(param, ParamDefaults::Yes, cx))
827        .collect();
828
829    // param index -> [(trait DefId, associated type name & generics, term)]
830    let mut impl_trait_proj =
831        FxHashMap::<u32, Vec<(DefId, PathSegment, ty::Binder<'_, ty::Term<'_>>)>>::default();
832
833    let where_predicates = preds
834        .predicates
835        .iter()
836        .flat_map(|(pred, _)| {
837            let mut proj_pred = None;
838            let param_idx = {
839                let bound_p = pred.kind();
840                match bound_p.skip_binder() {
841                    ty::ClauseKind::Trait(pred) if let ty::Param(param) = pred.self_ty().kind() => {
842                        Some(param.index)
843                    }
844                    ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(ty, _reg))
845                        if let ty::Param(param) = ty.kind() =>
846                    {
847                        Some(param.index)
848                    }
849                    ty::ClauseKind::Projection(p)
850                        if let ty::Param(param) = p.projection_term.self_ty().kind() =>
851                    {
852                        proj_pred = Some(bound_p.rebind(p));
853                        Some(param.index)
854                    }
855                    _ => None,
856                }
857            };
858
859            if let Some(param_idx) = param_idx
860                && let Some(bounds) = impl_trait.get_mut(&param_idx)
861            {
862                let pred = clean_predicate(*pred, cx)?;
863
864                bounds.extend(pred.get_bounds().into_iter().flatten().cloned());
865
866                if let Some(pred) = proj_pred {
867                    let lhs = clean_projection(pred.map_bound(|p| p.projection_term), cx, None);
868                    impl_trait_proj.entry(param_idx).or_default().push((
869                        lhs.trait_.unwrap().def_id(),
870                        lhs.assoc,
871                        pred.map_bound(|p| p.term),
872                    ));
873                }
874
875                return None;
876            }
877
878            Some(pred)
879        })
880        .collect::<Vec<_>>();
881
882    for (idx, mut bounds) in impl_trait {
883        let mut has_sized = false;
884        bounds.retain(|b| {
885            if b.is_sized_bound(cx) {
886                has_sized = true;
887                false
888            } else if b.is_meta_sized_bound(cx) {
889                // FIXME(sized-hierarchy): Always skip `MetaSized` bounds so that only `?Sized`
890                // is shown and none of the new sizedness traits leak into documentation.
891                false
892            } else {
893                true
894            }
895        });
896        if !has_sized {
897            bounds.push(GenericBound::maybe_sized(cx));
898        }
899
900        // Move trait bounds to the front.
901        bounds.sort_by_key(|b| !b.is_trait_bound());
902
903        // Add back a `Sized` bound if there are no *trait* bounds remaining (incl. `?Sized`).
904        // Since all potential trait bounds are at the front we can just check the first bound.
905        if bounds.first().is_none_or(|b| !b.is_trait_bound()) {
906            bounds.insert(0, GenericBound::sized(cx));
907        }
908
909        if let Some(proj) = impl_trait_proj.remove(&idx) {
910            for (trait_did, name, rhs) in proj {
911                let rhs = clean_middle_term(rhs, cx);
912                simplify::merge_bounds(cx, &mut bounds, trait_did, name, &rhs);
913            }
914        }
915
916        cx.impl_trait_bounds.insert(idx.into(), bounds);
917    }
918
919    // Now that `cx.impl_trait_bounds` is populated, we can process
920    // remaining predicates which could contain `impl Trait`.
921    let where_predicates =
922        where_predicates.into_iter().flat_map(|p| clean_predicate(*p, cx)).collect();
923
924    let mut generics = Generics { params, where_predicates };
925    simplify::sized_bounds(cx, &mut generics);
926    generics.where_predicates = simplify::where_clauses(cx, generics.where_predicates);
927    generics
928}
929
930fn clean_ty_alias_inner_type<'tcx>(
931    ty: Ty<'tcx>,
932    cx: &mut DocContext<'tcx>,
933    ret: &mut Vec<Item>,
934) -> Option<TypeAliasInnerType> {
935    let ty::Adt(adt_def, args) = ty.kind() else {
936        return None;
937    };
938
939    if !adt_def.did().is_local() {
940        cx.with_param_env(adt_def.did(), |cx| {
941            inline::build_impls(cx, adt_def.did(), None, ret);
942        });
943    }
944
945    Some(if adt_def.is_enum() {
946        let variants: rustc_index::IndexVec<_, _> = adt_def
947            .variants()
948            .iter()
949            .map(|variant| clean_variant_def_with_args(variant, args, cx))
950            .collect();
951
952        if !adt_def.did().is_local() {
953            inline::record_extern_fqn(cx, adt_def.did(), ItemType::Enum);
954        }
955
956        TypeAliasInnerType::Enum {
957            variants,
958            is_non_exhaustive: adt_def.is_variant_list_non_exhaustive(),
959        }
960    } else {
961        let variant = adt_def
962            .variants()
963            .iter()
964            .next()
965            .unwrap_or_else(|| bug!("a struct or union should always have one variant def"));
966
967        let fields: Vec<_> =
968            clean_variant_def_with_args(variant, args, cx).kind.inner_items().cloned().collect();
969
970        if adt_def.is_struct() {
971            if !adt_def.did().is_local() {
972                inline::record_extern_fqn(cx, adt_def.did(), ItemType::Struct);
973            }
974            TypeAliasInnerType::Struct { ctor_kind: variant.ctor_kind(), fields }
975        } else {
976            if !adt_def.did().is_local() {
977                inline::record_extern_fqn(cx, adt_def.did(), ItemType::Union);
978            }
979            TypeAliasInnerType::Union { fields }
980        }
981    })
982}
983
984fn clean_proc_macro<'tcx>(
985    item: &hir::Item<'tcx>,
986    name: &mut Symbol,
987    kind: MacroKind,
988    cx: &mut DocContext<'tcx>,
989) -> ItemKind {
990    let attrs = cx.tcx.hir_attrs(item.hir_id());
991    if kind == MacroKind::Derive
992        && let Some(derive_name) =
993            hir_attr_lists(attrs, sym::proc_macro_derive).find_map(|mi| mi.ident())
994    {
995        *name = derive_name.name;
996    }
997
998    let mut helpers = Vec::new();
999    for mi in hir_attr_lists(attrs, sym::proc_macro_derive) {
1000        if !mi.has_name(sym::attributes) {
1001            continue;
1002        }
1003
1004        if let Some(list) = mi.meta_item_list() {
1005            for inner_mi in list {
1006                if let Some(ident) = inner_mi.ident() {
1007                    helpers.push(ident.name);
1008                }
1009            }
1010        }
1011    }
1012    ProcMacroItem(ProcMacro { kind, helpers })
1013}
1014
1015fn clean_fn_or_proc_macro<'tcx>(
1016    item: &hir::Item<'tcx>,
1017    sig: &hir::FnSig<'tcx>,
1018    generics: &hir::Generics<'tcx>,
1019    body_id: hir::BodyId,
1020    name: &mut Symbol,
1021    cx: &mut DocContext<'tcx>,
1022) -> ItemKind {
1023    let attrs = cx.tcx.hir_attrs(item.hir_id());
1024    let macro_kind = attrs.iter().find_map(|a| {
1025        if a.has_name(sym::proc_macro) {
1026            Some(MacroKind::Bang)
1027        } else if a.has_name(sym::proc_macro_derive) {
1028            Some(MacroKind::Derive)
1029        } else if a.has_name(sym::proc_macro_attribute) {
1030            Some(MacroKind::Attr)
1031        } else {
1032            None
1033        }
1034    });
1035    match macro_kind {
1036        Some(kind) => clean_proc_macro(item, name, kind, cx),
1037        None => {
1038            let mut func = clean_function(cx, sig, generics, ParamsSrc::Body(body_id));
1039            clean_fn_decl_legacy_const_generics(&mut func, attrs);
1040            FunctionItem(func)
1041        }
1042    }
1043}
1044
1045/// This is needed to make it more "readable" when documenting functions using
1046/// `rustc_legacy_const_generics`. More information in
1047/// <https://github.com/rust-lang/rust/issues/83167>.
1048fn clean_fn_decl_legacy_const_generics(func: &mut Function, attrs: &[hir::Attribute]) {
1049    for meta_item_list in attrs
1050        .iter()
1051        .filter(|a| a.has_name(sym::rustc_legacy_const_generics))
1052        .filter_map(|a| a.meta_item_list())
1053    {
1054        for (pos, literal) in meta_item_list.iter().filter_map(|meta| meta.lit()).enumerate() {
1055            match literal.kind {
1056                ast::LitKind::Int(a, _) => {
1057                    let GenericParamDef { name, kind, .. } = func.generics.params.remove(0);
1058                    if let GenericParamDefKind::Const { ty, .. } = kind {
1059                        func.decl.inputs.insert(
1060                            a.get() as _,
1061                            Parameter { name: Some(name), type_: *ty, is_const: true },
1062                        );
1063                    } else {
1064                        panic!("unexpected non const in position {pos}");
1065                    }
1066                }
1067                _ => panic!("invalid arg index"),
1068            }
1069        }
1070    }
1071}
1072
1073enum ParamsSrc<'tcx> {
1074    Body(hir::BodyId),
1075    Idents(&'tcx [Option<Ident>]),
1076}
1077
1078fn clean_function<'tcx>(
1079    cx: &mut DocContext<'tcx>,
1080    sig: &hir::FnSig<'tcx>,
1081    generics: &hir::Generics<'tcx>,
1082    params: ParamsSrc<'tcx>,
1083) -> Box<Function> {
1084    let (generics, decl) = enter_impl_trait(cx, |cx| {
1085        // NOTE: Generics must be cleaned before params.
1086        let generics = clean_generics(generics, cx);
1087        let params = match params {
1088            ParamsSrc::Body(body_id) => clean_params_via_body(cx, sig.decl.inputs, body_id),
1089            // Let's not perpetuate anon params from Rust 2015; use `_` for them.
1090            ParamsSrc::Idents(idents) => clean_params(cx, sig.decl.inputs, idents, |ident| {
1091                Some(ident.map_or(kw::Underscore, |ident| ident.name))
1092            }),
1093        };
1094        let decl = clean_fn_decl_with_params(cx, sig.decl, Some(&sig.header), params);
1095        (generics, decl)
1096    });
1097    Box::new(Function { decl, generics })
1098}
1099
1100fn clean_params<'tcx>(
1101    cx: &mut DocContext<'tcx>,
1102    types: &[hir::Ty<'tcx>],
1103    idents: &[Option<Ident>],
1104    postprocess: impl Fn(Option<Ident>) -> Option<Symbol>,
1105) -> Vec<Parameter> {
1106    types
1107        .iter()
1108        .enumerate()
1109        .map(|(i, ty)| Parameter {
1110            name: postprocess(idents[i]),
1111            type_: clean_ty(ty, cx),
1112            is_const: false,
1113        })
1114        .collect()
1115}
1116
1117fn clean_params_via_body<'tcx>(
1118    cx: &mut DocContext<'tcx>,
1119    types: &[hir::Ty<'tcx>],
1120    body_id: hir::BodyId,
1121) -> Vec<Parameter> {
1122    types
1123        .iter()
1124        .zip(cx.tcx.hir_body(body_id).params)
1125        .map(|(ty, param)| Parameter {
1126            name: Some(name_from_pat(param.pat)),
1127            type_: clean_ty(ty, cx),
1128            is_const: false,
1129        })
1130        .collect()
1131}
1132
1133fn clean_fn_decl_with_params<'tcx>(
1134    cx: &mut DocContext<'tcx>,
1135    decl: &hir::FnDecl<'tcx>,
1136    header: Option<&hir::FnHeader>,
1137    params: Vec<Parameter>,
1138) -> FnDecl {
1139    let mut output = match decl.output {
1140        hir::FnRetTy::Return(typ) => clean_ty(typ, cx),
1141        hir::FnRetTy::DefaultReturn(..) => Type::Tuple(Vec::new()),
1142    };
1143    if let Some(header) = header
1144        && header.is_async()
1145    {
1146        output = output.sugared_async_return_type();
1147    }
1148    FnDecl { inputs: params, output, c_variadic: decl.c_variadic }
1149}
1150
1151fn clean_poly_fn_sig<'tcx>(
1152    cx: &mut DocContext<'tcx>,
1153    did: Option<DefId>,
1154    sig: ty::PolyFnSig<'tcx>,
1155) -> FnDecl {
1156    let mut output = clean_middle_ty(sig.output(), cx, None, None);
1157
1158    // If the return type isn't an `impl Trait`, we can safely assume that this
1159    // function isn't async without needing to execute the query `asyncness` at
1160    // all which gives us a noticeable performance boost.
1161    if let Some(did) = did
1162        && let Type::ImplTrait(_) = output
1163        && cx.tcx.asyncness(did).is_async()
1164    {
1165        output = output.sugared_async_return_type();
1166    }
1167
1168    let mut idents = did.map(|did| cx.tcx.fn_arg_idents(did)).unwrap_or_default().iter().copied();
1169
1170    // If this comes from a fn item, let's not perpetuate anon params from Rust 2015; use `_` for them.
1171    // If this comes from a fn ptr ty, we just keep params unnamed since it's more conventional stylistically.
1172    // Since the param name is not part of the semantic type, these params never bear a name unlike
1173    // in the HIR case, thus we can't perform any fancy fallback logic unlike `clean_bare_fn_ty`.
1174    let fallback = did.map(|_| kw::Underscore);
1175
1176    let params = sig
1177        .inputs()
1178        .iter()
1179        .map(|ty| Parameter {
1180            name: idents.next().flatten().map(|ident| ident.name).or(fallback),
1181            type_: clean_middle_ty(ty.map_bound(|ty| *ty), cx, None, None),
1182            is_const: false,
1183        })
1184        .collect();
1185
1186    FnDecl { inputs: params, output, c_variadic: sig.skip_binder().c_variadic }
1187}
1188
1189fn clean_trait_ref<'tcx>(trait_ref: &hir::TraitRef<'tcx>, cx: &mut DocContext<'tcx>) -> Path {
1190    let path = clean_path(trait_ref.path, cx);
1191    register_res(cx, path.res);
1192    path
1193}
1194
1195fn clean_poly_trait_ref<'tcx>(
1196    poly_trait_ref: &hir::PolyTraitRef<'tcx>,
1197    cx: &mut DocContext<'tcx>,
1198) -> PolyTrait {
1199    PolyTrait {
1200        trait_: clean_trait_ref(&poly_trait_ref.trait_ref, cx),
1201        generic_params: poly_trait_ref
1202            .bound_generic_params
1203            .iter()
1204            .filter(|p| !is_elided_lifetime(p))
1205            .map(|x| clean_generic_param(cx, None, x))
1206            .collect(),
1207    }
1208}
1209
1210fn clean_trait_item<'tcx>(trait_item: &hir::TraitItem<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
1211    let local_did = trait_item.owner_id.to_def_id();
1212    cx.with_param_env(local_did, |cx| {
1213        let inner = match trait_item.kind {
1214            hir::TraitItemKind::Const(ty, Some(default)) => {
1215                ProvidedAssocConstItem(Box::new(Constant {
1216                    generics: enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx)),
1217                    kind: ConstantKind::Local { def_id: local_did, body: default },
1218                    type_: clean_ty(ty, cx),
1219                }))
1220            }
1221            hir::TraitItemKind::Const(ty, None) => {
1222                let generics = enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx));
1223                RequiredAssocConstItem(generics, Box::new(clean_ty(ty, cx)))
1224            }
1225            hir::TraitItemKind::Fn(ref sig, hir::TraitFn::Provided(body)) => {
1226                let m = clean_function(cx, sig, trait_item.generics, ParamsSrc::Body(body));
1227                MethodItem(m, None)
1228            }
1229            hir::TraitItemKind::Fn(ref sig, hir::TraitFn::Required(idents)) => {
1230                let m = clean_function(cx, sig, trait_item.generics, ParamsSrc::Idents(idents));
1231                RequiredMethodItem(m)
1232            }
1233            hir::TraitItemKind::Type(bounds, Some(default)) => {
1234                let generics = enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx));
1235                let bounds = bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect();
1236                let item_type =
1237                    clean_middle_ty(ty::Binder::dummy(lower_ty(cx.tcx, default)), cx, None, None);
1238                AssocTypeItem(
1239                    Box::new(TypeAlias {
1240                        type_: clean_ty(default, cx),
1241                        generics,
1242                        inner_type: None,
1243                        item_type: Some(item_type),
1244                    }),
1245                    bounds,
1246                )
1247            }
1248            hir::TraitItemKind::Type(bounds, None) => {
1249                let generics = enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx));
1250                let bounds = bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect();
1251                RequiredAssocTypeItem(generics, bounds)
1252            }
1253        };
1254        Item::from_def_id_and_parts(local_did, Some(trait_item.ident.name), inner, cx)
1255    })
1256}
1257
1258pub(crate) fn clean_impl_item<'tcx>(
1259    impl_: &hir::ImplItem<'tcx>,
1260    cx: &mut DocContext<'tcx>,
1261) -> Item {
1262    let local_did = impl_.owner_id.to_def_id();
1263    cx.with_param_env(local_did, |cx| {
1264        let inner = match impl_.kind {
1265            hir::ImplItemKind::Const(ty, expr) => ImplAssocConstItem(Box::new(Constant {
1266                generics: clean_generics(impl_.generics, cx),
1267                kind: ConstantKind::Local { def_id: local_did, body: expr },
1268                type_: clean_ty(ty, cx),
1269            })),
1270            hir::ImplItemKind::Fn(ref sig, body) => {
1271                let m = clean_function(cx, sig, impl_.generics, ParamsSrc::Body(body));
1272                let defaultness = cx.tcx.defaultness(impl_.owner_id);
1273                MethodItem(m, Some(defaultness))
1274            }
1275            hir::ImplItemKind::Type(hir_ty) => {
1276                let type_ = clean_ty(hir_ty, cx);
1277                let generics = clean_generics(impl_.generics, cx);
1278                let item_type =
1279                    clean_middle_ty(ty::Binder::dummy(lower_ty(cx.tcx, hir_ty)), cx, None, None);
1280                AssocTypeItem(
1281                    Box::new(TypeAlias {
1282                        type_,
1283                        generics,
1284                        inner_type: None,
1285                        item_type: Some(item_type),
1286                    }),
1287                    Vec::new(),
1288                )
1289            }
1290        };
1291
1292        Item::from_def_id_and_parts(local_did, Some(impl_.ident.name), inner, cx)
1293    })
1294}
1295
1296pub(crate) fn clean_middle_assoc_item(assoc_item: &ty::AssocItem, cx: &mut DocContext<'_>) -> Item {
1297    let tcx = cx.tcx;
1298    let kind = match assoc_item.kind {
1299        ty::AssocKind::Const { .. } => {
1300            let ty = clean_middle_ty(
1301                ty::Binder::dummy(tcx.type_of(assoc_item.def_id).instantiate_identity()),
1302                cx,
1303                Some(assoc_item.def_id),
1304                None,
1305            );
1306
1307            let mut generics = clean_ty_generics(cx, assoc_item.def_id);
1308            simplify::move_bounds_to_generic_parameters(&mut generics);
1309
1310            match assoc_item.container {
1311                ty::AssocItemContainer::Impl => ImplAssocConstItem(Box::new(Constant {
1312                    generics,
1313                    kind: ConstantKind::Extern { def_id: assoc_item.def_id },
1314                    type_: ty,
1315                })),
1316                ty::AssocItemContainer::Trait => {
1317                    if tcx.defaultness(assoc_item.def_id).has_value() {
1318                        ProvidedAssocConstItem(Box::new(Constant {
1319                            generics,
1320                            kind: ConstantKind::Extern { def_id: assoc_item.def_id },
1321                            type_: ty,
1322                        }))
1323                    } else {
1324                        RequiredAssocConstItem(generics, Box::new(ty))
1325                    }
1326                }
1327            }
1328        }
1329        ty::AssocKind::Fn { has_self, .. } => {
1330            let mut item = inline::build_function(cx, assoc_item.def_id);
1331
1332            if has_self {
1333                let self_ty = match assoc_item.container {
1334                    ty::AssocItemContainer::Impl => {
1335                        tcx.type_of(assoc_item.container_id(tcx)).instantiate_identity()
1336                    }
1337                    ty::AssocItemContainer::Trait => tcx.types.self_param,
1338                };
1339                let self_param_ty =
1340                    tcx.fn_sig(assoc_item.def_id).instantiate_identity().input(0).skip_binder();
1341                if self_param_ty == self_ty {
1342                    item.decl.inputs[0].type_ = SelfTy;
1343                } else if let ty::Ref(_, ty, _) = *self_param_ty.kind()
1344                    && ty == self_ty
1345                {
1346                    match item.decl.inputs[0].type_ {
1347                        BorrowedRef { ref mut type_, .. } => **type_ = SelfTy,
1348                        _ => unreachable!(),
1349                    }
1350                }
1351            }
1352
1353            let provided = match assoc_item.container {
1354                ty::AssocItemContainer::Impl => true,
1355                ty::AssocItemContainer::Trait => assoc_item.defaultness(tcx).has_value(),
1356            };
1357            if provided {
1358                let defaultness = match assoc_item.container {
1359                    ty::AssocItemContainer::Impl => Some(assoc_item.defaultness(tcx)),
1360                    ty::AssocItemContainer::Trait => None,
1361                };
1362                MethodItem(item, defaultness)
1363            } else {
1364                RequiredMethodItem(item)
1365            }
1366        }
1367        ty::AssocKind::Type { .. } => {
1368            let my_name = assoc_item.name();
1369
1370            fn param_eq_arg(param: &GenericParamDef, arg: &GenericArg) -> bool {
1371                match (&param.kind, arg) {
1372                    (GenericParamDefKind::Type { .. }, GenericArg::Type(Type::Generic(ty)))
1373                        if *ty == param.name =>
1374                    {
1375                        true
1376                    }
1377                    (GenericParamDefKind::Lifetime { .. }, GenericArg::Lifetime(Lifetime(lt)))
1378                        if *lt == param.name =>
1379                    {
1380                        true
1381                    }
1382                    (GenericParamDefKind::Const { .. }, GenericArg::Const(c)) => match &**c {
1383                        ConstantKind::TyConst { expr } => **expr == *param.name.as_str(),
1384                        _ => false,
1385                    },
1386                    _ => false,
1387                }
1388            }
1389
1390            let mut predicates = tcx.explicit_predicates_of(assoc_item.def_id).predicates;
1391            if let ty::AssocItemContainer::Trait = assoc_item.container {
1392                let bounds = tcx.explicit_item_bounds(assoc_item.def_id).iter_identity_copied();
1393                predicates = tcx.arena.alloc_from_iter(bounds.chain(predicates.iter().copied()));
1394            }
1395            let mut generics = clean_ty_generics_inner(
1396                cx,
1397                tcx.generics_of(assoc_item.def_id),
1398                ty::GenericPredicates { parent: None, predicates },
1399            );
1400            simplify::move_bounds_to_generic_parameters(&mut generics);
1401
1402            if let ty::AssocItemContainer::Trait = assoc_item.container {
1403                // Move bounds that are (likely) directly attached to the associated type
1404                // from the where-clause to the associated type.
1405                // There is no guarantee that this is what the user actually wrote but we have
1406                // no way of knowing.
1407                let mut bounds: Vec<GenericBound> = Vec::new();
1408                generics.where_predicates.retain_mut(|pred| match *pred {
1409                    WherePredicate::BoundPredicate {
1410                        ty:
1411                            QPath(box QPathData {
1412                                ref assoc,
1413                                ref self_type,
1414                                trait_: Some(ref trait_),
1415                                ..
1416                            }),
1417                        bounds: ref mut pred_bounds,
1418                        ..
1419                    } => {
1420                        if assoc.name != my_name {
1421                            return true;
1422                        }
1423                        if trait_.def_id() != assoc_item.container_id(tcx) {
1424                            return true;
1425                        }
1426                        if *self_type != SelfTy {
1427                            return true;
1428                        }
1429                        match &assoc.args {
1430                            GenericArgs::AngleBracketed { args, constraints } => {
1431                                if !constraints.is_empty()
1432                                    || generics
1433                                        .params
1434                                        .iter()
1435                                        .zip(args.iter())
1436                                        .any(|(param, arg)| !param_eq_arg(param, arg))
1437                                {
1438                                    return true;
1439                                }
1440                            }
1441                            GenericArgs::Parenthesized { .. } => {
1442                                // The only time this happens is if we're inside the rustdoc for Fn(),
1443                                // which only has one associated type, which is not a GAT, so whatever.
1444                            }
1445                            GenericArgs::ReturnTypeNotation => {
1446                                // Never move these.
1447                            }
1448                        }
1449                        bounds.extend(mem::take(pred_bounds));
1450                        false
1451                    }
1452                    _ => true,
1453                });
1454
1455                bounds.retain(|b| {
1456                    // FIXME(sized-hierarchy): Always skip `MetaSized` bounds so that only `?Sized`
1457                    // is shown and none of the new sizedness traits leak into documentation.
1458                    !b.is_meta_sized_bound(cx)
1459                });
1460
1461                // Our Sized/?Sized bound didn't get handled when creating the generics
1462                // because we didn't actually get our whole set of bounds until just now
1463                // (some of them may have come from the trait). If we do have a sized
1464                // bound, we remove it, and if we don't then we add the `?Sized` bound
1465                // at the end.
1466                match bounds.iter().position(|b| b.is_sized_bound(cx)) {
1467                    Some(i) => {
1468                        bounds.remove(i);
1469                    }
1470                    None => bounds.push(GenericBound::maybe_sized(cx)),
1471                }
1472
1473                if tcx.defaultness(assoc_item.def_id).has_value() {
1474                    AssocTypeItem(
1475                        Box::new(TypeAlias {
1476                            type_: clean_middle_ty(
1477                                ty::Binder::dummy(
1478                                    tcx.type_of(assoc_item.def_id).instantiate_identity(),
1479                                ),
1480                                cx,
1481                                Some(assoc_item.def_id),
1482                                None,
1483                            ),
1484                            generics,
1485                            inner_type: None,
1486                            item_type: None,
1487                        }),
1488                        bounds,
1489                    )
1490                } else {
1491                    RequiredAssocTypeItem(generics, bounds)
1492                }
1493            } else {
1494                AssocTypeItem(
1495                    Box::new(TypeAlias {
1496                        type_: clean_middle_ty(
1497                            ty::Binder::dummy(
1498                                tcx.type_of(assoc_item.def_id).instantiate_identity(),
1499                            ),
1500                            cx,
1501                            Some(assoc_item.def_id),
1502                            None,
1503                        ),
1504                        generics,
1505                        inner_type: None,
1506                        item_type: None,
1507                    }),
1508                    // Associated types inside trait or inherent impls are not allowed to have
1509                    // item bounds. Thus we don't attempt to move any bounds there.
1510                    Vec::new(),
1511                )
1512            }
1513        }
1514    };
1515
1516    Item::from_def_id_and_parts(assoc_item.def_id, Some(assoc_item.name()), kind, cx)
1517}
1518
1519fn first_non_private_clean_path<'tcx>(
1520    cx: &mut DocContext<'tcx>,
1521    path: &hir::Path<'tcx>,
1522    new_path_segments: &'tcx [hir::PathSegment<'tcx>],
1523    new_path_span: rustc_span::Span,
1524) -> Path {
1525    let new_hir_path =
1526        hir::Path { segments: new_path_segments, res: path.res, span: new_path_span };
1527    let mut new_clean_path = clean_path(&new_hir_path, cx);
1528    // In here we need to play with the path data one last time to provide it the
1529    // missing `args` and `res` of the final `Path` we get, which, since it comes
1530    // from a re-export, doesn't have the generics that were originally there, so
1531    // we add them by hand.
1532    if let Some(path_last) = path.segments.last().as_ref()
1533        && let Some(new_path_last) = new_clean_path.segments[..].last_mut()
1534        && let Some(path_last_args) = path_last.args.as_ref()
1535        && path_last.args.is_some()
1536    {
1537        assert!(new_path_last.args.is_empty());
1538        new_path_last.args = clean_generic_args(path_last_args, cx);
1539    }
1540    new_clean_path
1541}
1542
1543/// The goal of this function is to return the first `Path` which is not private (ie not private
1544/// or `doc(hidden)`). If it's not possible, it'll return the "end type".
1545///
1546/// If the path is not a re-export or is public, it'll return `None`.
1547fn first_non_private<'tcx>(
1548    cx: &mut DocContext<'tcx>,
1549    hir_id: hir::HirId,
1550    path: &hir::Path<'tcx>,
1551) -> Option<Path> {
1552    let target_def_id = path.res.opt_def_id()?;
1553    let (parent_def_id, ident) = match &path.segments {
1554        [] => return None,
1555        // Relative paths are available in the same scope as the owner.
1556        [leaf] => (cx.tcx.local_parent(hir_id.owner.def_id), leaf.ident),
1557        // So are self paths.
1558        [parent, leaf] if parent.ident.name == kw::SelfLower => {
1559            (cx.tcx.local_parent(hir_id.owner.def_id), leaf.ident)
1560        }
1561        // Crate paths are not. We start from the crate root.
1562        [parent, leaf] if matches!(parent.ident.name, kw::Crate | kw::PathRoot) => {
1563            (LOCAL_CRATE.as_def_id().as_local()?, leaf.ident)
1564        }
1565        [parent, leaf] if parent.ident.name == kw::Super => {
1566            let parent_mod = cx.tcx.parent_module(hir_id);
1567            if let Some(super_parent) = cx.tcx.opt_local_parent(parent_mod.to_local_def_id()) {
1568                (super_parent, leaf.ident)
1569            } else {
1570                // If we can't find the parent of the parent, then the parent is already the crate.
1571                (LOCAL_CRATE.as_def_id().as_local()?, leaf.ident)
1572            }
1573        }
1574        // Absolute paths are not. We start from the parent of the item.
1575        [.., parent, leaf] => (parent.res.opt_def_id()?.as_local()?, leaf.ident),
1576    };
1577    // First we try to get the `DefId` of the item.
1578    for child in
1579        cx.tcx.module_children_local(parent_def_id).iter().filter(move |c| c.ident == ident)
1580    {
1581        if let Res::Def(DefKind::Ctor(..), _) | Res::SelfCtor(..) = child.res {
1582            continue;
1583        }
1584
1585        if let Some(def_id) = child.res.opt_def_id()
1586            && target_def_id == def_id
1587        {
1588            let mut last_path_res = None;
1589            'reexps: for reexp in child.reexport_chain.iter() {
1590                if let Some(use_def_id) = reexp.id()
1591                    && let Some(local_use_def_id) = use_def_id.as_local()
1592                    && let hir::Node::Item(item) = cx.tcx.hir_node_by_def_id(local_use_def_id)
1593                    && let hir::ItemKind::Use(path, hir::UseKind::Single(_)) = item.kind
1594                {
1595                    for res in path.res.present_items() {
1596                        if let Res::Def(DefKind::Ctor(..), _) | Res::SelfCtor(..) = res {
1597                            continue;
1598                        }
1599                        if (cx.render_options.document_hidden ||
1600                            !cx.tcx.is_doc_hidden(use_def_id)) &&
1601                            // We never check for "cx.render_options.document_private"
1602                            // because if a re-export is not fully public, it's never
1603                            // documented.
1604                            cx.tcx.local_visibility(local_use_def_id).is_public()
1605                        {
1606                            break 'reexps;
1607                        }
1608                        last_path_res = Some((path, res));
1609                        continue 'reexps;
1610                    }
1611                }
1612            }
1613            if !child.reexport_chain.is_empty() {
1614                // So in here, we use the data we gathered from iterating the reexports. If
1615                // `last_path_res` is set, it can mean two things:
1616                //
1617                // 1. We found a public reexport.
1618                // 2. We didn't find a public reexport so it's the "end type" path.
1619                if let Some((new_path, _)) = last_path_res {
1620                    return Some(first_non_private_clean_path(
1621                        cx,
1622                        path,
1623                        new_path.segments,
1624                        new_path.span,
1625                    ));
1626                }
1627                // If `last_path_res` is `None`, it can mean two things:
1628                //
1629                // 1. The re-export is public, no need to change anything, just use the path as is.
1630                // 2. Nothing was found, so let's just return the original path.
1631                return None;
1632            }
1633        }
1634    }
1635    None
1636}
1637
1638fn clean_qpath<'tcx>(hir_ty: &hir::Ty<'tcx>, cx: &mut DocContext<'tcx>) -> Type {
1639    let hir::Ty { hir_id, span, ref kind } = *hir_ty;
1640    let hir::TyKind::Path(qpath) = kind else { unreachable!() };
1641
1642    match qpath {
1643        hir::QPath::Resolved(None, path) => {
1644            if let Res::Def(DefKind::TyParam, did) = path.res {
1645                if let Some(new_ty) = cx.args.get(&did).and_then(|p| p.as_ty()).cloned() {
1646                    return new_ty;
1647                }
1648                if let Some(bounds) = cx.impl_trait_bounds.remove(&did.into()) {
1649                    return ImplTrait(bounds);
1650                }
1651            }
1652
1653            if let Some(expanded) = maybe_expand_private_type_alias(cx, path) {
1654                expanded
1655            } else {
1656                // First we check if it's a private re-export.
1657                let path = if let Some(path) = first_non_private(cx, hir_id, path) {
1658                    path
1659                } else {
1660                    clean_path(path, cx)
1661                };
1662                resolve_type(cx, path)
1663            }
1664        }
1665        hir::QPath::Resolved(Some(qself), p) => {
1666            // Try to normalize `<X as Y>::T` to a type
1667            let ty = lower_ty(cx.tcx, hir_ty);
1668            // `hir_to_ty` can return projection types with escaping vars for GATs, e.g. `<() as Trait>::Gat<'_>`
1669            if !ty.has_escaping_bound_vars()
1670                && let Some(normalized_value) = normalize(cx, ty::Binder::dummy(ty))
1671            {
1672                return clean_middle_ty(normalized_value, cx, None, None);
1673            }
1674
1675            let trait_segments = &p.segments[..p.segments.len() - 1];
1676            let trait_def = cx.tcx.associated_item(p.res.def_id()).container_id(cx.tcx);
1677            let trait_ = self::Path {
1678                res: Res::Def(DefKind::Trait, trait_def),
1679                segments: trait_segments.iter().map(|x| clean_path_segment(x, cx)).collect(),
1680            };
1681            register_res(cx, trait_.res);
1682            let self_def_id = DefId::local(qself.hir_id.owner.def_id.local_def_index);
1683            let self_type = clean_ty(qself, cx);
1684            let should_fully_qualify =
1685                should_fully_qualify_path(Some(self_def_id), &trait_, &self_type);
1686            Type::QPath(Box::new(QPathData {
1687                assoc: clean_path_segment(p.segments.last().expect("segments were empty"), cx),
1688                should_fully_qualify,
1689                self_type,
1690                trait_: Some(trait_),
1691            }))
1692        }
1693        hir::QPath::TypeRelative(qself, segment) => {
1694            let ty = lower_ty(cx.tcx, hir_ty);
1695            let self_type = clean_ty(qself, cx);
1696
1697            let (trait_, should_fully_qualify) = match ty.kind() {
1698                ty::Alias(ty::Projection, proj) => {
1699                    let res = Res::Def(DefKind::Trait, proj.trait_ref(cx.tcx).def_id);
1700                    let trait_ = clean_path(&hir::Path { span, res, segments: &[] }, cx);
1701                    register_res(cx, trait_.res);
1702                    let self_def_id = res.opt_def_id();
1703                    let should_fully_qualify =
1704                        should_fully_qualify_path(self_def_id, &trait_, &self_type);
1705
1706                    (Some(trait_), should_fully_qualify)
1707                }
1708                ty::Alias(ty::Inherent, _) => (None, false),
1709                // Rustdoc handles `ty::Error`s by turning them into `Type::Infer`s.
1710                ty::Error(_) => return Type::Infer,
1711                _ => bug!("clean: expected associated type, found `{ty:?}`"),
1712            };
1713
1714            Type::QPath(Box::new(QPathData {
1715                assoc: clean_path_segment(segment, cx),
1716                should_fully_qualify,
1717                self_type,
1718                trait_,
1719            }))
1720        }
1721        hir::QPath::LangItem(..) => bug!("clean: requiring documentation of lang item"),
1722    }
1723}
1724
1725fn maybe_expand_private_type_alias<'tcx>(
1726    cx: &mut DocContext<'tcx>,
1727    path: &hir::Path<'tcx>,
1728) -> Option<Type> {
1729    let Res::Def(DefKind::TyAlias, def_id) = path.res else { return None };
1730    // Substitute private type aliases
1731    let def_id = def_id.as_local()?;
1732    let alias = if !cx.cache.effective_visibilities.is_exported(cx.tcx, def_id.to_def_id())
1733        && !cx.current_type_aliases.contains_key(&def_id.to_def_id())
1734    {
1735        &cx.tcx.hir_expect_item(def_id).kind
1736    } else {
1737        return None;
1738    };
1739    let hir::ItemKind::TyAlias(_, generics, ty) = alias else { return None };
1740
1741    let final_seg = &path.segments.last().expect("segments were empty");
1742    let mut args = DefIdMap::default();
1743    let generic_args = final_seg.args();
1744
1745    let mut indices: hir::GenericParamCount = Default::default();
1746    for param in generics.params.iter() {
1747        match param.kind {
1748            hir::GenericParamKind::Lifetime { .. } => {
1749                let mut j = 0;
1750                let lifetime = generic_args.args.iter().find_map(|arg| match arg {
1751                    hir::GenericArg::Lifetime(lt) => {
1752                        if indices.lifetimes == j {
1753                            return Some(lt);
1754                        }
1755                        j += 1;
1756                        None
1757                    }
1758                    _ => None,
1759                });
1760                if let Some(lt) = lifetime {
1761                    let lt = if !lt.is_anonymous() {
1762                        clean_lifetime(lt, cx)
1763                    } else {
1764                        Lifetime::elided()
1765                    };
1766                    args.insert(param.def_id.to_def_id(), GenericArg::Lifetime(lt));
1767                }
1768                indices.lifetimes += 1;
1769            }
1770            hir::GenericParamKind::Type { ref default, .. } => {
1771                let mut j = 0;
1772                let type_ = generic_args.args.iter().find_map(|arg| match arg {
1773                    hir::GenericArg::Type(ty) => {
1774                        if indices.types == j {
1775                            return Some(ty.as_unambig_ty());
1776                        }
1777                        j += 1;
1778                        None
1779                    }
1780                    _ => None,
1781                });
1782                if let Some(ty) = type_.or(*default) {
1783                    args.insert(param.def_id.to_def_id(), GenericArg::Type(clean_ty(ty, cx)));
1784                }
1785                indices.types += 1;
1786            }
1787            // FIXME(#82852): Instantiate const parameters.
1788            hir::GenericParamKind::Const { .. } => {}
1789        }
1790    }
1791
1792    Some(cx.enter_alias(args, def_id.to_def_id(), |cx| {
1793        cx.with_param_env(def_id.to_def_id(), |cx| clean_ty(ty, cx))
1794    }))
1795}
1796
1797pub(crate) fn clean_ty<'tcx>(ty: &hir::Ty<'tcx>, cx: &mut DocContext<'tcx>) -> Type {
1798    use rustc_hir::*;
1799
1800    match ty.kind {
1801        TyKind::Never => Primitive(PrimitiveType::Never),
1802        TyKind::Ptr(ref m) => RawPointer(m.mutbl, Box::new(clean_ty(m.ty, cx))),
1803        TyKind::Ref(l, ref m) => {
1804            let lifetime = if l.is_anonymous() { None } else { Some(clean_lifetime(l, cx)) };
1805            BorrowedRef { lifetime, mutability: m.mutbl, type_: Box::new(clean_ty(m.ty, cx)) }
1806        }
1807        TyKind::Slice(ty) => Slice(Box::new(clean_ty(ty, cx))),
1808        TyKind::Pat(ty, pat) => Type::Pat(Box::new(clean_ty(ty, cx)), format!("{pat:?}").into()),
1809        TyKind::Array(ty, const_arg) => {
1810            // NOTE(min_const_generics): We can't use `const_eval_poly` for constants
1811            // as we currently do not supply the parent generics to anonymous constants
1812            // but do allow `ConstKind::Param`.
1813            //
1814            // `const_eval_poly` tries to first substitute generic parameters which
1815            // results in an ICE while manually constructing the constant and using `eval`
1816            // does nothing for `ConstKind::Param`.
1817            let length = match const_arg.kind {
1818                hir::ConstArgKind::Infer(..) => "_".to_string(),
1819                hir::ConstArgKind::Anon(hir::AnonConst { def_id, .. }) => {
1820                    let ct = lower_const_arg_for_rustdoc(cx.tcx, const_arg, FeedConstTy::No);
1821                    let typing_env = ty::TypingEnv::post_analysis(cx.tcx, *def_id);
1822                    let ct = cx.tcx.normalize_erasing_regions(typing_env, ct);
1823                    print_const(cx, ct)
1824                }
1825                hir::ConstArgKind::Path(..) => {
1826                    let ct = lower_const_arg_for_rustdoc(cx.tcx, const_arg, FeedConstTy::No);
1827                    print_const(cx, ct)
1828                }
1829            };
1830            Array(Box::new(clean_ty(ty, cx)), length.into())
1831        }
1832        TyKind::Tup(tys) => Tuple(tys.iter().map(|ty| clean_ty(ty, cx)).collect()),
1833        TyKind::OpaqueDef(ty) => {
1834            ImplTrait(ty.bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect())
1835        }
1836        TyKind::Path(_) => clean_qpath(ty, cx),
1837        TyKind::TraitObject(bounds, lifetime) => {
1838            let bounds = bounds.iter().map(|bound| clean_poly_trait_ref(bound, cx)).collect();
1839            let lifetime = if !lifetime.is_elided() {
1840                Some(clean_lifetime(lifetime.pointer(), cx))
1841            } else {
1842                None
1843            };
1844            DynTrait(bounds, lifetime)
1845        }
1846        TyKind::FnPtr(barefn) => BareFunction(Box::new(clean_bare_fn_ty(barefn, cx))),
1847        TyKind::UnsafeBinder(unsafe_binder_ty) => {
1848            UnsafeBinder(Box::new(clean_unsafe_binder_ty(unsafe_binder_ty, cx)))
1849        }
1850        // Rustdoc handles `TyKind::Err`s by turning them into `Type::Infer`s.
1851        TyKind::Infer(())
1852        | TyKind::Err(_)
1853        | TyKind::Typeof(..)
1854        | TyKind::InferDelegation(..)
1855        | TyKind::TraitAscription(_) => Infer,
1856    }
1857}
1858
1859/// Returns `None` if the type could not be normalized
1860fn normalize<'tcx>(
1861    cx: &DocContext<'tcx>,
1862    ty: ty::Binder<'tcx, Ty<'tcx>>,
1863) -> Option<ty::Binder<'tcx, Ty<'tcx>>> {
1864    // HACK: low-churn fix for #79459 while we wait for a trait normalization fix
1865    if !cx.tcx.sess.opts.unstable_opts.normalize_docs {
1866        return None;
1867    }
1868
1869    use rustc_middle::traits::ObligationCause;
1870    use rustc_trait_selection::infer::TyCtxtInferExt;
1871    use rustc_trait_selection::traits::query::normalize::QueryNormalizeExt;
1872
1873    // Try to normalize `<X as Y>::T` to a type
1874    let infcx = cx.tcx.infer_ctxt().build(TypingMode::non_body_analysis());
1875    let normalized = infcx
1876        .at(&ObligationCause::dummy(), cx.param_env)
1877        .query_normalize(ty)
1878        .map(|resolved| infcx.resolve_vars_if_possible(resolved.value));
1879    match normalized {
1880        Ok(normalized_value) => {
1881            debug!("normalized {ty:?} to {normalized_value:?}");
1882            Some(normalized_value)
1883        }
1884        Err(err) => {
1885            debug!("failed to normalize {ty:?}: {err:?}");
1886            None
1887        }
1888    }
1889}
1890
1891fn clean_trait_object_lifetime_bound<'tcx>(
1892    region: ty::Region<'tcx>,
1893    container: Option<ContainerTy<'_, 'tcx>>,
1894    preds: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
1895    tcx: TyCtxt<'tcx>,
1896) -> Option<Lifetime> {
1897    if can_elide_trait_object_lifetime_bound(region, container, preds, tcx) {
1898        return None;
1899    }
1900
1901    // Since there is a semantic difference between an implicitly elided (i.e. "defaulted") object
1902    // lifetime and an explicitly elided object lifetime (`'_`), we intentionally don't hide the
1903    // latter contrary to `clean_middle_region`.
1904    match region.kind() {
1905        ty::ReStatic => Some(Lifetime::statik()),
1906        ty::ReEarlyParam(region) => Some(Lifetime(region.name)),
1907        ty::ReBound(_, ty::BoundRegion { kind: ty::BoundRegionKind::Named(def_id), .. }) => {
1908            Some(Lifetime(tcx.item_name(def_id)))
1909        }
1910        ty::ReBound(..)
1911        | ty::ReLateParam(_)
1912        | ty::ReVar(_)
1913        | ty::RePlaceholder(_)
1914        | ty::ReErased
1915        | ty::ReError(_) => None,
1916    }
1917}
1918
1919fn can_elide_trait_object_lifetime_bound<'tcx>(
1920    region: ty::Region<'tcx>,
1921    container: Option<ContainerTy<'_, 'tcx>>,
1922    preds: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
1923    tcx: TyCtxt<'tcx>,
1924) -> bool {
1925    // Below we quote extracts from https://doc.rust-lang.org/stable/reference/lifetime-elision.html#default-trait-object-lifetimes
1926
1927    // > If the trait object is used as a type argument of a generic type then the containing type is
1928    // > first used to try to infer a bound.
1929    let default = container
1930        .map_or(ObjectLifetimeDefault::Empty, |container| container.object_lifetime_default(tcx));
1931
1932    // > If there is a unique bound from the containing type then that is the default
1933    // If there is a default object lifetime and the given region is lexically equal to it, elide it.
1934    match default {
1935        ObjectLifetimeDefault::Static => return region.kind() == ty::ReStatic,
1936        // FIXME(fmease): Don't compare lexically but respect de Bruijn indices etc. to handle shadowing correctly.
1937        ObjectLifetimeDefault::Arg(default) => {
1938            return region.get_name(tcx) == default.get_name(tcx);
1939        }
1940        // > If there is more than one bound from the containing type then an explicit bound must be specified
1941        // Due to ambiguity there is no default trait-object lifetime and thus elision is impossible.
1942        // Don't elide the lifetime.
1943        ObjectLifetimeDefault::Ambiguous => return false,
1944        // There is no meaningful bound. Further processing is needed...
1945        ObjectLifetimeDefault::Empty => {}
1946    }
1947
1948    // > If neither of those rules apply, then the bounds on the trait are used:
1949    match *object_region_bounds(tcx, preds) {
1950        // > If the trait has no lifetime bounds, then the lifetime is inferred in expressions
1951        // > and is 'static outside of expressions.
1952        // FIXME: If we are in an expression context (i.e. fn bodies and const exprs) then the default is
1953        // `'_` and not `'static`. Only if we are in a non-expression one, the default is `'static`.
1954        // Note however that at the time of this writing it should be fine to disregard this subtlety
1955        // as we neither render const exprs faithfully anyway (hiding them in some places or using `_` instead)
1956        // nor show the contents of fn bodies.
1957        [] => region.kind() == ty::ReStatic,
1958        // > If the trait is defined with a single lifetime bound then that bound is used.
1959        // > If 'static is used for any lifetime bound then 'static is used.
1960        // FIXME(fmease): Don't compare lexically but respect de Bruijn indices etc. to handle shadowing correctly.
1961        [object_region] => object_region.get_name(tcx) == region.get_name(tcx),
1962        // There are several distinct trait regions and none are `'static`.
1963        // Due to ambiguity there is no default trait-object lifetime and thus elision is impossible.
1964        // Don't elide the lifetime.
1965        _ => false,
1966    }
1967}
1968
1969#[derive(Debug)]
1970pub(crate) enum ContainerTy<'a, 'tcx> {
1971    Ref(ty::Region<'tcx>),
1972    Regular {
1973        ty: DefId,
1974        /// The arguments *have* to contain an arg for the self type if the corresponding generics
1975        /// contain a self type.
1976        args: ty::Binder<'tcx, &'a [ty::GenericArg<'tcx>]>,
1977        arg: usize,
1978    },
1979}
1980
1981impl<'tcx> ContainerTy<'_, 'tcx> {
1982    fn object_lifetime_default(self, tcx: TyCtxt<'tcx>) -> ObjectLifetimeDefault<'tcx> {
1983        match self {
1984            Self::Ref(region) => ObjectLifetimeDefault::Arg(region),
1985            Self::Regular { ty: container, args, arg: index } => {
1986                let (DefKind::Struct
1987                | DefKind::Union
1988                | DefKind::Enum
1989                | DefKind::TyAlias
1990                | DefKind::Trait) = tcx.def_kind(container)
1991                else {
1992                    return ObjectLifetimeDefault::Empty;
1993                };
1994
1995                let generics = tcx.generics_of(container);
1996                debug_assert_eq!(generics.parent_count, 0);
1997
1998                let param = generics.own_params[index].def_id;
1999                let default = tcx.object_lifetime_default(param);
2000                match default {
2001                    rbv::ObjectLifetimeDefault::Param(lifetime) => {
2002                        // The index is relative to the parent generics but since we don't have any,
2003                        // we don't need to translate it.
2004                        let index = generics.param_def_id_to_index[&lifetime];
2005                        let arg = args.skip_binder()[index as usize].expect_region();
2006                        ObjectLifetimeDefault::Arg(arg)
2007                    }
2008                    rbv::ObjectLifetimeDefault::Empty => ObjectLifetimeDefault::Empty,
2009                    rbv::ObjectLifetimeDefault::Static => ObjectLifetimeDefault::Static,
2010                    rbv::ObjectLifetimeDefault::Ambiguous => ObjectLifetimeDefault::Ambiguous,
2011                }
2012            }
2013        }
2014    }
2015}
2016
2017#[derive(Debug, Clone, Copy)]
2018pub(crate) enum ObjectLifetimeDefault<'tcx> {
2019    Empty,
2020    Static,
2021    Ambiguous,
2022    Arg(ty::Region<'tcx>),
2023}
2024
2025#[instrument(level = "trace", skip(cx), ret)]
2026pub(crate) fn clean_middle_ty<'tcx>(
2027    bound_ty: ty::Binder<'tcx, Ty<'tcx>>,
2028    cx: &mut DocContext<'tcx>,
2029    parent_def_id: Option<DefId>,
2030    container: Option<ContainerTy<'_, 'tcx>>,
2031) -> Type {
2032    let bound_ty = normalize(cx, bound_ty).unwrap_or(bound_ty);
2033    match *bound_ty.skip_binder().kind() {
2034        ty::Never => Primitive(PrimitiveType::Never),
2035        ty::Bool => Primitive(PrimitiveType::Bool),
2036        ty::Char => Primitive(PrimitiveType::Char),
2037        ty::Int(int_ty) => Primitive(int_ty.into()),
2038        ty::Uint(uint_ty) => Primitive(uint_ty.into()),
2039        ty::Float(float_ty) => Primitive(float_ty.into()),
2040        ty::Str => Primitive(PrimitiveType::Str),
2041        ty::Slice(ty) => Slice(Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None))),
2042        ty::Pat(ty, pat) => Type::Pat(
2043            Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None)),
2044            format!("{pat:?}").into_boxed_str(),
2045        ),
2046        ty::Array(ty, n) => {
2047            let n = cx.tcx.normalize_erasing_regions(cx.typing_env(), n);
2048            let n = print_const(cx, n);
2049            Array(Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None)), n.into())
2050        }
2051        ty::RawPtr(ty, mutbl) => {
2052            RawPointer(mutbl, Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None)))
2053        }
2054        ty::Ref(r, ty, mutbl) => BorrowedRef {
2055            lifetime: clean_middle_region(r, cx),
2056            mutability: mutbl,
2057            type_: Box::new(clean_middle_ty(
2058                bound_ty.rebind(ty),
2059                cx,
2060                None,
2061                Some(ContainerTy::Ref(r)),
2062            )),
2063        },
2064        ty::FnDef(..) | ty::FnPtr(..) => {
2065            // FIXME: should we merge the outer and inner binders somehow?
2066            let sig = bound_ty.skip_binder().fn_sig(cx.tcx);
2067            let decl = clean_poly_fn_sig(cx, None, sig);
2068            let generic_params = clean_bound_vars(sig.bound_vars(), cx);
2069
2070            BareFunction(Box::new(BareFunctionDecl {
2071                safety: sig.safety(),
2072                generic_params,
2073                decl,
2074                abi: sig.abi(),
2075            }))
2076        }
2077        ty::UnsafeBinder(inner) => {
2078            let generic_params = clean_bound_vars(inner.bound_vars(), cx);
2079            let ty = clean_middle_ty(inner.into(), cx, None, None);
2080            UnsafeBinder(Box::new(UnsafeBinderTy { generic_params, ty }))
2081        }
2082        ty::Adt(def, args) => {
2083            let did = def.did();
2084            let kind = match def.adt_kind() {
2085                AdtKind::Struct => ItemType::Struct,
2086                AdtKind::Union => ItemType::Union,
2087                AdtKind::Enum => ItemType::Enum,
2088            };
2089            inline::record_extern_fqn(cx, did, kind);
2090            let path = clean_middle_path(cx, did, false, ThinVec::new(), bound_ty.rebind(args));
2091            Type::Path { path }
2092        }
2093        ty::Foreign(did) => {
2094            inline::record_extern_fqn(cx, did, ItemType::ForeignType);
2095            let path = clean_middle_path(
2096                cx,
2097                did,
2098                false,
2099                ThinVec::new(),
2100                ty::Binder::dummy(ty::GenericArgs::empty()),
2101            );
2102            Type::Path { path }
2103        }
2104        ty::Dynamic(obj, reg, _) => {
2105            // HACK: pick the first `did` as the `did` of the trait object. Someone
2106            // might want to implement "native" support for marker-trait-only
2107            // trait objects.
2108            let mut dids = obj.auto_traits();
2109            let did = obj
2110                .principal_def_id()
2111                .or_else(|| dids.next())
2112                .unwrap_or_else(|| panic!("found trait object `{bound_ty:?}` with no traits?"));
2113            let args = match obj.principal() {
2114                Some(principal) => principal.map_bound(|p| p.args),
2115                // marker traits have no args.
2116                _ => ty::Binder::dummy(ty::GenericArgs::empty()),
2117            };
2118
2119            inline::record_extern_fqn(cx, did, ItemType::Trait);
2120
2121            let lifetime = clean_trait_object_lifetime_bound(reg, container, obj, cx.tcx);
2122
2123            let mut bounds = dids
2124                .map(|did| {
2125                    let empty = ty::Binder::dummy(ty::GenericArgs::empty());
2126                    let path = clean_middle_path(cx, did, false, ThinVec::new(), empty);
2127                    inline::record_extern_fqn(cx, did, ItemType::Trait);
2128                    PolyTrait { trait_: path, generic_params: Vec::new() }
2129                })
2130                .collect::<Vec<_>>();
2131
2132            let constraints = obj
2133                .projection_bounds()
2134                .map(|pb| AssocItemConstraint {
2135                    assoc: projection_to_path_segment(
2136                        pb.map_bound(|pb| {
2137                            pb.with_self_ty(cx.tcx, cx.tcx.types.trait_object_dummy_self)
2138                                .projection_term
2139                        }),
2140                        cx,
2141                    ),
2142                    kind: AssocItemConstraintKind::Equality {
2143                        term: clean_middle_term(pb.map_bound(|pb| pb.term), cx),
2144                    },
2145                })
2146                .collect();
2147
2148            let late_bound_regions: FxIndexSet<_> = obj
2149                .iter()
2150                .flat_map(|pred| pred.bound_vars())
2151                .filter_map(|var| match var {
2152                    ty::BoundVariableKind::Region(ty::BoundRegionKind::Named(def_id)) => {
2153                        let name = cx.tcx.item_name(def_id);
2154                        if name != kw::UnderscoreLifetime {
2155                            Some(GenericParamDef::lifetime(def_id, name))
2156                        } else {
2157                            None
2158                        }
2159                    }
2160                    _ => None,
2161                })
2162                .collect();
2163            let late_bound_regions = late_bound_regions.into_iter().collect();
2164
2165            let path = clean_middle_path(cx, did, false, constraints, args);
2166            bounds.insert(0, PolyTrait { trait_: path, generic_params: late_bound_regions });
2167
2168            DynTrait(bounds, lifetime)
2169        }
2170        ty::Tuple(t) => {
2171            Tuple(t.iter().map(|t| clean_middle_ty(bound_ty.rebind(t), cx, None, None)).collect())
2172        }
2173
2174        ty::Alias(ty::Projection, alias_ty @ ty::AliasTy { def_id, args, .. }) => {
2175            if cx.tcx.is_impl_trait_in_trait(def_id) {
2176                clean_middle_opaque_bounds(cx, def_id, args)
2177            } else {
2178                Type::QPath(Box::new(clean_projection(
2179                    bound_ty.rebind(alias_ty.into()),
2180                    cx,
2181                    parent_def_id,
2182                )))
2183            }
2184        }
2185
2186        ty::Alias(ty::Inherent, alias_ty @ ty::AliasTy { def_id, .. }) => {
2187            let alias_ty = bound_ty.rebind(alias_ty);
2188            let self_type = clean_middle_ty(alias_ty.map_bound(|ty| ty.self_ty()), cx, None, None);
2189
2190            Type::QPath(Box::new(QPathData {
2191                assoc: PathSegment {
2192                    name: cx.tcx.item_name(def_id),
2193                    args: GenericArgs::AngleBracketed {
2194                        args: clean_middle_generic_args(
2195                            cx,
2196                            alias_ty.map_bound(|ty| ty.args.as_slice()),
2197                            true,
2198                            def_id,
2199                        ),
2200                        constraints: Default::default(),
2201                    },
2202                },
2203                should_fully_qualify: false,
2204                self_type,
2205                trait_: None,
2206            }))
2207        }
2208
2209        ty::Alias(ty::Free, ty::AliasTy { def_id, args, .. }) => {
2210            if cx.tcx.features().lazy_type_alias() {
2211                // Free type alias `data` represents the `type X` in `type X = Y`. If we need `Y`,
2212                // we need to use `type_of`.
2213                let path =
2214                    clean_middle_path(cx, def_id, false, ThinVec::new(), bound_ty.rebind(args));
2215                Type::Path { path }
2216            } else {
2217                let ty = cx.tcx.type_of(def_id).instantiate(cx.tcx, args);
2218                clean_middle_ty(bound_ty.rebind(ty), cx, None, None)
2219            }
2220        }
2221
2222        ty::Param(ref p) => {
2223            if let Some(bounds) = cx.impl_trait_bounds.remove(&p.index.into()) {
2224                ImplTrait(bounds)
2225            } else if p.name == kw::SelfUpper {
2226                SelfTy
2227            } else {
2228                Generic(p.name)
2229            }
2230        }
2231
2232        ty::Bound(_, ref ty) => match ty.kind {
2233            ty::BoundTyKind::Param(def_id) => Generic(cx.tcx.item_name(def_id)),
2234            ty::BoundTyKind::Anon => panic!("unexpected anonymous bound type variable"),
2235        },
2236
2237        ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => {
2238            // If it's already in the same alias, don't get an infinite loop.
2239            if cx.current_type_aliases.contains_key(&def_id) {
2240                let path =
2241                    clean_middle_path(cx, def_id, false, ThinVec::new(), bound_ty.rebind(args));
2242                Type::Path { path }
2243            } else {
2244                *cx.current_type_aliases.entry(def_id).or_insert(0) += 1;
2245                // Grab the "TraitA + TraitB" from `impl TraitA + TraitB`,
2246                // by looking up the bounds associated with the def_id.
2247                let ty = clean_middle_opaque_bounds(cx, def_id, args);
2248                if let Some(count) = cx.current_type_aliases.get_mut(&def_id) {
2249                    *count -= 1;
2250                    if *count == 0 {
2251                        cx.current_type_aliases.remove(&def_id);
2252                    }
2253                }
2254                ty
2255            }
2256        }
2257
2258        ty::Closure(..) => panic!("Closure"),
2259        ty::CoroutineClosure(..) => panic!("CoroutineClosure"),
2260        ty::Coroutine(..) => panic!("Coroutine"),
2261        ty::Placeholder(..) => panic!("Placeholder"),
2262        ty::CoroutineWitness(..) => panic!("CoroutineWitness"),
2263        ty::Infer(..) => panic!("Infer"),
2264
2265        ty::Error(_) => FatalError.raise(),
2266    }
2267}
2268
2269fn clean_middle_opaque_bounds<'tcx>(
2270    cx: &mut DocContext<'tcx>,
2271    impl_trait_def_id: DefId,
2272    args: ty::GenericArgsRef<'tcx>,
2273) -> Type {
2274    let mut has_sized = false;
2275
2276    let bounds: Vec<_> = cx
2277        .tcx
2278        .explicit_item_bounds(impl_trait_def_id)
2279        .iter_instantiated_copied(cx.tcx, args)
2280        .collect();
2281
2282    let mut bounds = bounds
2283        .iter()
2284        .filter_map(|(bound, _)| {
2285            let bound_predicate = bound.kind();
2286            let trait_ref = match bound_predicate.skip_binder() {
2287                ty::ClauseKind::Trait(tr) => bound_predicate.rebind(tr.trait_ref),
2288                ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(_ty, reg)) => {
2289                    return clean_middle_region(reg, cx).map(GenericBound::Outlives);
2290                }
2291                _ => return None,
2292            };
2293
2294            // FIXME(sized-hierarchy): Always skip `MetaSized` bounds so that only `?Sized`
2295            // is shown and none of the new sizedness traits leak into documentation.
2296            if cx.tcx.is_lang_item(trait_ref.def_id(), LangItem::MetaSized) {
2297                return None;
2298            }
2299
2300            if let Some(sized) = cx.tcx.lang_items().sized_trait()
2301                && trait_ref.def_id() == sized
2302            {
2303                has_sized = true;
2304                return None;
2305            }
2306
2307            let bindings: ThinVec<_> = bounds
2308                .iter()
2309                .filter_map(|(bound, _)| {
2310                    let bound = bound.kind();
2311                    if let ty::ClauseKind::Projection(proj_pred) = bound.skip_binder()
2312                        && proj_pred.projection_term.trait_ref(cx.tcx) == trait_ref.skip_binder()
2313                    {
2314                        return Some(AssocItemConstraint {
2315                            assoc: projection_to_path_segment(
2316                                bound.rebind(proj_pred.projection_term),
2317                                cx,
2318                            ),
2319                            kind: AssocItemConstraintKind::Equality {
2320                                term: clean_middle_term(bound.rebind(proj_pred.term), cx),
2321                            },
2322                        });
2323                    }
2324                    None
2325                })
2326                .collect();
2327
2328            Some(clean_poly_trait_ref_with_constraints(cx, trait_ref, bindings))
2329        })
2330        .collect::<Vec<_>>();
2331
2332    if !has_sized {
2333        bounds.push(GenericBound::maybe_sized(cx));
2334    }
2335
2336    // Move trait bounds to the front.
2337    bounds.sort_by_key(|b| !b.is_trait_bound());
2338
2339    // Add back a `Sized` bound if there are no *trait* bounds remaining (incl. `?Sized`).
2340    // Since all potential trait bounds are at the front we can just check the first bound.
2341    if bounds.first().is_none_or(|b| !b.is_trait_bound()) {
2342        bounds.insert(0, GenericBound::sized(cx));
2343    }
2344
2345    if let Some(args) = cx.tcx.rendered_precise_capturing_args(impl_trait_def_id) {
2346        bounds.push(GenericBound::Use(
2347            args.iter()
2348                .map(|arg| match arg {
2349                    hir::PreciseCapturingArgKind::Lifetime(lt) => {
2350                        PreciseCapturingArg::Lifetime(Lifetime(*lt))
2351                    }
2352                    hir::PreciseCapturingArgKind::Param(param) => {
2353                        PreciseCapturingArg::Param(*param)
2354                    }
2355                })
2356                .collect(),
2357        ));
2358    }
2359
2360    ImplTrait(bounds)
2361}
2362
2363pub(crate) fn clean_field<'tcx>(field: &hir::FieldDef<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
2364    clean_field_with_def_id(field.def_id.to_def_id(), field.ident.name, clean_ty(field.ty, cx), cx)
2365}
2366
2367pub(crate) fn clean_middle_field(field: &ty::FieldDef, cx: &mut DocContext<'_>) -> Item {
2368    clean_field_with_def_id(
2369        field.did,
2370        field.name,
2371        clean_middle_ty(
2372            ty::Binder::dummy(cx.tcx.type_of(field.did).instantiate_identity()),
2373            cx,
2374            Some(field.did),
2375            None,
2376        ),
2377        cx,
2378    )
2379}
2380
2381pub(crate) fn clean_field_with_def_id(
2382    def_id: DefId,
2383    name: Symbol,
2384    ty: Type,
2385    cx: &mut DocContext<'_>,
2386) -> Item {
2387    Item::from_def_id_and_parts(def_id, Some(name), StructFieldItem(ty), cx)
2388}
2389
2390pub(crate) fn clean_variant_def(variant: &ty::VariantDef, cx: &mut DocContext<'_>) -> Item {
2391    let discriminant = match variant.discr {
2392        ty::VariantDiscr::Explicit(def_id) => Some(Discriminant { expr: None, value: def_id }),
2393        ty::VariantDiscr::Relative(_) => None,
2394    };
2395
2396    let kind = match variant.ctor_kind() {
2397        Some(CtorKind::Const) => VariantKind::CLike,
2398        Some(CtorKind::Fn) => VariantKind::Tuple(
2399            variant.fields.iter().map(|field| clean_middle_field(field, cx)).collect(),
2400        ),
2401        None => VariantKind::Struct(VariantStruct {
2402            fields: variant.fields.iter().map(|field| clean_middle_field(field, cx)).collect(),
2403        }),
2404    };
2405
2406    Item::from_def_id_and_parts(
2407        variant.def_id,
2408        Some(variant.name),
2409        VariantItem(Variant { kind, discriminant }),
2410        cx,
2411    )
2412}
2413
2414pub(crate) fn clean_variant_def_with_args<'tcx>(
2415    variant: &ty::VariantDef,
2416    args: &GenericArgsRef<'tcx>,
2417    cx: &mut DocContext<'tcx>,
2418) -> Item {
2419    let discriminant = match variant.discr {
2420        ty::VariantDiscr::Explicit(def_id) => Some(Discriminant { expr: None, value: def_id }),
2421        ty::VariantDiscr::Relative(_) => None,
2422    };
2423
2424    use rustc_middle::traits::ObligationCause;
2425    use rustc_trait_selection::infer::TyCtxtInferExt;
2426    use rustc_trait_selection::traits::query::normalize::QueryNormalizeExt;
2427
2428    let infcx = cx.tcx.infer_ctxt().build(TypingMode::non_body_analysis());
2429    let kind = match variant.ctor_kind() {
2430        Some(CtorKind::Const) => VariantKind::CLike,
2431        Some(CtorKind::Fn) => VariantKind::Tuple(
2432            variant
2433                .fields
2434                .iter()
2435                .map(|field| {
2436                    let ty = cx.tcx.type_of(field.did).instantiate(cx.tcx, args);
2437
2438                    // normalize the type to only show concrete types
2439                    // note: we do not use try_normalize_erasing_regions since we
2440                    // do care about showing the regions
2441                    let ty = infcx
2442                        .at(&ObligationCause::dummy(), cx.param_env)
2443                        .query_normalize(ty)
2444                        .map(|normalized| normalized.value)
2445                        .unwrap_or(ty);
2446
2447                    clean_field_with_def_id(
2448                        field.did,
2449                        field.name,
2450                        clean_middle_ty(ty::Binder::dummy(ty), cx, Some(field.did), None),
2451                        cx,
2452                    )
2453                })
2454                .collect(),
2455        ),
2456        None => VariantKind::Struct(VariantStruct {
2457            fields: variant
2458                .fields
2459                .iter()
2460                .map(|field| {
2461                    let ty = cx.tcx.type_of(field.did).instantiate(cx.tcx, args);
2462
2463                    // normalize the type to only show concrete types
2464                    // note: we do not use try_normalize_erasing_regions since we
2465                    // do care about showing the regions
2466                    let ty = infcx
2467                        .at(&ObligationCause::dummy(), cx.param_env)
2468                        .query_normalize(ty)
2469                        .map(|normalized| normalized.value)
2470                        .unwrap_or(ty);
2471
2472                    clean_field_with_def_id(
2473                        field.did,
2474                        field.name,
2475                        clean_middle_ty(ty::Binder::dummy(ty), cx, Some(field.did), None),
2476                        cx,
2477                    )
2478                })
2479                .collect(),
2480        }),
2481    };
2482
2483    Item::from_def_id_and_parts(
2484        variant.def_id,
2485        Some(variant.name),
2486        VariantItem(Variant { kind, discriminant }),
2487        cx,
2488    )
2489}
2490
2491fn clean_variant_data<'tcx>(
2492    variant: &hir::VariantData<'tcx>,
2493    disr_expr: &Option<&hir::AnonConst>,
2494    cx: &mut DocContext<'tcx>,
2495) -> Variant {
2496    let discriminant = disr_expr
2497        .map(|disr| Discriminant { expr: Some(disr.body), value: disr.def_id.to_def_id() });
2498
2499    let kind = match variant {
2500        hir::VariantData::Struct { fields, .. } => VariantKind::Struct(VariantStruct {
2501            fields: fields.iter().map(|x| clean_field(x, cx)).collect(),
2502        }),
2503        hir::VariantData::Tuple(..) => {
2504            VariantKind::Tuple(variant.fields().iter().map(|x| clean_field(x, cx)).collect())
2505        }
2506        hir::VariantData::Unit(..) => VariantKind::CLike,
2507    };
2508
2509    Variant { discriminant, kind }
2510}
2511
2512fn clean_path<'tcx>(path: &hir::Path<'tcx>, cx: &mut DocContext<'tcx>) -> Path {
2513    Path {
2514        res: path.res,
2515        segments: path.segments.iter().map(|x| clean_path_segment(x, cx)).collect(),
2516    }
2517}
2518
2519fn clean_generic_args<'tcx>(
2520    generic_args: &hir::GenericArgs<'tcx>,
2521    cx: &mut DocContext<'tcx>,
2522) -> GenericArgs {
2523    match generic_args.parenthesized {
2524        hir::GenericArgsParentheses::No => {
2525            let args = generic_args
2526                .args
2527                .iter()
2528                .map(|arg| match arg {
2529                    hir::GenericArg::Lifetime(lt) if !lt.is_anonymous() => {
2530                        GenericArg::Lifetime(clean_lifetime(lt, cx))
2531                    }
2532                    hir::GenericArg::Lifetime(_) => GenericArg::Lifetime(Lifetime::elided()),
2533                    hir::GenericArg::Type(ty) => GenericArg::Type(clean_ty(ty.as_unambig_ty(), cx)),
2534                    hir::GenericArg::Const(ct) => {
2535                        GenericArg::Const(Box::new(clean_const(ct.as_unambig_ct(), cx)))
2536                    }
2537                    hir::GenericArg::Infer(_inf) => GenericArg::Infer,
2538                })
2539                .collect();
2540            let constraints = generic_args
2541                .constraints
2542                .iter()
2543                .map(|c| clean_assoc_item_constraint(c, cx))
2544                .collect::<ThinVec<_>>();
2545            GenericArgs::AngleBracketed { args, constraints }
2546        }
2547        hir::GenericArgsParentheses::ParenSugar => {
2548            let Some((inputs, output)) = generic_args.paren_sugar_inputs_output() else {
2549                bug!();
2550            };
2551            let inputs = inputs.iter().map(|x| clean_ty(x, cx)).collect();
2552            let output = match output.kind {
2553                hir::TyKind::Tup(&[]) => None,
2554                _ => Some(Box::new(clean_ty(output, cx))),
2555            };
2556            GenericArgs::Parenthesized { inputs, output }
2557        }
2558        hir::GenericArgsParentheses::ReturnTypeNotation => GenericArgs::ReturnTypeNotation,
2559    }
2560}
2561
2562fn clean_path_segment<'tcx>(
2563    path: &hir::PathSegment<'tcx>,
2564    cx: &mut DocContext<'tcx>,
2565) -> PathSegment {
2566    PathSegment { name: path.ident.name, args: clean_generic_args(path.args(), cx) }
2567}
2568
2569fn clean_bare_fn_ty<'tcx>(
2570    bare_fn: &hir::FnPtrTy<'tcx>,
2571    cx: &mut DocContext<'tcx>,
2572) -> BareFunctionDecl {
2573    let (generic_params, decl) = enter_impl_trait(cx, |cx| {
2574        // NOTE: Generics must be cleaned before params.
2575        let generic_params = bare_fn
2576            .generic_params
2577            .iter()
2578            .filter(|p| !is_elided_lifetime(p))
2579            .map(|x| clean_generic_param(cx, None, x))
2580            .collect();
2581        // Since it's more conventional stylistically, elide the name of all params called `_`
2582        // unless there's at least one interestingly named param in which case don't elide any
2583        // name since mixing named and unnamed params is less legible.
2584        let filter = |ident: Option<Ident>| {
2585            ident.map(|ident| ident.name).filter(|&ident| ident != kw::Underscore)
2586        };
2587        let fallback =
2588            bare_fn.param_idents.iter().copied().find_map(filter).map(|_| kw::Underscore);
2589        let params = clean_params(cx, bare_fn.decl.inputs, bare_fn.param_idents, |ident| {
2590            filter(ident).or(fallback)
2591        });
2592        let decl = clean_fn_decl_with_params(cx, bare_fn.decl, None, params);
2593        (generic_params, decl)
2594    });
2595    BareFunctionDecl { safety: bare_fn.safety, abi: bare_fn.abi, decl, generic_params }
2596}
2597
2598fn clean_unsafe_binder_ty<'tcx>(
2599    unsafe_binder_ty: &hir::UnsafeBinderTy<'tcx>,
2600    cx: &mut DocContext<'tcx>,
2601) -> UnsafeBinderTy {
2602    let generic_params = unsafe_binder_ty
2603        .generic_params
2604        .iter()
2605        .filter(|p| !is_elided_lifetime(p))
2606        .map(|x| clean_generic_param(cx, None, x))
2607        .collect();
2608    let ty = clean_ty(unsafe_binder_ty.inner_ty, cx);
2609    UnsafeBinderTy { generic_params, ty }
2610}
2611
2612pub(crate) fn reexport_chain(
2613    tcx: TyCtxt<'_>,
2614    import_def_id: LocalDefId,
2615    target_def_id: DefId,
2616) -> &[Reexport] {
2617    for child in tcx.module_children_local(tcx.local_parent(import_def_id)) {
2618        if child.res.opt_def_id() == Some(target_def_id)
2619            && child.reexport_chain.first().and_then(|r| r.id()) == Some(import_def_id.to_def_id())
2620        {
2621            return &child.reexport_chain;
2622        }
2623    }
2624    &[]
2625}
2626
2627/// Collect attributes from the whole import chain.
2628fn get_all_import_attributes<'hir>(
2629    cx: &mut DocContext<'hir>,
2630    import_def_id: LocalDefId,
2631    target_def_id: DefId,
2632    is_inline: bool,
2633) -> Vec<(Cow<'hir, hir::Attribute>, Option<DefId>)> {
2634    let mut attrs = Vec::new();
2635    let mut first = true;
2636    for def_id in reexport_chain(cx.tcx, import_def_id, target_def_id)
2637        .iter()
2638        .flat_map(|reexport| reexport.id())
2639    {
2640        let import_attrs = inline::load_attrs(cx, def_id);
2641        if first {
2642            // This is the "original" reexport so we get all its attributes without filtering them.
2643            attrs = import_attrs.iter().map(|attr| (Cow::Borrowed(attr), Some(def_id))).collect();
2644            first = false;
2645        // We don't add attributes of an intermediate re-export if it has `#[doc(hidden)]`.
2646        } else if cx.render_options.document_hidden || !cx.tcx.is_doc_hidden(def_id) {
2647            add_without_unwanted_attributes(&mut attrs, import_attrs, is_inline, Some(def_id));
2648        }
2649    }
2650    attrs
2651}
2652
2653fn filter_tokens_from_list(
2654    args_tokens: &TokenStream,
2655    should_retain: impl Fn(&TokenTree) -> bool,
2656) -> Vec<TokenTree> {
2657    let mut tokens = Vec::with_capacity(args_tokens.len());
2658    let mut skip_next_comma = false;
2659    for token in args_tokens.iter() {
2660        match token {
2661            TokenTree::Token(Token { kind: TokenKind::Comma, .. }, _) if skip_next_comma => {
2662                skip_next_comma = false;
2663            }
2664            token if should_retain(token) => {
2665                skip_next_comma = false;
2666                tokens.push(token.clone());
2667            }
2668            _ => {
2669                skip_next_comma = true;
2670            }
2671        }
2672    }
2673    tokens
2674}
2675
2676fn filter_doc_attr_ident(ident: Symbol, is_inline: bool) -> bool {
2677    if is_inline {
2678        ident == sym::hidden || ident == sym::inline || ident == sym::no_inline
2679    } else {
2680        ident == sym::cfg
2681    }
2682}
2683
2684/// Remove attributes from `normal` that should not be inherited by `use` re-export.
2685/// Before calling this function, make sure `normal` is a `#[doc]` attribute.
2686fn filter_doc_attr(args: &mut hir::AttrArgs, is_inline: bool) {
2687    match args {
2688        hir::AttrArgs::Delimited(args) => {
2689            let tokens = filter_tokens_from_list(&args.tokens, |token| {
2690                !matches!(
2691                    token,
2692                    TokenTree::Token(
2693                        Token {
2694                            kind: TokenKind::Ident(
2695                                ident,
2696                                _,
2697                            ),
2698                            ..
2699                        },
2700                        _,
2701                    ) if filter_doc_attr_ident(*ident, is_inline),
2702                )
2703            });
2704            args.tokens = TokenStream::new(tokens);
2705        }
2706        hir::AttrArgs::Empty | hir::AttrArgs::Eq { .. } => {}
2707    }
2708}
2709
2710/// When inlining items, we merge their attributes (and all the reexports attributes too) with the
2711/// final reexport. For example:
2712///
2713/// ```ignore (just an example)
2714/// #[doc(hidden, cfg(feature = "foo"))]
2715/// pub struct Foo;
2716///
2717/// #[doc(cfg(feature = "bar"))]
2718/// #[doc(hidden, no_inline)]
2719/// pub use Foo as Foo1;
2720///
2721/// #[doc(inline)]
2722/// pub use Foo2 as Bar;
2723/// ```
2724///
2725/// So `Bar` at the end will have both `cfg(feature = "...")`. However, we don't want to merge all
2726/// attributes so we filter out the following ones:
2727/// * `doc(inline)`
2728/// * `doc(no_inline)`
2729/// * `doc(hidden)`
2730fn add_without_unwanted_attributes<'hir>(
2731    attrs: &mut Vec<(Cow<'hir, hir::Attribute>, Option<DefId>)>,
2732    new_attrs: &'hir [hir::Attribute],
2733    is_inline: bool,
2734    import_parent: Option<DefId>,
2735) {
2736    for attr in new_attrs {
2737        if attr.is_doc_comment() {
2738            attrs.push((Cow::Borrowed(attr), import_parent));
2739            continue;
2740        }
2741        let mut attr = attr.clone();
2742        match attr {
2743            hir::Attribute::Unparsed(ref mut normal) if let [ident] = &*normal.path.segments => {
2744                let ident = ident.name;
2745                if ident == sym::doc {
2746                    filter_doc_attr(&mut normal.args, is_inline);
2747                    attrs.push((Cow::Owned(attr), import_parent));
2748                } else if is_inline || ident != sym::cfg_trace {
2749                    // If it's not a `cfg()` attribute, we keep it.
2750                    attrs.push((Cow::Owned(attr), import_parent));
2751                }
2752            }
2753            // FIXME: make sure to exclude `#[cfg_trace]` here when it is ported to the new parsers
2754            hir::Attribute::Parsed(..) => {
2755                attrs.push((Cow::Owned(attr), import_parent));
2756            }
2757            _ => {}
2758        }
2759    }
2760}
2761
2762fn clean_maybe_renamed_item<'tcx>(
2763    cx: &mut DocContext<'tcx>,
2764    item: &hir::Item<'tcx>,
2765    renamed: Option<Symbol>,
2766    import_ids: &[LocalDefId],
2767) -> Vec<Item> {
2768    use hir::ItemKind;
2769    fn get_name(
2770        cx: &DocContext<'_>,
2771        item: &hir::Item<'_>,
2772        renamed: Option<Symbol>,
2773    ) -> Option<Symbol> {
2774        renamed.or_else(|| cx.tcx.hir_opt_name(item.hir_id()))
2775    }
2776
2777    let def_id = item.owner_id.to_def_id();
2778    cx.with_param_env(def_id, |cx| {
2779        // These kinds of item either don't need a `name` or accept a `None` one so we handle them
2780        // before.
2781        match item.kind {
2782            ItemKind::Impl(impl_) => return clean_impl(impl_, item.owner_id.def_id, cx),
2783            ItemKind::Use(path, kind) => {
2784                return clean_use_statement(
2785                    item,
2786                    get_name(cx, item, renamed),
2787                    path,
2788                    kind,
2789                    cx,
2790                    &mut FxHashSet::default(),
2791                );
2792            }
2793            _ => {}
2794        }
2795
2796        let mut name = get_name(cx, item, renamed).unwrap();
2797
2798        let kind = match item.kind {
2799            ItemKind::Static(mutability, _, ty, body_id) => StaticItem(Static {
2800                type_: Box::new(clean_ty(ty, cx)),
2801                mutability,
2802                expr: Some(body_id),
2803            }),
2804            ItemKind::Const(_, generics, ty, body_id) => ConstantItem(Box::new(Constant {
2805                generics: clean_generics(generics, cx),
2806                type_: clean_ty(ty, cx),
2807                kind: ConstantKind::Local { body: body_id, def_id },
2808            })),
2809            ItemKind::TyAlias(_, generics, ty) => {
2810                *cx.current_type_aliases.entry(def_id).or_insert(0) += 1;
2811                let rustdoc_ty = clean_ty(ty, cx);
2812                let type_ =
2813                    clean_middle_ty(ty::Binder::dummy(lower_ty(cx.tcx, ty)), cx, None, None);
2814                let generics = clean_generics(generics, cx);
2815                if let Some(count) = cx.current_type_aliases.get_mut(&def_id) {
2816                    *count -= 1;
2817                    if *count == 0 {
2818                        cx.current_type_aliases.remove(&def_id);
2819                    }
2820                }
2821
2822                let ty = cx.tcx.type_of(def_id).instantiate_identity();
2823
2824                let mut ret = Vec::new();
2825                let inner_type = clean_ty_alias_inner_type(ty, cx, &mut ret);
2826
2827                ret.push(generate_item_with_correct_attrs(
2828                    cx,
2829                    TypeAliasItem(Box::new(TypeAlias {
2830                        generics,
2831                        inner_type,
2832                        type_: rustdoc_ty,
2833                        item_type: Some(type_),
2834                    })),
2835                    item.owner_id.def_id.to_def_id(),
2836                    name,
2837                    import_ids,
2838                    renamed,
2839                ));
2840                return ret;
2841            }
2842            ItemKind::Enum(_, generics, def) => EnumItem(Enum {
2843                variants: def.variants.iter().map(|v| clean_variant(v, cx)).collect(),
2844                generics: clean_generics(generics, cx),
2845            }),
2846            ItemKind::TraitAlias(_, generics, bounds) => TraitAliasItem(TraitAlias {
2847                generics: clean_generics(generics, cx),
2848                bounds: bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
2849            }),
2850            ItemKind::Union(_, generics, variant_data) => UnionItem(Union {
2851                generics: clean_generics(generics, cx),
2852                fields: variant_data.fields().iter().map(|x| clean_field(x, cx)).collect(),
2853            }),
2854            ItemKind::Struct(_, generics, variant_data) => StructItem(Struct {
2855                ctor_kind: variant_data.ctor_kind(),
2856                generics: clean_generics(generics, cx),
2857                fields: variant_data.fields().iter().map(|x| clean_field(x, cx)).collect(),
2858            }),
2859            ItemKind::Macro(_, macro_def, MacroKind::Bang) => MacroItem(Macro {
2860                source: display_macro_source(cx, name, macro_def),
2861                macro_rules: macro_def.macro_rules,
2862            }),
2863            ItemKind::Macro(_, _, macro_kind) => clean_proc_macro(item, &mut name, macro_kind, cx),
2864            // proc macros can have a name set by attributes
2865            ItemKind::Fn { ref sig, generics, body: body_id, .. } => {
2866                clean_fn_or_proc_macro(item, sig, generics, body_id, &mut name, cx)
2867            }
2868            ItemKind::Trait(_, _, _, _, generics, bounds, item_ids) => {
2869                let items = item_ids
2870                    .iter()
2871                    .map(|&ti| clean_trait_item(cx.tcx.hir_trait_item(ti), cx))
2872                    .collect();
2873
2874                TraitItem(Box::new(Trait {
2875                    def_id,
2876                    items,
2877                    generics: clean_generics(generics, cx),
2878                    bounds: bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
2879                }))
2880            }
2881            ItemKind::ExternCrate(orig_name, _) => {
2882                return clean_extern_crate(item, name, orig_name, cx);
2883            }
2884            _ => span_bug!(item.span, "not yet converted"),
2885        };
2886
2887        vec![generate_item_with_correct_attrs(
2888            cx,
2889            kind,
2890            item.owner_id.def_id.to_def_id(),
2891            name,
2892            import_ids,
2893            renamed,
2894        )]
2895    })
2896}
2897
2898fn clean_variant<'tcx>(variant: &hir::Variant<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
2899    let kind = VariantItem(clean_variant_data(&variant.data, &variant.disr_expr, cx));
2900    Item::from_def_id_and_parts(variant.def_id.to_def_id(), Some(variant.ident.name), kind, cx)
2901}
2902
2903fn clean_impl<'tcx>(
2904    impl_: &hir::Impl<'tcx>,
2905    def_id: LocalDefId,
2906    cx: &mut DocContext<'tcx>,
2907) -> Vec<Item> {
2908    let tcx = cx.tcx;
2909    let mut ret = Vec::new();
2910    let trait_ = impl_.of_trait.as_ref().map(|t| clean_trait_ref(t, cx));
2911    let items = impl_
2912        .items
2913        .iter()
2914        .map(|&ii| clean_impl_item(tcx.hir_impl_item(ii), cx))
2915        .collect::<Vec<_>>();
2916
2917    // If this impl block is an implementation of the Deref trait, then we
2918    // need to try inlining the target's inherent impl blocks as well.
2919    if trait_.as_ref().map(|t| t.def_id()) == tcx.lang_items().deref_trait() {
2920        build_deref_target_impls(cx, &items, &mut ret);
2921    }
2922
2923    let for_ = clean_ty(impl_.self_ty, cx);
2924    let type_alias =
2925        for_.def_id(&cx.cache).and_then(|alias_def_id: DefId| match tcx.def_kind(alias_def_id) {
2926            DefKind::TyAlias => Some(clean_middle_ty(
2927                ty::Binder::dummy(tcx.type_of(def_id).instantiate_identity()),
2928                cx,
2929                Some(def_id.to_def_id()),
2930                None,
2931            )),
2932            _ => None,
2933        });
2934    let mut make_item = |trait_: Option<Path>, for_: Type, items: Vec<Item>| {
2935        let kind = ImplItem(Box::new(Impl {
2936            safety: impl_.safety,
2937            generics: clean_generics(impl_.generics, cx),
2938            trait_,
2939            for_,
2940            items,
2941            polarity: tcx.impl_polarity(def_id),
2942            kind: if utils::has_doc_flag(tcx, def_id.to_def_id(), sym::fake_variadic) {
2943                ImplKind::FakeVariadic
2944            } else {
2945                ImplKind::Normal
2946            },
2947        }));
2948        Item::from_def_id_and_parts(def_id.to_def_id(), None, kind, cx)
2949    };
2950    if let Some(type_alias) = type_alias {
2951        ret.push(make_item(trait_.clone(), type_alias, items.clone()));
2952    }
2953    ret.push(make_item(trait_, for_, items));
2954    ret
2955}
2956
2957fn clean_extern_crate<'tcx>(
2958    krate: &hir::Item<'tcx>,
2959    name: Symbol,
2960    orig_name: Option<Symbol>,
2961    cx: &mut DocContext<'tcx>,
2962) -> Vec<Item> {
2963    // this is the ID of the `extern crate` statement
2964    let cnum = cx.tcx.extern_mod_stmt_cnum(krate.owner_id.def_id).unwrap_or(LOCAL_CRATE);
2965    // this is the ID of the crate itself
2966    let crate_def_id = cnum.as_def_id();
2967    let attrs = cx.tcx.hir_attrs(krate.hir_id());
2968    let ty_vis = cx.tcx.visibility(krate.owner_id);
2969    let please_inline = ty_vis.is_public()
2970        && attrs.iter().any(|a| {
2971            a.has_name(sym::doc)
2972                && match a.meta_item_list() {
2973                    Some(l) => ast::attr::list_contains_name(&l, sym::inline),
2974                    None => false,
2975                }
2976        })
2977        && !cx.is_json_output();
2978
2979    let krate_owner_def_id = krate.owner_id.def_id;
2980
2981    if please_inline
2982        && let Some(items) = inline::try_inline(
2983            cx,
2984            Res::Def(DefKind::Mod, crate_def_id),
2985            name,
2986            Some((attrs, Some(krate_owner_def_id))),
2987            &mut Default::default(),
2988        )
2989    {
2990        return items;
2991    }
2992
2993    vec![Item::from_def_id_and_parts(
2994        krate_owner_def_id.to_def_id(),
2995        Some(name),
2996        ExternCrateItem { src: orig_name },
2997        cx,
2998    )]
2999}
3000
3001fn clean_use_statement<'tcx>(
3002    import: &hir::Item<'tcx>,
3003    name: Option<Symbol>,
3004    path: &hir::UsePath<'tcx>,
3005    kind: hir::UseKind,
3006    cx: &mut DocContext<'tcx>,
3007    inlined_names: &mut FxHashSet<(ItemType, Symbol)>,
3008) -> Vec<Item> {
3009    let mut items = Vec::new();
3010    let hir::UsePath { segments, ref res, span } = *path;
3011    for res in res.present_items() {
3012        let path = hir::Path { segments, res, span };
3013        items.append(&mut clean_use_statement_inner(import, name, &path, kind, cx, inlined_names));
3014    }
3015    items
3016}
3017
3018fn clean_use_statement_inner<'tcx>(
3019    import: &hir::Item<'tcx>,
3020    name: Option<Symbol>,
3021    path: &hir::Path<'tcx>,
3022    kind: hir::UseKind,
3023    cx: &mut DocContext<'tcx>,
3024    inlined_names: &mut FxHashSet<(ItemType, Symbol)>,
3025) -> Vec<Item> {
3026    if should_ignore_res(path.res) {
3027        return Vec::new();
3028    }
3029    // We need this comparison because some imports (for std types for example)
3030    // are "inserted" as well but directly by the compiler and they should not be
3031    // taken into account.
3032    if import.span.ctxt().outer_expn_data().kind == ExpnKind::AstPass(AstPass::StdImports) {
3033        return Vec::new();
3034    }
3035
3036    let visibility = cx.tcx.visibility(import.owner_id);
3037    let attrs = cx.tcx.hir_attrs(import.hir_id());
3038    let inline_attr = hir_attr_lists(attrs, sym::doc).get_word_attr(sym::inline);
3039    let pub_underscore = visibility.is_public() && name == Some(kw::Underscore);
3040    let current_mod = cx.tcx.parent_module_from_def_id(import.owner_id.def_id);
3041    let import_def_id = import.owner_id.def_id;
3042
3043    // The parent of the module in which this import resides. This
3044    // is the same as `current_mod` if that's already the top
3045    // level module.
3046    let parent_mod = cx.tcx.parent_module_from_def_id(current_mod.to_local_def_id());
3047
3048    // This checks if the import can be seen from a higher level module.
3049    // In other words, it checks if the visibility is the equivalent of
3050    // `pub(super)` or higher. If the current module is the top level
3051    // module, there isn't really a parent module, which makes the results
3052    // meaningless. In this case, we make sure the answer is `false`.
3053    let is_visible_from_parent_mod =
3054        visibility.is_accessible_from(parent_mod, cx.tcx) && !current_mod.is_top_level_module();
3055
3056    if pub_underscore && let Some(ref inline) = inline_attr {
3057        struct_span_code_err!(
3058            cx.tcx.dcx(),
3059            inline.span(),
3060            E0780,
3061            "anonymous imports cannot be inlined"
3062        )
3063        .with_span_label(import.span, "anonymous import")
3064        .emit();
3065    }
3066
3067    // We consider inlining the documentation of `pub use` statements, but we
3068    // forcefully don't inline if this is not public or if the
3069    // #[doc(no_inline)] attribute is present.
3070    // Don't inline doc(hidden) imports so they can be stripped at a later stage.
3071    let mut denied = cx.is_json_output()
3072        || !(visibility.is_public()
3073            || (cx.render_options.document_private && is_visible_from_parent_mod))
3074        || pub_underscore
3075        || attrs.iter().any(|a| {
3076            a.has_name(sym::doc)
3077                && match a.meta_item_list() {
3078                    Some(l) => {
3079                        ast::attr::list_contains_name(&l, sym::no_inline)
3080                            || ast::attr::list_contains_name(&l, sym::hidden)
3081                    }
3082                    None => false,
3083                }
3084        });
3085
3086    // Also check whether imports were asked to be inlined, in case we're trying to re-export a
3087    // crate in Rust 2018+
3088    let path = clean_path(path, cx);
3089    let inner = if kind == hir::UseKind::Glob {
3090        if !denied {
3091            let mut visited = DefIdSet::default();
3092            if let Some(items) = inline::try_inline_glob(
3093                cx,
3094                path.res,
3095                current_mod,
3096                &mut visited,
3097                inlined_names,
3098                import,
3099            ) {
3100                return items;
3101            }
3102        }
3103        Import::new_glob(resolve_use_source(cx, path), true)
3104    } else {
3105        let name = name.unwrap();
3106        if inline_attr.is_none()
3107            && let Res::Def(DefKind::Mod, did) = path.res
3108            && !did.is_local()
3109            && did.is_crate_root()
3110        {
3111            // if we're `pub use`ing an extern crate root, don't inline it unless we
3112            // were specifically asked for it
3113            denied = true;
3114        }
3115        if !denied
3116            && let Some(mut items) = inline::try_inline(
3117                cx,
3118                path.res,
3119                name,
3120                Some((attrs, Some(import_def_id))),
3121                &mut Default::default(),
3122            )
3123        {
3124            items.push(Item::from_def_id_and_parts(
3125                import_def_id.to_def_id(),
3126                None,
3127                ImportItem(Import::new_simple(name, resolve_use_source(cx, path), false)),
3128                cx,
3129            ));
3130            return items;
3131        }
3132        Import::new_simple(name, resolve_use_source(cx, path), true)
3133    };
3134
3135    vec![Item::from_def_id_and_parts(import_def_id.to_def_id(), None, ImportItem(inner), cx)]
3136}
3137
3138fn clean_maybe_renamed_foreign_item<'tcx>(
3139    cx: &mut DocContext<'tcx>,
3140    item: &hir::ForeignItem<'tcx>,
3141    renamed: Option<Symbol>,
3142    import_id: Option<LocalDefId>,
3143) -> Item {
3144    let def_id = item.owner_id.to_def_id();
3145    cx.with_param_env(def_id, |cx| {
3146        let kind = match item.kind {
3147            hir::ForeignItemKind::Fn(sig, idents, generics) => ForeignFunctionItem(
3148                clean_function(cx, &sig, generics, ParamsSrc::Idents(idents)),
3149                sig.header.safety(),
3150            ),
3151            hir::ForeignItemKind::Static(ty, mutability, safety) => ForeignStaticItem(
3152                Static { type_: Box::new(clean_ty(ty, cx)), mutability, expr: None },
3153                safety,
3154            ),
3155            hir::ForeignItemKind::Type => ForeignTypeItem,
3156        };
3157
3158        generate_item_with_correct_attrs(
3159            cx,
3160            kind,
3161            item.owner_id.def_id.to_def_id(),
3162            item.ident.name,
3163            import_id.as_slice(),
3164            renamed,
3165        )
3166    })
3167}
3168
3169fn clean_assoc_item_constraint<'tcx>(
3170    constraint: &hir::AssocItemConstraint<'tcx>,
3171    cx: &mut DocContext<'tcx>,
3172) -> AssocItemConstraint {
3173    AssocItemConstraint {
3174        assoc: PathSegment {
3175            name: constraint.ident.name,
3176            args: clean_generic_args(constraint.gen_args, cx),
3177        },
3178        kind: match constraint.kind {
3179            hir::AssocItemConstraintKind::Equality { ref term } => {
3180                AssocItemConstraintKind::Equality { term: clean_hir_term(term, cx) }
3181            }
3182            hir::AssocItemConstraintKind::Bound { bounds } => AssocItemConstraintKind::Bound {
3183                bounds: bounds.iter().filter_map(|b| clean_generic_bound(b, cx)).collect(),
3184            },
3185        },
3186    }
3187}
3188
3189fn clean_bound_vars<'tcx>(
3190    bound_vars: &ty::List<ty::BoundVariableKind>,
3191    cx: &mut DocContext<'tcx>,
3192) -> Vec<GenericParamDef> {
3193    bound_vars
3194        .into_iter()
3195        .filter_map(|var| match var {
3196            ty::BoundVariableKind::Region(ty::BoundRegionKind::Named(def_id)) => {
3197                let name = cx.tcx.item_name(def_id);
3198                if name != kw::UnderscoreLifetime {
3199                    Some(GenericParamDef::lifetime(def_id, name))
3200                } else {
3201                    None
3202                }
3203            }
3204            ty::BoundVariableKind::Ty(ty::BoundTyKind::Param(def_id)) => {
3205                let name = cx.tcx.item_name(def_id);
3206                Some(GenericParamDef {
3207                    name,
3208                    def_id,
3209                    kind: GenericParamDefKind::Type {
3210                        bounds: ThinVec::new(),
3211                        default: None,
3212                        synthetic: false,
3213                    },
3214                })
3215            }
3216            // FIXME(non_lifetime_binders): Support higher-ranked const parameters.
3217            ty::BoundVariableKind::Const => None,
3218            _ => None,
3219        })
3220        .collect()
3221}