core/cmp.rs
1//! Utilities for comparing and ordering values.
2//!
3//! This module contains various tools for comparing and ordering values. In
4//! summary:
5//!
6//! * [`PartialEq<Rhs>`] overloads the `==` and `!=` operators. In cases where
7//! `Rhs` (the right hand side's type) is `Self`, this trait corresponds to a
8//! partial equivalence relation.
9//! * [`Eq`] indicates that the overloaded `==` operator corresponds to an
10//! equivalence relation.
11//! * [`Ord`] and [`PartialOrd`] are traits that allow you to define total and
12//! partial orderings between values, respectively. Implementing them overloads
13//! the `<`, `<=`, `>`, and `>=` operators.
14//! * [`Ordering`] is an enum returned by the main functions of [`Ord`] and
15//! [`PartialOrd`], and describes an ordering of two values (less, equal, or
16//! greater).
17//! * [`Reverse`] is a struct that allows you to easily reverse an ordering.
18//! * [`max`] and [`min`] are functions that build off of [`Ord`] and allow you
19//! to find the maximum or minimum of two values.
20//!
21//! For more details, see the respective documentation of each item in the list.
22//!
23//! [`max`]: Ord::max
24//! [`min`]: Ord::min
25
26#![stable(feature = "rust1", since = "1.0.0")]
27
28mod bytewise;
29pub(crate) use bytewise::BytewiseEq;
30
31use self::Ordering::*;
32use crate::marker::PointeeSized;
33use crate::ops::ControlFlow;
34
35/// Trait for comparisons using the equality operator.
36///
37/// Implementing this trait for types provides the `==` and `!=` operators for
38/// those types.
39///
40/// `x.eq(y)` can also be written `x == y`, and `x.ne(y)` can be written `x != y`.
41/// We use the easier-to-read infix notation in the remainder of this documentation.
42///
43/// This trait allows for comparisons using the equality operator, for types
44/// that do not have a full equivalence relation. For example, in floating point
45/// numbers `NaN != NaN`, so floating point types implement `PartialEq` but not
46/// [`trait@Eq`]. Formally speaking, when `Rhs == Self`, this trait corresponds
47/// to a [partial equivalence relation].
48///
49/// [partial equivalence relation]: https://en.wikipedia.org/wiki/Partial_equivalence_relation
50///
51/// Implementations must ensure that `eq` and `ne` are consistent with each other:
52///
53/// - `a != b` if and only if `!(a == b)`.
54///
55/// The default implementation of `ne` provides this consistency and is almost
56/// always sufficient. It should not be overridden without very good reason.
57///
58/// If [`PartialOrd`] or [`Ord`] are also implemented for `Self` and `Rhs`, their methods must also
59/// be consistent with `PartialEq` (see the documentation of those traits for the exact
60/// requirements). It's easy to accidentally make them disagree by deriving some of the traits and
61/// manually implementing others.
62///
63/// The equality relation `==` must satisfy the following conditions
64/// (for all `a`, `b`, `c` of type `A`, `B`, `C`):
65///
66/// - **Symmetry**: if `A: PartialEq<B>` and `B: PartialEq<A>`, then **`a == b`
67/// implies `b == a`**; and
68///
69/// - **Transitivity**: if `A: PartialEq<B>` and `B: PartialEq<C>` and `A:
70/// PartialEq<C>`, then **`a == b` and `b == c` implies `a == c`**.
71/// This must also work for longer chains, such as when `A: PartialEq<B>`, `B: PartialEq<C>`,
72/// `C: PartialEq<D>`, and `A: PartialEq<D>` all exist.
73///
74/// Note that the `B: PartialEq<A>` (symmetric) and `A: PartialEq<C>`
75/// (transitive) impls are not forced to exist, but these requirements apply
76/// whenever they do exist.
77///
78/// Violating these requirements is a logic error. The behavior resulting from a logic error is not
79/// specified, but users of the trait must ensure that such logic errors do *not* result in
80/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
81/// methods.
82///
83/// ## Cross-crate considerations
84///
85/// Upholding the requirements stated above can become tricky when one crate implements `PartialEq`
86/// for a type of another crate (i.e., to allow comparing one of its own types with a type from the
87/// standard library). The recommendation is to never implement this trait for a foreign type. In
88/// other words, such a crate should do `impl PartialEq<ForeignType> for LocalType`, but it should
89/// *not* do `impl PartialEq<LocalType> for ForeignType`.
90///
91/// This avoids the problem of transitive chains that criss-cross crate boundaries: for all local
92/// types `T`, you may assume that no other crate will add `impl`s that allow comparing `T == U`. In
93/// other words, if other crates add `impl`s that allow building longer transitive chains `U1 == ...
94/// == T == V1 == ...`, then all the types that appear to the right of `T` must be types that the
95/// crate defining `T` already knows about. This rules out transitive chains where downstream crates
96/// can add new `impl`s that "stitch together" comparisons of foreign types in ways that violate
97/// transitivity.
98///
99/// Not having such foreign `impl`s also avoids forward compatibility issues where one crate adding
100/// more `PartialEq` implementations can cause build failures in downstream crates.
101///
102/// ## Derivable
103///
104/// This trait can be used with `#[derive]`. When `derive`d on structs, two
105/// instances are equal if all fields are equal, and not equal if any fields
106/// are not equal. When `derive`d on enums, two instances are equal if they
107/// are the same variant and all fields are equal.
108///
109/// ## How can I implement `PartialEq`?
110///
111/// An example implementation for a domain in which two books are considered
112/// the same book if their ISBN matches, even if the formats differ:
113///
114/// ```
115/// enum BookFormat {
116/// Paperback,
117/// Hardback,
118/// Ebook,
119/// }
120///
121/// struct Book {
122/// isbn: i32,
123/// format: BookFormat,
124/// }
125///
126/// impl PartialEq for Book {
127/// fn eq(&self, other: &Self) -> bool {
128/// self.isbn == other.isbn
129/// }
130/// }
131///
132/// let b1 = Book { isbn: 3, format: BookFormat::Paperback };
133/// let b2 = Book { isbn: 3, format: BookFormat::Ebook };
134/// let b3 = Book { isbn: 10, format: BookFormat::Paperback };
135///
136/// assert!(b1 == b2);
137/// assert!(b1 != b3);
138/// ```
139///
140/// ## How can I compare two different types?
141///
142/// The type you can compare with is controlled by `PartialEq`'s type parameter.
143/// For example, let's tweak our previous code a bit:
144///
145/// ```
146/// // The derive implements <BookFormat> == <BookFormat> comparisons
147/// #[derive(PartialEq)]
148/// enum BookFormat {
149/// Paperback,
150/// Hardback,
151/// Ebook,
152/// }
153///
154/// struct Book {
155/// isbn: i32,
156/// format: BookFormat,
157/// }
158///
159/// // Implement <Book> == <BookFormat> comparisons
160/// impl PartialEq<BookFormat> for Book {
161/// fn eq(&self, other: &BookFormat) -> bool {
162/// self.format == *other
163/// }
164/// }
165///
166/// // Implement <BookFormat> == <Book> comparisons
167/// impl PartialEq<Book> for BookFormat {
168/// fn eq(&self, other: &Book) -> bool {
169/// *self == other.format
170/// }
171/// }
172///
173/// let b1 = Book { isbn: 3, format: BookFormat::Paperback };
174///
175/// assert!(b1 == BookFormat::Paperback);
176/// assert!(BookFormat::Ebook != b1);
177/// ```
178///
179/// By changing `impl PartialEq for Book` to `impl PartialEq<BookFormat> for Book`,
180/// we allow `BookFormat`s to be compared with `Book`s.
181///
182/// A comparison like the one above, which ignores some fields of the struct,
183/// can be dangerous. It can easily lead to an unintended violation of the
184/// requirements for a partial equivalence relation. For example, if we kept
185/// the above implementation of `PartialEq<Book>` for `BookFormat` and added an
186/// implementation of `PartialEq<Book>` for `Book` (either via a `#[derive]` or
187/// via the manual implementation from the first example) then the result would
188/// violate transitivity:
189///
190/// ```should_panic
191/// #[derive(PartialEq)]
192/// enum BookFormat {
193/// Paperback,
194/// Hardback,
195/// Ebook,
196/// }
197///
198/// #[derive(PartialEq)]
199/// struct Book {
200/// isbn: i32,
201/// format: BookFormat,
202/// }
203///
204/// impl PartialEq<BookFormat> for Book {
205/// fn eq(&self, other: &BookFormat) -> bool {
206/// self.format == *other
207/// }
208/// }
209///
210/// impl PartialEq<Book> for BookFormat {
211/// fn eq(&self, other: &Book) -> bool {
212/// *self == other.format
213/// }
214/// }
215///
216/// fn main() {
217/// let b1 = Book { isbn: 1, format: BookFormat::Paperback };
218/// let b2 = Book { isbn: 2, format: BookFormat::Paperback };
219///
220/// assert!(b1 == BookFormat::Paperback);
221/// assert!(BookFormat::Paperback == b2);
222///
223/// // The following should hold by transitivity but doesn't.
224/// assert!(b1 == b2); // <-- PANICS
225/// }
226/// ```
227///
228/// # Examples
229///
230/// ```
231/// let x: u32 = 0;
232/// let y: u32 = 1;
233///
234/// assert_eq!(x == y, false);
235/// assert_eq!(x.eq(&y), false);
236/// ```
237///
238/// [`eq`]: PartialEq::eq
239/// [`ne`]: PartialEq::ne
240#[lang = "eq"]
241#[stable(feature = "rust1", since = "1.0.0")]
242#[doc(alias = "==")]
243#[doc(alias = "!=")]
244#[rustc_on_unimplemented(
245 message = "can't compare `{Self}` with `{Rhs}`",
246 label = "no implementation for `{Self} == {Rhs}`",
247 append_const_msg
248)]
249#[rustc_diagnostic_item = "PartialEq"]
250#[const_trait]
251#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
252pub trait PartialEq<Rhs: PointeeSized = Self>: PointeeSized {
253 /// Tests for `self` and `other` values to be equal, and is used by `==`.
254 #[must_use]
255 #[stable(feature = "rust1", since = "1.0.0")]
256 #[rustc_diagnostic_item = "cmp_partialeq_eq"]
257 fn eq(&self, other: &Rhs) -> bool;
258
259 /// Tests for `!=`. The default implementation is almost always sufficient,
260 /// and should not be overridden without very good reason.
261 #[inline]
262 #[must_use]
263 #[stable(feature = "rust1", since = "1.0.0")]
264 #[rustc_diagnostic_item = "cmp_partialeq_ne"]
265 fn ne(&self, other: &Rhs) -> bool {
266 !self.eq(other)
267 }
268}
269
270/// Derive macro generating an impl of the trait [`PartialEq`].
271/// The behavior of this macro is described in detail [here](PartialEq#derivable).
272#[rustc_builtin_macro]
273#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
274#[allow_internal_unstable(core_intrinsics, structural_match)]
275pub macro PartialEq($item:item) {
276 /* compiler built-in */
277}
278
279/// Trait for comparisons corresponding to [equivalence relations](
280/// https://en.wikipedia.org/wiki/Equivalence_relation).
281///
282/// The primary difference to [`PartialEq`] is the additional requirement for reflexivity. A type
283/// that implements [`PartialEq`] guarantees that for all `a`, `b` and `c`:
284///
285/// - symmetric: `a == b` implies `b == a` and `a != b` implies `!(a == b)`
286/// - transitive: `a == b` and `b == c` implies `a == c`
287///
288/// `Eq`, which builds on top of [`PartialEq`] also implies:
289///
290/// - reflexive: `a == a`
291///
292/// This property cannot be checked by the compiler, and therefore `Eq` is a trait without methods.
293///
294/// Violating this property is a logic error. The behavior resulting from a logic error is not
295/// specified, but users of the trait must ensure that such logic errors do *not* result in
296/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
297/// methods.
298///
299/// Floating point types such as [`f32`] and [`f64`] implement only [`PartialEq`] but *not* `Eq`
300/// because `NaN` != `NaN`.
301///
302/// ## Derivable
303///
304/// This trait can be used with `#[derive]`. When `derive`d, because `Eq` has no extra methods, it
305/// is only informing the compiler that this is an equivalence relation rather than a partial
306/// equivalence relation. Note that the `derive` strategy requires all fields are `Eq`, which isn't
307/// always desired.
308///
309/// ## How can I implement `Eq`?
310///
311/// If you cannot use the `derive` strategy, specify that your type implements `Eq`, which has no
312/// extra methods:
313///
314/// ```
315/// enum BookFormat {
316/// Paperback,
317/// Hardback,
318/// Ebook,
319/// }
320///
321/// struct Book {
322/// isbn: i32,
323/// format: BookFormat,
324/// }
325///
326/// impl PartialEq for Book {
327/// fn eq(&self, other: &Self) -> bool {
328/// self.isbn == other.isbn
329/// }
330/// }
331///
332/// impl Eq for Book {}
333/// ```
334#[doc(alias = "==")]
335#[doc(alias = "!=")]
336#[stable(feature = "rust1", since = "1.0.0")]
337#[rustc_diagnostic_item = "Eq"]
338pub trait Eq: PartialEq<Self> + PointeeSized {
339 // this method is used solely by `impl Eq or #[derive(Eq)]` to assert that every component of a
340 // type implements `Eq` itself. The current deriving infrastructure means doing this assertion
341 // without using a method on this trait is nearly impossible.
342 //
343 // This should never be implemented by hand.
344 #[doc(hidden)]
345 #[coverage(off)]
346 #[inline]
347 #[stable(feature = "rust1", since = "1.0.0")]
348 fn assert_receiver_is_total_eq(&self) {}
349}
350
351/// Derive macro generating an impl of the trait [`Eq`].
352#[rustc_builtin_macro]
353#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
354#[allow_internal_unstable(core_intrinsics, derive_eq, structural_match)]
355#[allow_internal_unstable(coverage_attribute)]
356pub macro Eq($item:item) {
357 /* compiler built-in */
358}
359
360// FIXME: this struct is used solely by #[derive] to
361// assert that every component of a type implements Eq.
362//
363// This struct should never appear in user code.
364#[doc(hidden)]
365#[allow(missing_debug_implementations)]
366#[unstable(feature = "derive_eq", reason = "deriving hack, should not be public", issue = "none")]
367pub struct AssertParamIsEq<T: Eq + PointeeSized> {
368 _field: crate::marker::PhantomData<T>,
369}
370
371/// An `Ordering` is the result of a comparison between two values.
372///
373/// # Examples
374///
375/// ```
376/// use std::cmp::Ordering;
377///
378/// assert_eq!(1.cmp(&2), Ordering::Less);
379///
380/// assert_eq!(1.cmp(&1), Ordering::Equal);
381///
382/// assert_eq!(2.cmp(&1), Ordering::Greater);
383/// ```
384#[derive(Clone, Copy, Eq, PartialOrd, Ord, Debug, Hash)]
385#[derive_const(PartialEq)]
386#[stable(feature = "rust1", since = "1.0.0")]
387// This is a lang item only so that `BinOp::Cmp` in MIR can return it.
388// It has no special behavior, but does require that the three variants
389// `Less`/`Equal`/`Greater` remain `-1_i8`/`0_i8`/`+1_i8` respectively.
390#[lang = "Ordering"]
391#[repr(i8)]
392pub enum Ordering {
393 /// An ordering where a compared value is less than another.
394 #[stable(feature = "rust1", since = "1.0.0")]
395 Less = -1,
396 /// An ordering where a compared value is equal to another.
397 #[stable(feature = "rust1", since = "1.0.0")]
398 Equal = 0,
399 /// An ordering where a compared value is greater than another.
400 #[stable(feature = "rust1", since = "1.0.0")]
401 Greater = 1,
402}
403
404impl Ordering {
405 #[inline]
406 const fn as_raw(self) -> i8 {
407 // FIXME(const-hack): just use `PartialOrd` against `Equal` once that's const
408 crate::intrinsics::discriminant_value(&self)
409 }
410
411 /// Returns `true` if the ordering is the `Equal` variant.
412 ///
413 /// # Examples
414 ///
415 /// ```
416 /// use std::cmp::Ordering;
417 ///
418 /// assert_eq!(Ordering::Less.is_eq(), false);
419 /// assert_eq!(Ordering::Equal.is_eq(), true);
420 /// assert_eq!(Ordering::Greater.is_eq(), false);
421 /// ```
422 #[inline]
423 #[must_use]
424 #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
425 #[stable(feature = "ordering_helpers", since = "1.53.0")]
426 pub const fn is_eq(self) -> bool {
427 // All the `is_*` methods are implemented as comparisons against zero
428 // to follow how clang's libcxx implements their equivalents in
429 // <https://github.com/llvm/llvm-project/blob/60486292b79885b7800b082754153202bef5b1f0/libcxx/include/__compare/is_eq.h#L23-L28>
430
431 self.as_raw() == 0
432 }
433
434 /// Returns `true` if the ordering is not the `Equal` variant.
435 ///
436 /// # Examples
437 ///
438 /// ```
439 /// use std::cmp::Ordering;
440 ///
441 /// assert_eq!(Ordering::Less.is_ne(), true);
442 /// assert_eq!(Ordering::Equal.is_ne(), false);
443 /// assert_eq!(Ordering::Greater.is_ne(), true);
444 /// ```
445 #[inline]
446 #[must_use]
447 #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
448 #[stable(feature = "ordering_helpers", since = "1.53.0")]
449 pub const fn is_ne(self) -> bool {
450 self.as_raw() != 0
451 }
452
453 /// Returns `true` if the ordering is the `Less` variant.
454 ///
455 /// # Examples
456 ///
457 /// ```
458 /// use std::cmp::Ordering;
459 ///
460 /// assert_eq!(Ordering::Less.is_lt(), true);
461 /// assert_eq!(Ordering::Equal.is_lt(), false);
462 /// assert_eq!(Ordering::Greater.is_lt(), false);
463 /// ```
464 #[inline]
465 #[must_use]
466 #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
467 #[stable(feature = "ordering_helpers", since = "1.53.0")]
468 pub const fn is_lt(self) -> bool {
469 self.as_raw() < 0
470 }
471
472 /// Returns `true` if the ordering is the `Greater` variant.
473 ///
474 /// # Examples
475 ///
476 /// ```
477 /// use std::cmp::Ordering;
478 ///
479 /// assert_eq!(Ordering::Less.is_gt(), false);
480 /// assert_eq!(Ordering::Equal.is_gt(), false);
481 /// assert_eq!(Ordering::Greater.is_gt(), true);
482 /// ```
483 #[inline]
484 #[must_use]
485 #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
486 #[stable(feature = "ordering_helpers", since = "1.53.0")]
487 pub const fn is_gt(self) -> bool {
488 self.as_raw() > 0
489 }
490
491 /// Returns `true` if the ordering is either the `Less` or `Equal` variant.
492 ///
493 /// # Examples
494 ///
495 /// ```
496 /// use std::cmp::Ordering;
497 ///
498 /// assert_eq!(Ordering::Less.is_le(), true);
499 /// assert_eq!(Ordering::Equal.is_le(), true);
500 /// assert_eq!(Ordering::Greater.is_le(), false);
501 /// ```
502 #[inline]
503 #[must_use]
504 #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
505 #[stable(feature = "ordering_helpers", since = "1.53.0")]
506 pub const fn is_le(self) -> bool {
507 self.as_raw() <= 0
508 }
509
510 /// Returns `true` if the ordering is either the `Greater` or `Equal` variant.
511 ///
512 /// # Examples
513 ///
514 /// ```
515 /// use std::cmp::Ordering;
516 ///
517 /// assert_eq!(Ordering::Less.is_ge(), false);
518 /// assert_eq!(Ordering::Equal.is_ge(), true);
519 /// assert_eq!(Ordering::Greater.is_ge(), true);
520 /// ```
521 #[inline]
522 #[must_use]
523 #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
524 #[stable(feature = "ordering_helpers", since = "1.53.0")]
525 pub const fn is_ge(self) -> bool {
526 self.as_raw() >= 0
527 }
528
529 /// Reverses the `Ordering`.
530 ///
531 /// * `Less` becomes `Greater`.
532 /// * `Greater` becomes `Less`.
533 /// * `Equal` becomes `Equal`.
534 ///
535 /// # Examples
536 ///
537 /// Basic behavior:
538 ///
539 /// ```
540 /// use std::cmp::Ordering;
541 ///
542 /// assert_eq!(Ordering::Less.reverse(), Ordering::Greater);
543 /// assert_eq!(Ordering::Equal.reverse(), Ordering::Equal);
544 /// assert_eq!(Ordering::Greater.reverse(), Ordering::Less);
545 /// ```
546 ///
547 /// This method can be used to reverse a comparison:
548 ///
549 /// ```
550 /// let data: &mut [_] = &mut [2, 10, 5, 8];
551 ///
552 /// // sort the array from largest to smallest.
553 /// data.sort_by(|a, b| a.cmp(b).reverse());
554 ///
555 /// let b: &mut [_] = &mut [10, 8, 5, 2];
556 /// assert!(data == b);
557 /// ```
558 #[inline]
559 #[must_use]
560 #[rustc_const_stable(feature = "const_ordering", since = "1.48.0")]
561 #[stable(feature = "rust1", since = "1.0.0")]
562 pub const fn reverse(self) -> Ordering {
563 match self {
564 Less => Greater,
565 Equal => Equal,
566 Greater => Less,
567 }
568 }
569
570 /// Chains two orderings.
571 ///
572 /// Returns `self` when it's not `Equal`. Otherwise returns `other`.
573 ///
574 /// # Examples
575 ///
576 /// ```
577 /// use std::cmp::Ordering;
578 ///
579 /// let result = Ordering::Equal.then(Ordering::Less);
580 /// assert_eq!(result, Ordering::Less);
581 ///
582 /// let result = Ordering::Less.then(Ordering::Equal);
583 /// assert_eq!(result, Ordering::Less);
584 ///
585 /// let result = Ordering::Less.then(Ordering::Greater);
586 /// assert_eq!(result, Ordering::Less);
587 ///
588 /// let result = Ordering::Equal.then(Ordering::Equal);
589 /// assert_eq!(result, Ordering::Equal);
590 ///
591 /// let x: (i64, i64, i64) = (1, 2, 7);
592 /// let y: (i64, i64, i64) = (1, 5, 3);
593 /// let result = x.0.cmp(&y.0).then(x.1.cmp(&y.1)).then(x.2.cmp(&y.2));
594 ///
595 /// assert_eq!(result, Ordering::Less);
596 /// ```
597 #[inline]
598 #[must_use]
599 #[rustc_const_stable(feature = "const_ordering", since = "1.48.0")]
600 #[stable(feature = "ordering_chaining", since = "1.17.0")]
601 pub const fn then(self, other: Ordering) -> Ordering {
602 match self {
603 Equal => other,
604 _ => self,
605 }
606 }
607
608 /// Chains the ordering with the given function.
609 ///
610 /// Returns `self` when it's not `Equal`. Otherwise calls `f` and returns
611 /// the result.
612 ///
613 /// # Examples
614 ///
615 /// ```
616 /// use std::cmp::Ordering;
617 ///
618 /// let result = Ordering::Equal.then_with(|| Ordering::Less);
619 /// assert_eq!(result, Ordering::Less);
620 ///
621 /// let result = Ordering::Less.then_with(|| Ordering::Equal);
622 /// assert_eq!(result, Ordering::Less);
623 ///
624 /// let result = Ordering::Less.then_with(|| Ordering::Greater);
625 /// assert_eq!(result, Ordering::Less);
626 ///
627 /// let result = Ordering::Equal.then_with(|| Ordering::Equal);
628 /// assert_eq!(result, Ordering::Equal);
629 ///
630 /// let x: (i64, i64, i64) = (1, 2, 7);
631 /// let y: (i64, i64, i64) = (1, 5, 3);
632 /// let result = x.0.cmp(&y.0).then_with(|| x.1.cmp(&y.1)).then_with(|| x.2.cmp(&y.2));
633 ///
634 /// assert_eq!(result, Ordering::Less);
635 /// ```
636 #[inline]
637 #[must_use]
638 #[stable(feature = "ordering_chaining", since = "1.17.0")]
639 pub fn then_with<F: FnOnce() -> Ordering>(self, f: F) -> Ordering {
640 match self {
641 Equal => f(),
642 _ => self,
643 }
644 }
645}
646
647/// A helper struct for reverse ordering.
648///
649/// This struct is a helper to be used with functions like [`Vec::sort_by_key`] and
650/// can be used to reverse order a part of a key.
651///
652/// [`Vec::sort_by_key`]: ../../std/vec/struct.Vec.html#method.sort_by_key
653///
654/// # Examples
655///
656/// ```
657/// use std::cmp::Reverse;
658///
659/// let mut v = vec![1, 2, 3, 4, 5, 6];
660/// v.sort_by_key(|&num| (num > 3, Reverse(num)));
661/// assert_eq!(v, vec![3, 2, 1, 6, 5, 4]);
662/// ```
663#[derive(PartialEq, Eq, Debug, Copy, Default, Hash)]
664#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
665#[repr(transparent)]
666pub struct Reverse<T>(#[stable(feature = "reverse_cmp_key", since = "1.19.0")] pub T);
667
668#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
669impl<T: PartialOrd> PartialOrd for Reverse<T> {
670 #[inline]
671 fn partial_cmp(&self, other: &Reverse<T>) -> Option<Ordering> {
672 other.0.partial_cmp(&self.0)
673 }
674
675 #[inline]
676 fn lt(&self, other: &Self) -> bool {
677 other.0 < self.0
678 }
679 #[inline]
680 fn le(&self, other: &Self) -> bool {
681 other.0 <= self.0
682 }
683 #[inline]
684 fn gt(&self, other: &Self) -> bool {
685 other.0 > self.0
686 }
687 #[inline]
688 fn ge(&self, other: &Self) -> bool {
689 other.0 >= self.0
690 }
691}
692
693#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
694impl<T: Ord> Ord for Reverse<T> {
695 #[inline]
696 fn cmp(&self, other: &Reverse<T>) -> Ordering {
697 other.0.cmp(&self.0)
698 }
699}
700
701#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
702impl<T: Clone> Clone for Reverse<T> {
703 #[inline]
704 fn clone(&self) -> Reverse<T> {
705 Reverse(self.0.clone())
706 }
707
708 #[inline]
709 fn clone_from(&mut self, source: &Self) {
710 self.0.clone_from(&source.0)
711 }
712}
713
714/// Trait for types that form a [total order](https://en.wikipedia.org/wiki/Total_order).
715///
716/// Implementations must be consistent with the [`PartialOrd`] implementation, and ensure `max`,
717/// `min`, and `clamp` are consistent with `cmp`:
718///
719/// - `partial_cmp(a, b) == Some(cmp(a, b))`.
720/// - `max(a, b) == max_by(a, b, cmp)` (ensured by the default implementation).
721/// - `min(a, b) == min_by(a, b, cmp)` (ensured by the default implementation).
722/// - For `a.clamp(min, max)`, see the [method docs](#method.clamp) (ensured by the default
723/// implementation).
724///
725/// Violating these requirements is a logic error. The behavior resulting from a logic error is not
726/// specified, but users of the trait must ensure that such logic errors do *not* result in
727/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
728/// methods.
729///
730/// ## Corollaries
731///
732/// From the above and the requirements of `PartialOrd`, it follows that for all `a`, `b` and `c`:
733///
734/// - exactly one of `a < b`, `a == b` or `a > b` is true; and
735/// - `<` is transitive: `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and
736/// `>`.
737///
738/// Mathematically speaking, the `<` operator defines a strict [weak order]. In cases where `==`
739/// conforms to mathematical equality, it also defines a strict [total order].
740///
741/// [weak order]: https://en.wikipedia.org/wiki/Weak_ordering
742/// [total order]: https://en.wikipedia.org/wiki/Total_order
743///
744/// ## Derivable
745///
746/// This trait can be used with `#[derive]`.
747///
748/// When `derive`d on structs, it will produce a
749/// [lexicographic](https://en.wikipedia.org/wiki/Lexicographic_order) ordering based on the
750/// top-to-bottom declaration order of the struct's members.
751///
752/// When `derive`d on enums, variants are ordered primarily by their discriminants. Secondarily,
753/// they are ordered by their fields. By default, the discriminant is smallest for variants at the
754/// top, and largest for variants at the bottom. Here's an example:
755///
756/// ```
757/// #[derive(PartialEq, Eq, PartialOrd, Ord)]
758/// enum E {
759/// Top,
760/// Bottom,
761/// }
762///
763/// assert!(E::Top < E::Bottom);
764/// ```
765///
766/// However, manually setting the discriminants can override this default behavior:
767///
768/// ```
769/// #[derive(PartialEq, Eq, PartialOrd, Ord)]
770/// enum E {
771/// Top = 2,
772/// Bottom = 1,
773/// }
774///
775/// assert!(E::Bottom < E::Top);
776/// ```
777///
778/// ## Lexicographical comparison
779///
780/// Lexicographical comparison is an operation with the following properties:
781/// - Two sequences are compared element by element.
782/// - The first mismatching element defines which sequence is lexicographically less or greater
783/// than the other.
784/// - If one sequence is a prefix of another, the shorter sequence is lexicographically less than
785/// the other.
786/// - If two sequences have equivalent elements and are of the same length, then the sequences are
787/// lexicographically equal.
788/// - An empty sequence is lexicographically less than any non-empty sequence.
789/// - Two empty sequences are lexicographically equal.
790///
791/// ## How can I implement `Ord`?
792///
793/// `Ord` requires that the type also be [`PartialOrd`], [`PartialEq`], and [`Eq`].
794///
795/// Because `Ord` implies a stronger ordering relationship than [`PartialOrd`], and both `Ord` and
796/// [`PartialOrd`] must agree, you must choose how to implement `Ord` **first**. You can choose to
797/// derive it, or implement it manually. If you derive it, you should derive all four traits. If you
798/// implement it manually, you should manually implement all four traits, based on the
799/// implementation of `Ord`.
800///
801/// Here's an example where you want to define the `Character` comparison by `health` and
802/// `experience` only, disregarding the field `mana`:
803///
804/// ```
805/// use std::cmp::Ordering;
806///
807/// struct Character {
808/// health: u32,
809/// experience: u32,
810/// mana: f32,
811/// }
812///
813/// impl Ord for Character {
814/// fn cmp(&self, other: &Self) -> Ordering {
815/// self.experience
816/// .cmp(&other.experience)
817/// .then(self.health.cmp(&other.health))
818/// }
819/// }
820///
821/// impl PartialOrd for Character {
822/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
823/// Some(self.cmp(other))
824/// }
825/// }
826///
827/// impl PartialEq for Character {
828/// fn eq(&self, other: &Self) -> bool {
829/// self.health == other.health && self.experience == other.experience
830/// }
831/// }
832///
833/// impl Eq for Character {}
834/// ```
835///
836/// If all you need is to `slice::sort` a type by a field value, it can be simpler to use
837/// `slice::sort_by_key`.
838///
839/// ## Examples of incorrect `Ord` implementations
840///
841/// ```
842/// use std::cmp::Ordering;
843///
844/// #[derive(Debug)]
845/// struct Character {
846/// health: f32,
847/// }
848///
849/// impl Ord for Character {
850/// fn cmp(&self, other: &Self) -> std::cmp::Ordering {
851/// if self.health < other.health {
852/// Ordering::Less
853/// } else if self.health > other.health {
854/// Ordering::Greater
855/// } else {
856/// Ordering::Equal
857/// }
858/// }
859/// }
860///
861/// impl PartialOrd for Character {
862/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
863/// Some(self.cmp(other))
864/// }
865/// }
866///
867/// impl PartialEq for Character {
868/// fn eq(&self, other: &Self) -> bool {
869/// self.health == other.health
870/// }
871/// }
872///
873/// impl Eq for Character {}
874///
875/// let a = Character { health: 4.5 };
876/// let b = Character { health: f32::NAN };
877///
878/// // Mistake: floating-point values do not form a total order and using the built-in comparison
879/// // operands to implement `Ord` irregardless of that reality does not change it. Use
880/// // `f32::total_cmp` if you need a total order for floating-point values.
881///
882/// // Reflexivity requirement of `Ord` is not given.
883/// assert!(a == a);
884/// assert!(b != b);
885///
886/// // Antisymmetry requirement of `Ord` is not given. Only one of a < c and c < a is allowed to be
887/// // true, not both or neither.
888/// assert_eq!((a < b) as u8 + (b < a) as u8, 0);
889/// ```
890///
891/// ```
892/// use std::cmp::Ordering;
893///
894/// #[derive(Debug)]
895/// struct Character {
896/// health: u32,
897/// experience: u32,
898/// }
899///
900/// impl PartialOrd for Character {
901/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
902/// Some(self.cmp(other))
903/// }
904/// }
905///
906/// impl Ord for Character {
907/// fn cmp(&self, other: &Self) -> std::cmp::Ordering {
908/// if self.health < 50 {
909/// self.health.cmp(&other.health)
910/// } else {
911/// self.experience.cmp(&other.experience)
912/// }
913/// }
914/// }
915///
916/// // For performance reasons implementing `PartialEq` this way is not the idiomatic way, but it
917/// // ensures consistent behavior between `PartialEq`, `PartialOrd` and `Ord` in this example.
918/// impl PartialEq for Character {
919/// fn eq(&self, other: &Self) -> bool {
920/// self.cmp(other) == Ordering::Equal
921/// }
922/// }
923///
924/// impl Eq for Character {}
925///
926/// let a = Character {
927/// health: 3,
928/// experience: 5,
929/// };
930/// let b = Character {
931/// health: 10,
932/// experience: 77,
933/// };
934/// let c = Character {
935/// health: 143,
936/// experience: 2,
937/// };
938///
939/// // Mistake: The implementation of `Ord` compares different fields depending on the value of
940/// // `self.health`, the resulting order is not total.
941///
942/// // Transitivity requirement of `Ord` is not given. If a is smaller than b and b is smaller than
943/// // c, by transitive property a must also be smaller than c.
944/// assert!(a < b && b < c && c < a);
945///
946/// // Antisymmetry requirement of `Ord` is not given. Only one of a < c and c < a is allowed to be
947/// // true, not both or neither.
948/// assert_eq!((a < c) as u8 + (c < a) as u8, 2);
949/// ```
950///
951/// The documentation of [`PartialOrd`] contains further examples, for example it's wrong for
952/// [`PartialOrd`] and [`PartialEq`] to disagree.
953///
954/// [`cmp`]: Ord::cmp
955#[doc(alias = "<")]
956#[doc(alias = ">")]
957#[doc(alias = "<=")]
958#[doc(alias = ">=")]
959#[stable(feature = "rust1", since = "1.0.0")]
960#[rustc_diagnostic_item = "Ord"]
961pub trait Ord: Eq + PartialOrd<Self> + PointeeSized {
962 /// This method returns an [`Ordering`] between `self` and `other`.
963 ///
964 /// By convention, `self.cmp(&other)` returns the ordering matching the expression
965 /// `self <operator> other` if true.
966 ///
967 /// # Examples
968 ///
969 /// ```
970 /// use std::cmp::Ordering;
971 ///
972 /// assert_eq!(5.cmp(&10), Ordering::Less);
973 /// assert_eq!(10.cmp(&5), Ordering::Greater);
974 /// assert_eq!(5.cmp(&5), Ordering::Equal);
975 /// ```
976 #[must_use]
977 #[stable(feature = "rust1", since = "1.0.0")]
978 #[rustc_diagnostic_item = "ord_cmp_method"]
979 fn cmp(&self, other: &Self) -> Ordering;
980
981 /// Compares and returns the maximum of two values.
982 ///
983 /// Returns the second argument if the comparison determines them to be equal.
984 ///
985 /// # Examples
986 ///
987 /// ```
988 /// assert_eq!(1.max(2), 2);
989 /// assert_eq!(2.max(2), 2);
990 /// ```
991 /// ```
992 /// use std::cmp::Ordering;
993 ///
994 /// #[derive(Eq)]
995 /// struct Equal(&'static str);
996 ///
997 /// impl PartialEq for Equal {
998 /// fn eq(&self, other: &Self) -> bool { true }
999 /// }
1000 /// impl PartialOrd for Equal {
1001 /// fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1002 /// }
1003 /// impl Ord for Equal {
1004 /// fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1005 /// }
1006 ///
1007 /// assert_eq!(Equal("self").max(Equal("other")).0, "other");
1008 /// ```
1009 #[stable(feature = "ord_max_min", since = "1.21.0")]
1010 #[inline]
1011 #[must_use]
1012 #[rustc_diagnostic_item = "cmp_ord_max"]
1013 fn max(self, other: Self) -> Self
1014 where
1015 Self: Sized,
1016 {
1017 if other < self { self } else { other }
1018 }
1019
1020 /// Compares and returns the minimum of two values.
1021 ///
1022 /// Returns the first argument if the comparison determines them to be equal.
1023 ///
1024 /// # Examples
1025 ///
1026 /// ```
1027 /// assert_eq!(1.min(2), 1);
1028 /// assert_eq!(2.min(2), 2);
1029 /// ```
1030 /// ```
1031 /// use std::cmp::Ordering;
1032 ///
1033 /// #[derive(Eq)]
1034 /// struct Equal(&'static str);
1035 ///
1036 /// impl PartialEq for Equal {
1037 /// fn eq(&self, other: &Self) -> bool { true }
1038 /// }
1039 /// impl PartialOrd for Equal {
1040 /// fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1041 /// }
1042 /// impl Ord for Equal {
1043 /// fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1044 /// }
1045 ///
1046 /// assert_eq!(Equal("self").min(Equal("other")).0, "self");
1047 /// ```
1048 #[stable(feature = "ord_max_min", since = "1.21.0")]
1049 #[inline]
1050 #[must_use]
1051 #[rustc_diagnostic_item = "cmp_ord_min"]
1052 fn min(self, other: Self) -> Self
1053 where
1054 Self: Sized,
1055 {
1056 if other < self { other } else { self }
1057 }
1058
1059 /// Restrict a value to a certain interval.
1060 ///
1061 /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1062 /// less than `min`. Otherwise this returns `self`.
1063 ///
1064 /// # Panics
1065 ///
1066 /// Panics if `min > max`.
1067 ///
1068 /// # Examples
1069 ///
1070 /// ```
1071 /// assert_eq!((-3).clamp(-2, 1), -2);
1072 /// assert_eq!(0.clamp(-2, 1), 0);
1073 /// assert_eq!(2.clamp(-2, 1), 1);
1074 /// ```
1075 #[must_use]
1076 #[inline]
1077 #[stable(feature = "clamp", since = "1.50.0")]
1078 fn clamp(self, min: Self, max: Self) -> Self
1079 where
1080 Self: Sized,
1081 {
1082 assert!(min <= max);
1083 if self < min {
1084 min
1085 } else if self > max {
1086 max
1087 } else {
1088 self
1089 }
1090 }
1091}
1092
1093/// Derive macro generating an impl of the trait [`Ord`].
1094/// The behavior of this macro is described in detail [here](Ord#derivable).
1095#[rustc_builtin_macro]
1096#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
1097#[allow_internal_unstable(core_intrinsics)]
1098pub macro Ord($item:item) {
1099 /* compiler built-in */
1100}
1101
1102/// Trait for types that form a [partial order](https://en.wikipedia.org/wiki/Partial_order).
1103///
1104/// The `lt`, `le`, `gt`, and `ge` methods of this trait can be called using the `<`, `<=`, `>`, and
1105/// `>=` operators, respectively.
1106///
1107/// This trait should **only** contain the comparison logic for a type **if one plans on only
1108/// implementing `PartialOrd` but not [`Ord`]**. Otherwise the comparison logic should be in [`Ord`]
1109/// and this trait implemented with `Some(self.cmp(other))`.
1110///
1111/// The methods of this trait must be consistent with each other and with those of [`PartialEq`].
1112/// The following conditions must hold:
1113///
1114/// 1. `a == b` if and only if `partial_cmp(a, b) == Some(Equal)`.
1115/// 2. `a < b` if and only if `partial_cmp(a, b) == Some(Less)`
1116/// 3. `a > b` if and only if `partial_cmp(a, b) == Some(Greater)`
1117/// 4. `a <= b` if and only if `a < b || a == b`
1118/// 5. `a >= b` if and only if `a > b || a == b`
1119/// 6. `a != b` if and only if `!(a == b)`.
1120///
1121/// Conditions 2–5 above are ensured by the default implementation. Condition 6 is already ensured
1122/// by [`PartialEq`].
1123///
1124/// If [`Ord`] is also implemented for `Self` and `Rhs`, it must also be consistent with
1125/// `partial_cmp` (see the documentation of that trait for the exact requirements). It's easy to
1126/// accidentally make them disagree by deriving some of the traits and manually implementing others.
1127///
1128/// The comparison relations must satisfy the following conditions (for all `a`, `b`, `c` of type
1129/// `A`, `B`, `C`):
1130///
1131/// - **Transitivity**: if `A: PartialOrd<B>` and `B: PartialOrd<C>` and `A: PartialOrd<C>`, then `a
1132/// < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`. This must also
1133/// work for longer chains, such as when `A: PartialOrd<B>`, `B: PartialOrd<C>`, `C:
1134/// PartialOrd<D>`, and `A: PartialOrd<D>` all exist.
1135/// - **Duality**: if `A: PartialOrd<B>` and `B: PartialOrd<A>`, then `a < b` if and only if `b >
1136/// a`.
1137///
1138/// Note that the `B: PartialOrd<A>` (dual) and `A: PartialOrd<C>` (transitive) impls are not forced
1139/// to exist, but these requirements apply whenever they do exist.
1140///
1141/// Violating these requirements is a logic error. The behavior resulting from a logic error is not
1142/// specified, but users of the trait must ensure that such logic errors do *not* result in
1143/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
1144/// methods.
1145///
1146/// ## Cross-crate considerations
1147///
1148/// Upholding the requirements stated above can become tricky when one crate implements `PartialOrd`
1149/// for a type of another crate (i.e., to allow comparing one of its own types with a type from the
1150/// standard library). The recommendation is to never implement this trait for a foreign type. In
1151/// other words, such a crate should do `impl PartialOrd<ForeignType> for LocalType`, but it should
1152/// *not* do `impl PartialOrd<LocalType> for ForeignType`.
1153///
1154/// This avoids the problem of transitive chains that criss-cross crate boundaries: for all local
1155/// types `T`, you may assume that no other crate will add `impl`s that allow comparing `T < U`. In
1156/// other words, if other crates add `impl`s that allow building longer transitive chains `U1 < ...
1157/// < T < V1 < ...`, then all the types that appear to the right of `T` must be types that the crate
1158/// defining `T` already knows about. This rules out transitive chains where downstream crates can
1159/// add new `impl`s that "stitch together" comparisons of foreign types in ways that violate
1160/// transitivity.
1161///
1162/// Not having such foreign `impl`s also avoids forward compatibility issues where one crate adding
1163/// more `PartialOrd` implementations can cause build failures in downstream crates.
1164///
1165/// ## Corollaries
1166///
1167/// The following corollaries follow from the above requirements:
1168///
1169/// - irreflexivity of `<` and `>`: `!(a < a)`, `!(a > a)`
1170/// - transitivity of `>`: if `a > b` and `b > c` then `a > c`
1171/// - duality of `partial_cmp`: `partial_cmp(a, b) == partial_cmp(b, a).map(Ordering::reverse)`
1172///
1173/// ## Strict and non-strict partial orders
1174///
1175/// The `<` and `>` operators behave according to a *strict* partial order. However, `<=` and `>=`
1176/// do **not** behave according to a *non-strict* partial order. That is because mathematically, a
1177/// non-strict partial order would require reflexivity, i.e. `a <= a` would need to be true for
1178/// every `a`. This isn't always the case for types that implement `PartialOrd`, for example:
1179///
1180/// ```
1181/// let a = f64::sqrt(-1.0);
1182/// assert_eq!(a <= a, false);
1183/// ```
1184///
1185/// ## Derivable
1186///
1187/// This trait can be used with `#[derive]`.
1188///
1189/// When `derive`d on structs, it will produce a
1190/// [lexicographic](https://en.wikipedia.org/wiki/Lexicographic_order) ordering based on the
1191/// top-to-bottom declaration order of the struct's members.
1192///
1193/// When `derive`d on enums, variants are primarily ordered by their discriminants. Secondarily,
1194/// they are ordered by their fields. By default, the discriminant is smallest for variants at the
1195/// top, and largest for variants at the bottom. Here's an example:
1196///
1197/// ```
1198/// #[derive(PartialEq, PartialOrd)]
1199/// enum E {
1200/// Top,
1201/// Bottom,
1202/// }
1203///
1204/// assert!(E::Top < E::Bottom);
1205/// ```
1206///
1207/// However, manually setting the discriminants can override this default behavior:
1208///
1209/// ```
1210/// #[derive(PartialEq, PartialOrd)]
1211/// enum E {
1212/// Top = 2,
1213/// Bottom = 1,
1214/// }
1215///
1216/// assert!(E::Bottom < E::Top);
1217/// ```
1218///
1219/// ## How can I implement `PartialOrd`?
1220///
1221/// `PartialOrd` only requires implementation of the [`partial_cmp`] method, with the others
1222/// generated from default implementations.
1223///
1224/// However it remains possible to implement the others separately for types which do not have a
1225/// total order. For example, for floating point numbers, `NaN < 0 == false` and `NaN >= 0 == false`
1226/// (cf. IEEE 754-2008 section 5.11).
1227///
1228/// `PartialOrd` requires your type to be [`PartialEq`].
1229///
1230/// If your type is [`Ord`], you can implement [`partial_cmp`] by using [`cmp`]:
1231///
1232/// ```
1233/// use std::cmp::Ordering;
1234///
1235/// struct Person {
1236/// id: u32,
1237/// name: String,
1238/// height: u32,
1239/// }
1240///
1241/// impl PartialOrd for Person {
1242/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1243/// Some(self.cmp(other))
1244/// }
1245/// }
1246///
1247/// impl Ord for Person {
1248/// fn cmp(&self, other: &Self) -> Ordering {
1249/// self.height.cmp(&other.height)
1250/// }
1251/// }
1252///
1253/// impl PartialEq for Person {
1254/// fn eq(&self, other: &Self) -> bool {
1255/// self.height == other.height
1256/// }
1257/// }
1258///
1259/// impl Eq for Person {}
1260/// ```
1261///
1262/// You may also find it useful to use [`partial_cmp`] on your type's fields. Here is an example of
1263/// `Person` types who have a floating-point `height` field that is the only field to be used for
1264/// sorting:
1265///
1266/// ```
1267/// use std::cmp::Ordering;
1268///
1269/// struct Person {
1270/// id: u32,
1271/// name: String,
1272/// height: f64,
1273/// }
1274///
1275/// impl PartialOrd for Person {
1276/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1277/// self.height.partial_cmp(&other.height)
1278/// }
1279/// }
1280///
1281/// impl PartialEq for Person {
1282/// fn eq(&self, other: &Self) -> bool {
1283/// self.height == other.height
1284/// }
1285/// }
1286/// ```
1287///
1288/// ## Examples of incorrect `PartialOrd` implementations
1289///
1290/// ```
1291/// use std::cmp::Ordering;
1292///
1293/// #[derive(PartialEq, Debug)]
1294/// struct Character {
1295/// health: u32,
1296/// experience: u32,
1297/// }
1298///
1299/// impl PartialOrd for Character {
1300/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1301/// Some(self.health.cmp(&other.health))
1302/// }
1303/// }
1304///
1305/// let a = Character {
1306/// health: 10,
1307/// experience: 5,
1308/// };
1309/// let b = Character {
1310/// health: 10,
1311/// experience: 77,
1312/// };
1313///
1314/// // Mistake: `PartialEq` and `PartialOrd` disagree with each other.
1315///
1316/// assert_eq!(a.partial_cmp(&b).unwrap(), Ordering::Equal); // a == b according to `PartialOrd`.
1317/// assert_ne!(a, b); // a != b according to `PartialEq`.
1318/// ```
1319///
1320/// # Examples
1321///
1322/// ```
1323/// let x: u32 = 0;
1324/// let y: u32 = 1;
1325///
1326/// assert_eq!(x < y, true);
1327/// assert_eq!(x.lt(&y), true);
1328/// ```
1329///
1330/// [`partial_cmp`]: PartialOrd::partial_cmp
1331/// [`cmp`]: Ord::cmp
1332#[lang = "partial_ord"]
1333#[stable(feature = "rust1", since = "1.0.0")]
1334#[doc(alias = ">")]
1335#[doc(alias = "<")]
1336#[doc(alias = "<=")]
1337#[doc(alias = ">=")]
1338#[rustc_on_unimplemented(
1339 message = "can't compare `{Self}` with `{Rhs}`",
1340 label = "no implementation for `{Self} < {Rhs}` and `{Self} > {Rhs}`",
1341 append_const_msg
1342)]
1343#[rustc_diagnostic_item = "PartialOrd"]
1344#[allow(multiple_supertrait_upcastable)] // FIXME(sized_hierarchy): remove this
1345pub trait PartialOrd<Rhs: PointeeSized = Self>: PartialEq<Rhs> + PointeeSized {
1346 /// This method returns an ordering between `self` and `other` values if one exists.
1347 ///
1348 /// # Examples
1349 ///
1350 /// ```
1351 /// use std::cmp::Ordering;
1352 ///
1353 /// let result = 1.0.partial_cmp(&2.0);
1354 /// assert_eq!(result, Some(Ordering::Less));
1355 ///
1356 /// let result = 1.0.partial_cmp(&1.0);
1357 /// assert_eq!(result, Some(Ordering::Equal));
1358 ///
1359 /// let result = 2.0.partial_cmp(&1.0);
1360 /// assert_eq!(result, Some(Ordering::Greater));
1361 /// ```
1362 ///
1363 /// When comparison is impossible:
1364 ///
1365 /// ```
1366 /// let result = f64::NAN.partial_cmp(&1.0);
1367 /// assert_eq!(result, None);
1368 /// ```
1369 #[must_use]
1370 #[stable(feature = "rust1", since = "1.0.0")]
1371 #[rustc_diagnostic_item = "cmp_partialord_cmp"]
1372 fn partial_cmp(&self, other: &Rhs) -> Option<Ordering>;
1373
1374 /// Tests less than (for `self` and `other`) and is used by the `<` operator.
1375 ///
1376 /// # Examples
1377 ///
1378 /// ```
1379 /// assert_eq!(1.0 < 1.0, false);
1380 /// assert_eq!(1.0 < 2.0, true);
1381 /// assert_eq!(2.0 < 1.0, false);
1382 /// ```
1383 #[inline]
1384 #[must_use]
1385 #[stable(feature = "rust1", since = "1.0.0")]
1386 #[rustc_diagnostic_item = "cmp_partialord_lt"]
1387 fn lt(&self, other: &Rhs) -> bool {
1388 self.partial_cmp(other).is_some_and(Ordering::is_lt)
1389 }
1390
1391 /// Tests less than or equal to (for `self` and `other`) and is used by the
1392 /// `<=` operator.
1393 ///
1394 /// # Examples
1395 ///
1396 /// ```
1397 /// assert_eq!(1.0 <= 1.0, true);
1398 /// assert_eq!(1.0 <= 2.0, true);
1399 /// assert_eq!(2.0 <= 1.0, false);
1400 /// ```
1401 #[inline]
1402 #[must_use]
1403 #[stable(feature = "rust1", since = "1.0.0")]
1404 #[rustc_diagnostic_item = "cmp_partialord_le"]
1405 fn le(&self, other: &Rhs) -> bool {
1406 self.partial_cmp(other).is_some_and(Ordering::is_le)
1407 }
1408
1409 /// Tests greater than (for `self` and `other`) and is used by the `>`
1410 /// operator.
1411 ///
1412 /// # Examples
1413 ///
1414 /// ```
1415 /// assert_eq!(1.0 > 1.0, false);
1416 /// assert_eq!(1.0 > 2.0, false);
1417 /// assert_eq!(2.0 > 1.0, true);
1418 /// ```
1419 #[inline]
1420 #[must_use]
1421 #[stable(feature = "rust1", since = "1.0.0")]
1422 #[rustc_diagnostic_item = "cmp_partialord_gt"]
1423 fn gt(&self, other: &Rhs) -> bool {
1424 self.partial_cmp(other).is_some_and(Ordering::is_gt)
1425 }
1426
1427 /// Tests greater than or equal to (for `self` and `other`) and is used by
1428 /// the `>=` operator.
1429 ///
1430 /// # Examples
1431 ///
1432 /// ```
1433 /// assert_eq!(1.0 >= 1.0, true);
1434 /// assert_eq!(1.0 >= 2.0, false);
1435 /// assert_eq!(2.0 >= 1.0, true);
1436 /// ```
1437 #[inline]
1438 #[must_use]
1439 #[stable(feature = "rust1", since = "1.0.0")]
1440 #[rustc_diagnostic_item = "cmp_partialord_ge"]
1441 fn ge(&self, other: &Rhs) -> bool {
1442 self.partial_cmp(other).is_some_and(Ordering::is_ge)
1443 }
1444
1445 /// If `self == other`, returns `ControlFlow::Continue(())`.
1446 /// Otherwise, returns `ControlFlow::Break(self < other)`.
1447 ///
1448 /// This is useful for chaining together calls when implementing a lexical
1449 /// `PartialOrd::lt`, as it allows types (like primitives) which can cheaply
1450 /// check `==` and `<` separately to do rather than needing to calculate
1451 /// (then optimize out) the three-way `Ordering` result.
1452 #[inline]
1453 // Added to improve the behaviour of tuples; not necessarily stabilization-track.
1454 #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1455 #[doc(hidden)]
1456 fn __chaining_lt(&self, other: &Rhs) -> ControlFlow<bool> {
1457 default_chaining_impl(self, other, Ordering::is_lt)
1458 }
1459
1460 /// Same as `__chaining_lt`, but for `<=` instead of `<`.
1461 #[inline]
1462 #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1463 #[doc(hidden)]
1464 fn __chaining_le(&self, other: &Rhs) -> ControlFlow<bool> {
1465 default_chaining_impl(self, other, Ordering::is_le)
1466 }
1467
1468 /// Same as `__chaining_lt`, but for `>` instead of `<`.
1469 #[inline]
1470 #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1471 #[doc(hidden)]
1472 fn __chaining_gt(&self, other: &Rhs) -> ControlFlow<bool> {
1473 default_chaining_impl(self, other, Ordering::is_gt)
1474 }
1475
1476 /// Same as `__chaining_lt`, but for `>=` instead of `<`.
1477 #[inline]
1478 #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1479 #[doc(hidden)]
1480 fn __chaining_ge(&self, other: &Rhs) -> ControlFlow<bool> {
1481 default_chaining_impl(self, other, Ordering::is_ge)
1482 }
1483}
1484
1485fn default_chaining_impl<T: PointeeSized, U: PointeeSized>(
1486 lhs: &T,
1487 rhs: &U,
1488 p: impl FnOnce(Ordering) -> bool,
1489) -> ControlFlow<bool>
1490where
1491 T: PartialOrd<U>,
1492{
1493 // It's important that this only call `partial_cmp` once, not call `eq` then
1494 // one of the relational operators. We don't want to `bcmp`-then-`memcp` a
1495 // `String`, for example, or similarly for other data structures (#108157).
1496 match <T as PartialOrd<U>>::partial_cmp(lhs, rhs) {
1497 Some(Equal) => ControlFlow::Continue(()),
1498 Some(c) => ControlFlow::Break(p(c)),
1499 None => ControlFlow::Break(false),
1500 }
1501}
1502
1503/// Derive macro generating an impl of the trait [`PartialOrd`].
1504/// The behavior of this macro is described in detail [here](PartialOrd#derivable).
1505#[rustc_builtin_macro]
1506#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
1507#[allow_internal_unstable(core_intrinsics)]
1508pub macro PartialOrd($item:item) {
1509 /* compiler built-in */
1510}
1511
1512/// Compares and returns the minimum of two values.
1513///
1514/// Returns the first argument if the comparison determines them to be equal.
1515///
1516/// Internally uses an alias to [`Ord::min`].
1517///
1518/// # Examples
1519///
1520/// ```
1521/// use std::cmp;
1522///
1523/// assert_eq!(cmp::min(1, 2), 1);
1524/// assert_eq!(cmp::min(2, 2), 2);
1525/// ```
1526/// ```
1527/// use std::cmp::{self, Ordering};
1528///
1529/// #[derive(Eq)]
1530/// struct Equal(&'static str);
1531///
1532/// impl PartialEq for Equal {
1533/// fn eq(&self, other: &Self) -> bool { true }
1534/// }
1535/// impl PartialOrd for Equal {
1536/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1537/// }
1538/// impl Ord for Equal {
1539/// fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1540/// }
1541///
1542/// assert_eq!(cmp::min(Equal("v1"), Equal("v2")).0, "v1");
1543/// ```
1544#[inline]
1545#[must_use]
1546#[stable(feature = "rust1", since = "1.0.0")]
1547#[rustc_diagnostic_item = "cmp_min"]
1548pub fn min<T: Ord>(v1: T, v2: T) -> T {
1549 v1.min(v2)
1550}
1551
1552/// Returns the minimum of two values with respect to the specified comparison function.
1553///
1554/// Returns the first argument if the comparison determines them to be equal.
1555///
1556/// # Examples
1557///
1558/// ```
1559/// use std::cmp;
1560///
1561/// let abs_cmp = |x: &i32, y: &i32| x.abs().cmp(&y.abs());
1562///
1563/// let result = cmp::min_by(2, -1, abs_cmp);
1564/// assert_eq!(result, -1);
1565///
1566/// let result = cmp::min_by(2, -3, abs_cmp);
1567/// assert_eq!(result, 2);
1568///
1569/// let result = cmp::min_by(1, -1, abs_cmp);
1570/// assert_eq!(result, 1);
1571/// ```
1572#[inline]
1573#[must_use]
1574#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1575pub fn min_by<T, F: FnOnce(&T, &T) -> Ordering>(v1: T, v2: T, compare: F) -> T {
1576 if compare(&v2, &v1).is_lt() { v2 } else { v1 }
1577}
1578
1579/// Returns the element that gives the minimum value from the specified function.
1580///
1581/// Returns the first argument if the comparison determines them to be equal.
1582///
1583/// # Examples
1584///
1585/// ```
1586/// use std::cmp;
1587///
1588/// let result = cmp::min_by_key(2, -1, |x: &i32| x.abs());
1589/// assert_eq!(result, -1);
1590///
1591/// let result = cmp::min_by_key(2, -3, |x: &i32| x.abs());
1592/// assert_eq!(result, 2);
1593///
1594/// let result = cmp::min_by_key(1, -1, |x: &i32| x.abs());
1595/// assert_eq!(result, 1);
1596/// ```
1597#[inline]
1598#[must_use]
1599#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1600pub fn min_by_key<T, F: FnMut(&T) -> K, K: Ord>(v1: T, v2: T, mut f: F) -> T {
1601 if f(&v2) < f(&v1) { v2 } else { v1 }
1602}
1603
1604/// Compares and returns the maximum of two values.
1605///
1606/// Returns the second argument if the comparison determines them to be equal.
1607///
1608/// Internally uses an alias to [`Ord::max`].
1609///
1610/// # Examples
1611///
1612/// ```
1613/// use std::cmp;
1614///
1615/// assert_eq!(cmp::max(1, 2), 2);
1616/// assert_eq!(cmp::max(2, 2), 2);
1617/// ```
1618/// ```
1619/// use std::cmp::{self, Ordering};
1620///
1621/// #[derive(Eq)]
1622/// struct Equal(&'static str);
1623///
1624/// impl PartialEq for Equal {
1625/// fn eq(&self, other: &Self) -> bool { true }
1626/// }
1627/// impl PartialOrd for Equal {
1628/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1629/// }
1630/// impl Ord for Equal {
1631/// fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1632/// }
1633///
1634/// assert_eq!(cmp::max(Equal("v1"), Equal("v2")).0, "v2");
1635/// ```
1636#[inline]
1637#[must_use]
1638#[stable(feature = "rust1", since = "1.0.0")]
1639#[rustc_diagnostic_item = "cmp_max"]
1640pub fn max<T: Ord>(v1: T, v2: T) -> T {
1641 v1.max(v2)
1642}
1643
1644/// Returns the maximum of two values with respect to the specified comparison function.
1645///
1646/// Returns the second argument if the comparison determines them to be equal.
1647///
1648/// # Examples
1649///
1650/// ```
1651/// use std::cmp;
1652///
1653/// let abs_cmp = |x: &i32, y: &i32| x.abs().cmp(&y.abs());
1654///
1655/// let result = cmp::max_by(3, -2, abs_cmp) ;
1656/// assert_eq!(result, 3);
1657///
1658/// let result = cmp::max_by(1, -2, abs_cmp);
1659/// assert_eq!(result, -2);
1660///
1661/// let result = cmp::max_by(1, -1, abs_cmp);
1662/// assert_eq!(result, -1);
1663/// ```
1664#[inline]
1665#[must_use]
1666#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1667pub fn max_by<T, F: FnOnce(&T, &T) -> Ordering>(v1: T, v2: T, compare: F) -> T {
1668 if compare(&v2, &v1).is_lt() { v1 } else { v2 }
1669}
1670
1671/// Returns the element that gives the maximum value from the specified function.
1672///
1673/// Returns the second argument if the comparison determines them to be equal.
1674///
1675/// # Examples
1676///
1677/// ```
1678/// use std::cmp;
1679///
1680/// let result = cmp::max_by_key(3, -2, |x: &i32| x.abs());
1681/// assert_eq!(result, 3);
1682///
1683/// let result = cmp::max_by_key(1, -2, |x: &i32| x.abs());
1684/// assert_eq!(result, -2);
1685///
1686/// let result = cmp::max_by_key(1, -1, |x: &i32| x.abs());
1687/// assert_eq!(result, -1);
1688/// ```
1689#[inline]
1690#[must_use]
1691#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1692pub fn max_by_key<T, F: FnMut(&T) -> K, K: Ord>(v1: T, v2: T, mut f: F) -> T {
1693 if f(&v2) < f(&v1) { v1 } else { v2 }
1694}
1695
1696/// Compares and sorts two values, returning minimum and maximum.
1697///
1698/// Returns `[v1, v2]` if the comparison determines them to be equal.
1699///
1700/// # Examples
1701///
1702/// ```
1703/// #![feature(cmp_minmax)]
1704/// use std::cmp;
1705///
1706/// assert_eq!(cmp::minmax(1, 2), [1, 2]);
1707/// assert_eq!(cmp::minmax(2, 1), [1, 2]);
1708///
1709/// // You can destructure the result using array patterns
1710/// let [min, max] = cmp::minmax(42, 17);
1711/// assert_eq!(min, 17);
1712/// assert_eq!(max, 42);
1713/// ```
1714/// ```
1715/// #![feature(cmp_minmax)]
1716/// use std::cmp::{self, Ordering};
1717///
1718/// #[derive(Eq)]
1719/// struct Equal(&'static str);
1720///
1721/// impl PartialEq for Equal {
1722/// fn eq(&self, other: &Self) -> bool { true }
1723/// }
1724/// impl PartialOrd for Equal {
1725/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1726/// }
1727/// impl Ord for Equal {
1728/// fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1729/// }
1730///
1731/// assert_eq!(cmp::minmax(Equal("v1"), Equal("v2")).map(|v| v.0), ["v1", "v2"]);
1732/// ```
1733#[inline]
1734#[must_use]
1735#[unstable(feature = "cmp_minmax", issue = "115939")]
1736pub fn minmax<T>(v1: T, v2: T) -> [T; 2]
1737where
1738 T: Ord,
1739{
1740 if v2 < v1 { [v2, v1] } else { [v1, v2] }
1741}
1742
1743/// Returns minimum and maximum values with respect to the specified comparison function.
1744///
1745/// Returns `[v1, v2]` if the comparison determines them to be equal.
1746///
1747/// # Examples
1748///
1749/// ```
1750/// #![feature(cmp_minmax)]
1751/// use std::cmp;
1752///
1753/// let abs_cmp = |x: &i32, y: &i32| x.abs().cmp(&y.abs());
1754///
1755/// assert_eq!(cmp::minmax_by(-2, 1, abs_cmp), [1, -2]);
1756/// assert_eq!(cmp::minmax_by(-1, 2, abs_cmp), [-1, 2]);
1757/// assert_eq!(cmp::minmax_by(-2, 2, abs_cmp), [-2, 2]);
1758///
1759/// // You can destructure the result using array patterns
1760/// let [min, max] = cmp::minmax_by(-42, 17, abs_cmp);
1761/// assert_eq!(min, 17);
1762/// assert_eq!(max, -42);
1763/// ```
1764#[inline]
1765#[must_use]
1766#[unstable(feature = "cmp_minmax", issue = "115939")]
1767pub fn minmax_by<T, F>(v1: T, v2: T, compare: F) -> [T; 2]
1768where
1769 F: FnOnce(&T, &T) -> Ordering,
1770{
1771 if compare(&v2, &v1).is_lt() { [v2, v1] } else { [v1, v2] }
1772}
1773
1774/// Returns minimum and maximum values with respect to the specified key function.
1775///
1776/// Returns `[v1, v2]` if the comparison determines them to be equal.
1777///
1778/// # Examples
1779///
1780/// ```
1781/// #![feature(cmp_minmax)]
1782/// use std::cmp;
1783///
1784/// assert_eq!(cmp::minmax_by_key(-2, 1, |x: &i32| x.abs()), [1, -2]);
1785/// assert_eq!(cmp::minmax_by_key(-2, 2, |x: &i32| x.abs()), [-2, 2]);
1786///
1787/// // You can destructure the result using array patterns
1788/// let [min, max] = cmp::minmax_by_key(-42, 17, |x: &i32| x.abs());
1789/// assert_eq!(min, 17);
1790/// assert_eq!(max, -42);
1791/// ```
1792#[inline]
1793#[must_use]
1794#[unstable(feature = "cmp_minmax", issue = "115939")]
1795pub fn minmax_by_key<T, F, K>(v1: T, v2: T, mut f: F) -> [T; 2]
1796where
1797 F: FnMut(&T) -> K,
1798 K: Ord,
1799{
1800 if f(&v2) < f(&v1) { [v2, v1] } else { [v1, v2] }
1801}
1802
1803// Implementation of PartialEq, Eq, PartialOrd and Ord for primitive types
1804mod impls {
1805 use crate::cmp::Ordering::{self, Equal, Greater, Less};
1806 use crate::hint::unreachable_unchecked;
1807 use crate::marker::PointeeSized;
1808 use crate::ops::ControlFlow::{self, Break, Continue};
1809
1810 macro_rules! partial_eq_impl {
1811 ($($t:ty)*) => ($(
1812 #[stable(feature = "rust1", since = "1.0.0")]
1813 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1814 impl const PartialEq for $t {
1815 #[inline]
1816 fn eq(&self, other: &Self) -> bool { *self == *other }
1817 #[inline]
1818 fn ne(&self, other: &Self) -> bool { *self != *other }
1819 }
1820 )*)
1821 }
1822
1823 #[stable(feature = "rust1", since = "1.0.0")]
1824 impl PartialEq for () {
1825 #[inline]
1826 fn eq(&self, _other: &()) -> bool {
1827 true
1828 }
1829 #[inline]
1830 fn ne(&self, _other: &()) -> bool {
1831 false
1832 }
1833 }
1834
1835 partial_eq_impl! {
1836 bool char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f16 f32 f64 f128
1837 }
1838
1839 macro_rules! eq_impl {
1840 ($($t:ty)*) => ($(
1841 #[stable(feature = "rust1", since = "1.0.0")]
1842 impl Eq for $t {}
1843 )*)
1844 }
1845
1846 eq_impl! { () bool char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
1847
1848 #[rustfmt::skip]
1849 macro_rules! partial_ord_methods_primitive_impl {
1850 () => {
1851 #[inline(always)]
1852 fn lt(&self, other: &Self) -> bool { *self < *other }
1853 #[inline(always)]
1854 fn le(&self, other: &Self) -> bool { *self <= *other }
1855 #[inline(always)]
1856 fn gt(&self, other: &Self) -> bool { *self > *other }
1857 #[inline(always)]
1858 fn ge(&self, other: &Self) -> bool { *self >= *other }
1859
1860 // These implementations are the same for `Ord` or `PartialOrd` types
1861 // because if either is NAN the `==` test will fail so we end up in
1862 // the `Break` case and the comparison will correctly return `false`.
1863
1864 #[inline]
1865 fn __chaining_lt(&self, other: &Self) -> ControlFlow<bool> {
1866 let (lhs, rhs) = (*self, *other);
1867 if lhs == rhs { Continue(()) } else { Break(lhs < rhs) }
1868 }
1869 #[inline]
1870 fn __chaining_le(&self, other: &Self) -> ControlFlow<bool> {
1871 let (lhs, rhs) = (*self, *other);
1872 if lhs == rhs { Continue(()) } else { Break(lhs <= rhs) }
1873 }
1874 #[inline]
1875 fn __chaining_gt(&self, other: &Self) -> ControlFlow<bool> {
1876 let (lhs, rhs) = (*self, *other);
1877 if lhs == rhs { Continue(()) } else { Break(lhs > rhs) }
1878 }
1879 #[inline]
1880 fn __chaining_ge(&self, other: &Self) -> ControlFlow<bool> {
1881 let (lhs, rhs) = (*self, *other);
1882 if lhs == rhs { Continue(()) } else { Break(lhs >= rhs) }
1883 }
1884 };
1885 }
1886
1887 macro_rules! partial_ord_impl {
1888 ($($t:ty)*) => ($(
1889 #[stable(feature = "rust1", since = "1.0.0")]
1890 impl PartialOrd for $t {
1891 #[inline]
1892 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1893 match (*self <= *other, *self >= *other) {
1894 (false, false) => None,
1895 (false, true) => Some(Greater),
1896 (true, false) => Some(Less),
1897 (true, true) => Some(Equal),
1898 }
1899 }
1900
1901 partial_ord_methods_primitive_impl!();
1902 }
1903 )*)
1904 }
1905
1906 #[stable(feature = "rust1", since = "1.0.0")]
1907 impl PartialOrd for () {
1908 #[inline]
1909 fn partial_cmp(&self, _: &()) -> Option<Ordering> {
1910 Some(Equal)
1911 }
1912 }
1913
1914 #[stable(feature = "rust1", since = "1.0.0")]
1915 impl PartialOrd for bool {
1916 #[inline]
1917 fn partial_cmp(&self, other: &bool) -> Option<Ordering> {
1918 Some(self.cmp(other))
1919 }
1920
1921 partial_ord_methods_primitive_impl!();
1922 }
1923
1924 partial_ord_impl! { f16 f32 f64 f128 }
1925
1926 macro_rules! ord_impl {
1927 ($($t:ty)*) => ($(
1928 #[stable(feature = "rust1", since = "1.0.0")]
1929 impl PartialOrd for $t {
1930 #[inline]
1931 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1932 Some(crate::intrinsics::three_way_compare(*self, *other))
1933 }
1934
1935 partial_ord_methods_primitive_impl!();
1936 }
1937
1938 #[stable(feature = "rust1", since = "1.0.0")]
1939 impl Ord for $t {
1940 #[inline]
1941 fn cmp(&self, other: &Self) -> Ordering {
1942 crate::intrinsics::three_way_compare(*self, *other)
1943 }
1944 }
1945 )*)
1946 }
1947
1948 #[stable(feature = "rust1", since = "1.0.0")]
1949 impl Ord for () {
1950 #[inline]
1951 fn cmp(&self, _other: &()) -> Ordering {
1952 Equal
1953 }
1954 }
1955
1956 #[stable(feature = "rust1", since = "1.0.0")]
1957 impl Ord for bool {
1958 #[inline]
1959 fn cmp(&self, other: &bool) -> Ordering {
1960 // Casting to i8's and converting the difference to an Ordering generates
1961 // more optimal assembly.
1962 // See <https://github.com/rust-lang/rust/issues/66780> for more info.
1963 match (*self as i8) - (*other as i8) {
1964 -1 => Less,
1965 0 => Equal,
1966 1 => Greater,
1967 // SAFETY: bool as i8 returns 0 or 1, so the difference can't be anything else
1968 _ => unsafe { unreachable_unchecked() },
1969 }
1970 }
1971
1972 #[inline]
1973 fn min(self, other: bool) -> bool {
1974 self & other
1975 }
1976
1977 #[inline]
1978 fn max(self, other: bool) -> bool {
1979 self | other
1980 }
1981
1982 #[inline]
1983 fn clamp(self, min: bool, max: bool) -> bool {
1984 assert!(min <= max);
1985 self.max(min).min(max)
1986 }
1987 }
1988
1989 ord_impl! { char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
1990
1991 #[unstable(feature = "never_type", issue = "35121")]
1992 impl PartialEq for ! {
1993 #[inline]
1994 fn eq(&self, _: &!) -> bool {
1995 *self
1996 }
1997 }
1998
1999 #[unstable(feature = "never_type", issue = "35121")]
2000 impl Eq for ! {}
2001
2002 #[unstable(feature = "never_type", issue = "35121")]
2003 impl PartialOrd for ! {
2004 #[inline]
2005 fn partial_cmp(&self, _: &!) -> Option<Ordering> {
2006 *self
2007 }
2008 }
2009
2010 #[unstable(feature = "never_type", issue = "35121")]
2011 impl Ord for ! {
2012 #[inline]
2013 fn cmp(&self, _: &!) -> Ordering {
2014 *self
2015 }
2016 }
2017
2018 // & pointers
2019
2020 #[stable(feature = "rust1", since = "1.0.0")]
2021 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2022 impl<A: PointeeSized, B: PointeeSized> const PartialEq<&B> for &A
2023 where
2024 A: ~const PartialEq<B>,
2025 {
2026 #[inline]
2027 fn eq(&self, other: &&B) -> bool {
2028 PartialEq::eq(*self, *other)
2029 }
2030 #[inline]
2031 fn ne(&self, other: &&B) -> bool {
2032 PartialEq::ne(*self, *other)
2033 }
2034 }
2035 #[stable(feature = "rust1", since = "1.0.0")]
2036 impl<A: PointeeSized, B: PointeeSized> PartialOrd<&B> for &A
2037 where
2038 A: PartialOrd<B>,
2039 {
2040 #[inline]
2041 fn partial_cmp(&self, other: &&B) -> Option<Ordering> {
2042 PartialOrd::partial_cmp(*self, *other)
2043 }
2044 #[inline]
2045 fn lt(&self, other: &&B) -> bool {
2046 PartialOrd::lt(*self, *other)
2047 }
2048 #[inline]
2049 fn le(&self, other: &&B) -> bool {
2050 PartialOrd::le(*self, *other)
2051 }
2052 #[inline]
2053 fn gt(&self, other: &&B) -> bool {
2054 PartialOrd::gt(*self, *other)
2055 }
2056 #[inline]
2057 fn ge(&self, other: &&B) -> bool {
2058 PartialOrd::ge(*self, *other)
2059 }
2060 #[inline]
2061 fn __chaining_lt(&self, other: &&B) -> ControlFlow<bool> {
2062 PartialOrd::__chaining_lt(*self, *other)
2063 }
2064 #[inline]
2065 fn __chaining_le(&self, other: &&B) -> ControlFlow<bool> {
2066 PartialOrd::__chaining_le(*self, *other)
2067 }
2068 #[inline]
2069 fn __chaining_gt(&self, other: &&B) -> ControlFlow<bool> {
2070 PartialOrd::__chaining_gt(*self, *other)
2071 }
2072 #[inline]
2073 fn __chaining_ge(&self, other: &&B) -> ControlFlow<bool> {
2074 PartialOrd::__chaining_ge(*self, *other)
2075 }
2076 }
2077 #[stable(feature = "rust1", since = "1.0.0")]
2078 impl<A: PointeeSized> Ord for &A
2079 where
2080 A: Ord,
2081 {
2082 #[inline]
2083 fn cmp(&self, other: &Self) -> Ordering {
2084 Ord::cmp(*self, *other)
2085 }
2086 }
2087 #[stable(feature = "rust1", since = "1.0.0")]
2088 impl<A: PointeeSized> Eq for &A where A: Eq {}
2089
2090 // &mut pointers
2091
2092 #[stable(feature = "rust1", since = "1.0.0")]
2093 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2094 impl<A: PointeeSized, B: PointeeSized> const PartialEq<&mut B> for &mut A
2095 where
2096 A: ~const PartialEq<B>,
2097 {
2098 #[inline]
2099 fn eq(&self, other: &&mut B) -> bool {
2100 PartialEq::eq(*self, *other)
2101 }
2102 #[inline]
2103 fn ne(&self, other: &&mut B) -> bool {
2104 PartialEq::ne(*self, *other)
2105 }
2106 }
2107 #[stable(feature = "rust1", since = "1.0.0")]
2108 impl<A: PointeeSized, B: PointeeSized> PartialOrd<&mut B> for &mut A
2109 where
2110 A: PartialOrd<B>,
2111 {
2112 #[inline]
2113 fn partial_cmp(&self, other: &&mut B) -> Option<Ordering> {
2114 PartialOrd::partial_cmp(*self, *other)
2115 }
2116 #[inline]
2117 fn lt(&self, other: &&mut B) -> bool {
2118 PartialOrd::lt(*self, *other)
2119 }
2120 #[inline]
2121 fn le(&self, other: &&mut B) -> bool {
2122 PartialOrd::le(*self, *other)
2123 }
2124 #[inline]
2125 fn gt(&self, other: &&mut B) -> bool {
2126 PartialOrd::gt(*self, *other)
2127 }
2128 #[inline]
2129 fn ge(&self, other: &&mut B) -> bool {
2130 PartialOrd::ge(*self, *other)
2131 }
2132 #[inline]
2133 fn __chaining_lt(&self, other: &&mut B) -> ControlFlow<bool> {
2134 PartialOrd::__chaining_lt(*self, *other)
2135 }
2136 #[inline]
2137 fn __chaining_le(&self, other: &&mut B) -> ControlFlow<bool> {
2138 PartialOrd::__chaining_le(*self, *other)
2139 }
2140 #[inline]
2141 fn __chaining_gt(&self, other: &&mut B) -> ControlFlow<bool> {
2142 PartialOrd::__chaining_gt(*self, *other)
2143 }
2144 #[inline]
2145 fn __chaining_ge(&self, other: &&mut B) -> ControlFlow<bool> {
2146 PartialOrd::__chaining_ge(*self, *other)
2147 }
2148 }
2149 #[stable(feature = "rust1", since = "1.0.0")]
2150 impl<A: PointeeSized> Ord for &mut A
2151 where
2152 A: Ord,
2153 {
2154 #[inline]
2155 fn cmp(&self, other: &Self) -> Ordering {
2156 Ord::cmp(*self, *other)
2157 }
2158 }
2159 #[stable(feature = "rust1", since = "1.0.0")]
2160 impl<A: PointeeSized> Eq for &mut A where A: Eq {}
2161
2162 #[stable(feature = "rust1", since = "1.0.0")]
2163 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2164 impl<A: PointeeSized, B: PointeeSized> const PartialEq<&mut B> for &A
2165 where
2166 A: ~const PartialEq<B>,
2167 {
2168 #[inline]
2169 fn eq(&self, other: &&mut B) -> bool {
2170 PartialEq::eq(*self, *other)
2171 }
2172 #[inline]
2173 fn ne(&self, other: &&mut B) -> bool {
2174 PartialEq::ne(*self, *other)
2175 }
2176 }
2177
2178 #[stable(feature = "rust1", since = "1.0.0")]
2179 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2180 impl<A: PointeeSized, B: PointeeSized> const PartialEq<&B> for &mut A
2181 where
2182 A: ~const PartialEq<B>,
2183 {
2184 #[inline]
2185 fn eq(&self, other: &&B) -> bool {
2186 PartialEq::eq(*self, *other)
2187 }
2188 #[inline]
2189 fn ne(&self, other: &&B) -> bool {
2190 PartialEq::ne(*self, *other)
2191 }
2192 }
2193}