core/clone.rs
1//! The `Clone` trait for types that cannot be 'implicitly copied'.
2//!
3//! In Rust, some simple types are "implicitly copyable" and when you
4//! assign them or pass them as arguments, the receiver will get a copy,
5//! leaving the original value in place. These types do not require
6//! allocation to copy and do not have finalizers (i.e., they do not
7//! contain owned boxes or implement [`Drop`]), so the compiler considers
8//! them cheap and safe to copy. For other types copies must be made
9//! explicitly, by convention implementing the [`Clone`] trait and calling
10//! the [`clone`] method.
11//!
12//! [`clone`]: Clone::clone
13//!
14//! Basic usage example:
15//!
16//! ```
17//! let s = String::new(); // String type implements Clone
18//! let copy = s.clone(); // so we can clone it
19//! ```
20//!
21//! To easily implement the Clone trait, you can also use
22//! `#[derive(Clone)]`. Example:
23//!
24//! ```
25//! #[derive(Clone)] // we add the Clone trait to Morpheus struct
26//! struct Morpheus {
27//! blue_pill: f32,
28//! red_pill: i64,
29//! }
30//!
31//! fn main() {
32//! let f = Morpheus { blue_pill: 0.0, red_pill: 0 };
33//! let copy = f.clone(); // and now we can clone it!
34//! }
35//! ```
36
37#![stable(feature = "rust1", since = "1.0.0")]
38
39use crate::marker::{Destruct, PointeeSized};
40
41mod uninit;
42
43/// A common trait that allows explicit creation of a duplicate value.
44///
45/// Calling [`clone`] always produces a new value.
46/// However, for types that are references to other data (such as smart pointers or references),
47/// the new value may still point to the same underlying data, rather than duplicating it.
48/// See [`Clone::clone`] for more details.
49///
50/// This distinction is especially important when using `#[derive(Clone)]` on structs containing
51/// smart pointers like `Arc<Mutex<T>>` - the cloned struct will share mutable state with the
52/// original.
53///
54/// Differs from [`Copy`] in that [`Copy`] is implicit and an inexpensive bit-wise copy, while
55/// `Clone` is always explicit and may or may not be expensive. In order to enforce
56/// these characteristics, Rust does not allow you to reimplement [`Copy`], but you
57/// may reimplement `Clone` and run arbitrary code.
58///
59/// Since `Clone` is more general than [`Copy`], you can automatically make anything
60/// [`Copy`] be `Clone` as well.
61///
62/// ## Derivable
63///
64/// This trait can be used with `#[derive]` if all fields are `Clone`. The `derive`d
65/// implementation of [`Clone`] calls [`clone`] on each field.
66///
67/// [`clone`]: Clone::clone
68///
69/// For a generic struct, `#[derive]` implements `Clone` conditionally by adding bound `Clone` on
70/// generic parameters.
71///
72/// ```
73/// // `derive` implements Clone for Reading<T> when T is Clone.
74/// #[derive(Clone)]
75/// struct Reading<T> {
76/// frequency: T,
77/// }
78/// ```
79///
80/// ## How can I implement `Clone`?
81///
82/// Types that are [`Copy`] should have a trivial implementation of `Clone`. More formally:
83/// if `T: Copy`, `x: T`, and `y: &T`, then `let x = y.clone();` is equivalent to `let x = *y;`.
84/// Manual implementations should be careful to uphold this invariant; however, unsafe code
85/// must not rely on it to ensure memory safety.
86///
87/// An example is a generic struct holding a function pointer. In this case, the
88/// implementation of `Clone` cannot be `derive`d, but can be implemented as:
89///
90/// ```
91/// struct Generate<T>(fn() -> T);
92///
93/// impl<T> Copy for Generate<T> {}
94///
95/// impl<T> Clone for Generate<T> {
96/// fn clone(&self) -> Self {
97/// *self
98/// }
99/// }
100/// ```
101///
102/// If we `derive`:
103///
104/// ```
105/// #[derive(Copy, Clone)]
106/// struct Generate<T>(fn() -> T);
107/// ```
108///
109/// the auto-derived implementations will have unnecessary `T: Copy` and `T: Clone` bounds:
110///
111/// ```
112/// # struct Generate<T>(fn() -> T);
113///
114/// // Automatically derived
115/// impl<T: Copy> Copy for Generate<T> { }
116///
117/// // Automatically derived
118/// impl<T: Clone> Clone for Generate<T> {
119/// fn clone(&self) -> Generate<T> {
120/// Generate(Clone::clone(&self.0))
121/// }
122/// }
123/// ```
124///
125/// The bounds are unnecessary because clearly the function itself should be
126/// copy- and cloneable even if its return type is not:
127///
128/// ```compile_fail,E0599
129/// #[derive(Copy, Clone)]
130/// struct Generate<T>(fn() -> T);
131///
132/// struct NotCloneable;
133///
134/// fn generate_not_cloneable() -> NotCloneable {
135/// NotCloneable
136/// }
137///
138/// Generate(generate_not_cloneable).clone(); // error: trait bounds were not satisfied
139/// // Note: With the manual implementations the above line will compile.
140/// ```
141///
142/// ## `Clone` and `PartialEq`/`Eq`
143/// `Clone` is intended for the duplication of objects. Consequently, when implementing
144/// both `Clone` and [`PartialEq`], the following property is expected to hold:
145/// ```text
146/// x == x -> x.clone() == x
147/// ```
148/// In other words, if an object compares equal to itself,
149/// its clone must also compare equal to the original.
150///
151/// For types that also implement [`Eq`] – for which `x == x` always holds –
152/// this implies that `x.clone() == x` must always be true.
153/// Standard library collections such as
154/// [`HashMap`], [`HashSet`], [`BTreeMap`], [`BTreeSet`] and [`BinaryHeap`]
155/// rely on their keys respecting this property for correct behavior.
156/// Furthermore, these collections require that cloning a key preserves the outcome of the
157/// [`Hash`] and [`Ord`] methods. Thankfully, this follows automatically from `x.clone() == x`
158/// if `Hash` and `Ord` are correctly implemented according to their own requirements.
159///
160/// When deriving both `Clone` and [`PartialEq`] using `#[derive(Clone, PartialEq)]`
161/// or when additionally deriving [`Eq`] using `#[derive(Clone, PartialEq, Eq)]`,
162/// then this property is automatically upheld – provided that it is satisfied by
163/// the underlying types.
164///
165/// Violating this property is a logic error. The behavior resulting from a logic error is not
166/// specified, but users of the trait must ensure that such logic errors do *not* result in
167/// undefined behavior. This means that `unsafe` code **must not** rely on this property
168/// being satisfied.
169///
170/// ## Additional implementors
171///
172/// In addition to the [implementors listed below][impls],
173/// the following types also implement `Clone`:
174///
175/// * Function item types (i.e., the distinct types defined for each function)
176/// * Function pointer types (e.g., `fn() -> i32`)
177/// * Closure types, if they capture no value from the environment
178/// or if all such captured values implement `Clone` themselves.
179/// Note that variables captured by shared reference always implement `Clone`
180/// (even if the referent doesn't),
181/// while variables captured by mutable reference never implement `Clone`.
182///
183/// [`HashMap`]: ../../std/collections/struct.HashMap.html
184/// [`HashSet`]: ../../std/collections/struct.HashSet.html
185/// [`BTreeMap`]: ../../std/collections/struct.BTreeMap.html
186/// [`BTreeSet`]: ../../std/collections/struct.BTreeSet.html
187/// [`BinaryHeap`]: ../../std/collections/struct.BinaryHeap.html
188/// [impls]: #implementors
189#[stable(feature = "rust1", since = "1.0.0")]
190#[lang = "clone"]
191#[rustc_diagnostic_item = "Clone"]
192#[rustc_trivial_field_reads]
193#[rustc_const_unstable(feature = "const_clone", issue = "142757")]
194#[const_trait]
195pub trait Clone: Sized {
196 /// Returns a duplicate of the value.
197 ///
198 /// Note that what "duplicate" means varies by type:
199 /// - For most types, this creates a deep, independent copy
200 /// - For reference types like `&T`, this creates another reference to the same value
201 /// - For smart pointers like [`Arc`] or [`Rc`], this increments the reference count
202 /// but still points to the same underlying data
203 ///
204 /// [`Arc`]: ../../std/sync/struct.Arc.html
205 /// [`Rc`]: ../../std/rc/struct.Rc.html
206 ///
207 /// # Examples
208 ///
209 /// ```
210 /// # #![allow(noop_method_call)]
211 /// let hello = "Hello"; // &str implements Clone
212 ///
213 /// assert_eq!("Hello", hello.clone());
214 /// ```
215 ///
216 /// Example with a reference-counted type:
217 ///
218 /// ```
219 /// use std::sync::{Arc, Mutex};
220 ///
221 /// let data = Arc::new(Mutex::new(vec![1, 2, 3]));
222 /// let data_clone = data.clone(); // Creates another Arc pointing to the same Mutex
223 ///
224 /// {
225 /// let mut lock = data.lock().unwrap();
226 /// lock.push(4);
227 /// }
228 ///
229 /// // Changes are visible through the clone because they share the same underlying data
230 /// assert_eq!(*data_clone.lock().unwrap(), vec![1, 2, 3, 4]);
231 /// ```
232 #[stable(feature = "rust1", since = "1.0.0")]
233 #[must_use = "cloning is often expensive and is not expected to have side effects"]
234 // Clone::clone is special because the compiler generates MIR to implement it for some types.
235 // See InstanceKind::CloneShim.
236 #[lang = "clone_fn"]
237 fn clone(&self) -> Self;
238
239 /// Performs copy-assignment from `source`.
240 ///
241 /// `a.clone_from(&b)` is equivalent to `a = b.clone()` in functionality,
242 /// but can be overridden to reuse the resources of `a` to avoid unnecessary
243 /// allocations.
244 #[inline]
245 #[stable(feature = "rust1", since = "1.0.0")]
246 fn clone_from(&mut self, source: &Self)
247 where
248 Self: [const] Destruct,
249 {
250 *self = source.clone()
251 }
252}
253
254/// Derive macro generating an impl of the trait `Clone`.
255#[rustc_builtin_macro]
256#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
257#[allow_internal_unstable(core_intrinsics, derive_clone_copy)]
258pub macro Clone($item:item) {
259 /* compiler built-in */
260}
261
262/// Trait for objects whose [`Clone`] impl is lightweight (e.g. reference-counted)
263///
264/// Cloning an object implementing this trait should in general:
265/// - be O(1) (constant) time regardless of the amount of data managed by the object,
266/// - not require a memory allocation,
267/// - not require copying more than roughly 64 bytes (a typical cache line size),
268/// - not block the current thread,
269/// - not have any semantic side effects (e.g. allocating a file descriptor), and
270/// - not have overhead larger than a couple of atomic operations.
271///
272/// The `UseCloned` trait does not provide a method; instead, it indicates that
273/// `Clone::clone` is lightweight, and allows the use of the `.use` syntax.
274///
275/// ## .use postfix syntax
276///
277/// Values can be `.use`d by adding `.use` postfix to the value you want to use.
278///
279/// ```ignore (this won't work until we land use)
280/// fn foo(f: Foo) {
281/// // if `Foo` implements `Copy` f would be copied into x.
282/// // if `Foo` implements `UseCloned` f would be cloned into x.
283/// // otherwise f would be moved into x.
284/// let x = f.use;
285/// // ...
286/// }
287/// ```
288///
289/// ## use closures
290///
291/// Use closures allow captured values to be automatically used.
292/// This is similar to have a closure that you would call `.use` over each captured value.
293#[unstable(feature = "ergonomic_clones", issue = "132290")]
294#[lang = "use_cloned"]
295pub trait UseCloned: Clone {
296 // Empty.
297}
298
299macro_rules! impl_use_cloned {
300 ($($t:ty)*) => {
301 $(
302 #[unstable(feature = "ergonomic_clones", issue = "132290")]
303 impl UseCloned for $t {}
304 )*
305 }
306}
307
308impl_use_cloned! {
309 usize u8 u16 u32 u64 u128
310 isize i8 i16 i32 i64 i128
311 f16 f32 f64 f128
312 bool char
313}
314
315// FIXME(aburka): these structs are used solely by #[derive] to
316// assert that every component of a type implements Clone or Copy.
317//
318// These structs should never appear in user code.
319#[doc(hidden)]
320#[allow(missing_debug_implementations)]
321#[unstable(
322 feature = "derive_clone_copy",
323 reason = "deriving hack, should not be public",
324 issue = "none"
325)]
326pub struct AssertParamIsClone<T: Clone + PointeeSized> {
327 _field: crate::marker::PhantomData<T>,
328}
329#[doc(hidden)]
330#[allow(missing_debug_implementations)]
331#[unstable(
332 feature = "derive_clone_copy",
333 reason = "deriving hack, should not be public",
334 issue = "none"
335)]
336pub struct AssertParamIsCopy<T: Copy + PointeeSized> {
337 _field: crate::marker::PhantomData<T>,
338}
339
340/// A generalization of [`Clone`] to [dynamically-sized types][DST] stored in arbitrary containers.
341///
342/// This trait is implemented for all types implementing [`Clone`], [slices](slice) of all
343/// such types, and other dynamically-sized types in the standard library.
344/// You may also implement this trait to enable cloning custom DSTs
345/// (structures containing dynamically-sized fields), or use it as a supertrait to enable
346/// cloning a [trait object].
347///
348/// This trait is normally used via operations on container types which support DSTs,
349/// so you should not typically need to call `.clone_to_uninit()` explicitly except when
350/// implementing such a container or otherwise performing explicit management of an allocation,
351/// or when implementing `CloneToUninit` itself.
352///
353/// # Safety
354///
355/// Implementations must ensure that when `.clone_to_uninit(dest)` returns normally rather than
356/// panicking, it always leaves `*dest` initialized as a valid value of type `Self`.
357///
358/// # Examples
359///
360// FIXME(#126799): when `Box::clone` allows use of `CloneToUninit`, rewrite these examples with it
361// since `Rc` is a distraction.
362///
363/// If you are defining a trait, you can add `CloneToUninit` as a supertrait to enable cloning of
364/// `dyn` values of your trait:
365///
366/// ```
367/// #![feature(clone_to_uninit)]
368/// use std::rc::Rc;
369///
370/// trait Foo: std::fmt::Debug + std::clone::CloneToUninit {
371/// fn modify(&mut self);
372/// fn value(&self) -> i32;
373/// }
374///
375/// impl Foo for i32 {
376/// fn modify(&mut self) {
377/// *self *= 10;
378/// }
379/// fn value(&self) -> i32 {
380/// *self
381/// }
382/// }
383///
384/// let first: Rc<dyn Foo> = Rc::new(1234);
385///
386/// let mut second = first.clone();
387/// Rc::make_mut(&mut second).modify(); // make_mut() will call clone_to_uninit()
388///
389/// assert_eq!(first.value(), 1234);
390/// assert_eq!(second.value(), 12340);
391/// ```
392///
393/// The following is an example of implementing `CloneToUninit` for a custom DST.
394/// (It is essentially a limited form of what `derive(CloneToUninit)` would do,
395/// if such a derive macro existed.)
396///
397/// ```
398/// #![feature(clone_to_uninit)]
399/// use std::clone::CloneToUninit;
400/// use std::mem::offset_of;
401/// use std::rc::Rc;
402///
403/// #[derive(PartialEq)]
404/// struct MyDst<T: ?Sized> {
405/// label: String,
406/// contents: T,
407/// }
408///
409/// unsafe impl<T: ?Sized + CloneToUninit> CloneToUninit for MyDst<T> {
410/// unsafe fn clone_to_uninit(&self, dest: *mut u8) {
411/// // The offset of `self.contents` is dynamic because it depends on the alignment of T
412/// // which can be dynamic (if `T = dyn SomeTrait`). Therefore, we have to obtain it
413/// // dynamically by examining `self`, rather than using `offset_of!`.
414/// //
415/// // SAFETY: `self` by definition points somewhere before `&self.contents` in the same
416/// // allocation.
417/// let offset_of_contents = unsafe {
418/// (&raw const self.contents).byte_offset_from_unsigned(self)
419/// };
420///
421/// // Clone the *sized* fields of `self` (just one, in this example).
422/// // (By cloning this first and storing it temporarily in a local variable, we avoid
423/// // leaking it in case of any panic, using the ordinary automatic cleanup of local
424/// // variables. Such a leak would be sound, but undesirable.)
425/// let label = self.label.clone();
426///
427/// // SAFETY: The caller must provide a `dest` such that these field offsets are valid
428/// // to write to.
429/// unsafe {
430/// // Clone the unsized field directly from `self` to `dest`.
431/// self.contents.clone_to_uninit(dest.add(offset_of_contents));
432///
433/// // Now write all the sized fields.
434/// //
435/// // Note that we only do this once all of the clone() and clone_to_uninit() calls
436/// // have completed, and therefore we know that there are no more possible panics;
437/// // this ensures no memory leaks in case of panic.
438/// dest.add(offset_of!(Self, label)).cast::<String>().write(label);
439/// }
440/// // All fields of the struct have been initialized; therefore, the struct is initialized,
441/// // and we have satisfied our `unsafe impl CloneToUninit` obligations.
442/// }
443/// }
444///
445/// fn main() {
446/// // Construct MyDst<[u8; 4]>, then coerce to MyDst<[u8]>.
447/// let first: Rc<MyDst<[u8]>> = Rc::new(MyDst {
448/// label: String::from("hello"),
449/// contents: [1, 2, 3, 4],
450/// });
451///
452/// let mut second = first.clone();
453/// // make_mut() will call clone_to_uninit().
454/// for elem in Rc::make_mut(&mut second).contents.iter_mut() {
455/// *elem *= 10;
456/// }
457///
458/// assert_eq!(first.contents, [1, 2, 3, 4]);
459/// assert_eq!(second.contents, [10, 20, 30, 40]);
460/// assert_eq!(second.label, "hello");
461/// }
462/// ```
463///
464/// # See Also
465///
466/// * [`Clone::clone_from`] is a safe function which may be used instead when [`Self: Sized`](Sized)
467/// and the destination is already initialized; it may be able to reuse allocations owned by
468/// the destination, whereas `clone_to_uninit` cannot, since its destination is assumed to be
469/// uninitialized.
470/// * [`ToOwned`], which allocates a new destination container.
471///
472/// [`ToOwned`]: ../../std/borrow/trait.ToOwned.html
473/// [DST]: https://doc.rust-lang.org/reference/dynamically-sized-types.html
474/// [trait object]: https://doc.rust-lang.org/reference/types/trait-object.html
475#[unstable(feature = "clone_to_uninit", issue = "126799")]
476pub unsafe trait CloneToUninit {
477 /// Performs copy-assignment from `self` to `dest`.
478 ///
479 /// This is analogous to `std::ptr::write(dest.cast(), self.clone())`,
480 /// except that `Self` may be a dynamically-sized type ([`!Sized`](Sized)).
481 ///
482 /// Before this function is called, `dest` may point to uninitialized memory.
483 /// After this function is called, `dest` will point to initialized memory; it will be
484 /// sound to create a `&Self` reference from the pointer with the [pointer metadata]
485 /// from `self`.
486 ///
487 /// # Safety
488 ///
489 /// Behavior is undefined if any of the following conditions are violated:
490 ///
491 /// * `dest` must be [valid] for writes for `size_of_val(self)` bytes.
492 /// * `dest` must be properly aligned to `align_of_val(self)`.
493 ///
494 /// [valid]: crate::ptr#safety
495 /// [pointer metadata]: crate::ptr::metadata()
496 ///
497 /// # Panics
498 ///
499 /// This function may panic. (For example, it might panic if memory allocation for a clone
500 /// of a value owned by `self` fails.)
501 /// If the call panics, then `*dest` should be treated as uninitialized memory; it must not be
502 /// read or dropped, because even if it was previously valid, it may have been partially
503 /// overwritten.
504 ///
505 /// The caller may wish to take care to deallocate the allocation pointed to by `dest`,
506 /// if applicable, to avoid a memory leak (but this is not a requirement).
507 ///
508 /// Implementors should avoid leaking values by, upon unwinding, dropping all component values
509 /// that might have already been created. (For example, if a `[Foo]` of length 3 is being
510 /// cloned, and the second of the three calls to `Foo::clone()` unwinds, then the first `Foo`
511 /// cloned should be dropped.)
512 unsafe fn clone_to_uninit(&self, dest: *mut u8);
513}
514
515#[unstable(feature = "clone_to_uninit", issue = "126799")]
516unsafe impl<T: Clone> CloneToUninit for T {
517 #[inline]
518 unsafe fn clone_to_uninit(&self, dest: *mut u8) {
519 // SAFETY: we're calling a specialization with the same contract
520 unsafe { <T as self::uninit::CopySpec>::clone_one(self, dest.cast::<T>()) }
521 }
522}
523
524#[unstable(feature = "clone_to_uninit", issue = "126799")]
525unsafe impl<T: Clone> CloneToUninit for [T] {
526 #[inline]
527 #[cfg_attr(debug_assertions, track_caller)]
528 unsafe fn clone_to_uninit(&self, dest: *mut u8) {
529 let dest: *mut [T] = dest.with_metadata_of(self);
530 // SAFETY: we're calling a specialization with the same contract
531 unsafe { <T as self::uninit::CopySpec>::clone_slice(self, dest) }
532 }
533}
534
535#[unstable(feature = "clone_to_uninit", issue = "126799")]
536unsafe impl CloneToUninit for str {
537 #[inline]
538 #[cfg_attr(debug_assertions, track_caller)]
539 unsafe fn clone_to_uninit(&self, dest: *mut u8) {
540 // SAFETY: str is just a [u8] with UTF-8 invariant
541 unsafe { self.as_bytes().clone_to_uninit(dest) }
542 }
543}
544
545#[unstable(feature = "clone_to_uninit", issue = "126799")]
546unsafe impl CloneToUninit for crate::ffi::CStr {
547 #[cfg_attr(debug_assertions, track_caller)]
548 unsafe fn clone_to_uninit(&self, dest: *mut u8) {
549 // SAFETY: For now, CStr is just a #[repr(trasnsparent)] [c_char] with some invariants.
550 // And we can cast [c_char] to [u8] on all supported platforms (see: to_bytes_with_nul).
551 // The pointer metadata properly preserves the length (so NUL is also copied).
552 // See: `cstr_metadata_is_length_with_nul` in tests.
553 unsafe { self.to_bytes_with_nul().clone_to_uninit(dest) }
554 }
555}
556
557#[unstable(feature = "bstr", issue = "134915")]
558unsafe impl CloneToUninit for crate::bstr::ByteStr {
559 #[inline]
560 #[cfg_attr(debug_assertions, track_caller)]
561 unsafe fn clone_to_uninit(&self, dst: *mut u8) {
562 // SAFETY: ByteStr is a `#[repr(transparent)]` wrapper around `[u8]`
563 unsafe { self.as_bytes().clone_to_uninit(dst) }
564 }
565}
566
567/// Implementations of `Clone` for primitive types.
568///
569/// Implementations that cannot be described in Rust
570/// are implemented in `traits::SelectionContext::copy_clone_conditions()`
571/// in `rustc_trait_selection`.
572mod impls {
573 use crate::marker::PointeeSized;
574
575 macro_rules! impl_clone {
576 ($($t:ty)*) => {
577 $(
578 #[stable(feature = "rust1", since = "1.0.0")]
579 impl Clone for $t {
580 #[inline(always)]
581 fn clone(&self) -> Self {
582 *self
583 }
584 }
585 )*
586 }
587 }
588
589 impl_clone! {
590 usize u8 u16 u32 u64 u128
591 isize i8 i16 i32 i64 i128
592 f16 f32 f64 f128
593 bool char
594 }
595
596 #[unstable(feature = "never_type", issue = "35121")]
597 impl Clone for ! {
598 #[inline]
599 fn clone(&self) -> Self {
600 *self
601 }
602 }
603
604 #[stable(feature = "rust1", since = "1.0.0")]
605 impl<T: PointeeSized> Clone for *const T {
606 #[inline(always)]
607 fn clone(&self) -> Self {
608 *self
609 }
610 }
611
612 #[stable(feature = "rust1", since = "1.0.0")]
613 impl<T: PointeeSized> Clone for *mut T {
614 #[inline(always)]
615 fn clone(&self) -> Self {
616 *self
617 }
618 }
619
620 /// Shared references can be cloned, but mutable references *cannot*!
621 #[stable(feature = "rust1", since = "1.0.0")]
622 impl<T: PointeeSized> Clone for &T {
623 #[inline(always)]
624 #[rustc_diagnostic_item = "noop_method_clone"]
625 fn clone(&self) -> Self {
626 self
627 }
628 }
629
630 /// Shared references can be cloned, but mutable references *cannot*!
631 #[stable(feature = "rust1", since = "1.0.0")]
632 impl<T: PointeeSized> !Clone for &mut T {}
633}