std/path.rs
1//! Cross-platform path manipulation.
2//!
3//! This module provides two types, [`PathBuf`] and [`Path`] (akin to [`String`]
4//! and [`str`]), for working with paths abstractly. These types are thin wrappers
5//! around [`OsString`] and [`OsStr`] respectively, meaning that they work directly
6//! on strings according to the local platform's path syntax.
7//!
8//! Paths can be parsed into [`Component`]s by iterating over the structure
9//! returned by the [`components`] method on [`Path`]. [`Component`]s roughly
10//! correspond to the substrings between path separators (`/` or `\`). You can
11//! reconstruct an equivalent path from components with the [`push`] method on
12//! [`PathBuf`]; note that the paths may differ syntactically by the
13//! normalization described in the documentation for the [`components`] method.
14//!
15//! ## Case sensitivity
16//!
17//! Unless otherwise indicated path methods that do not access the filesystem,
18//! such as [`Path::starts_with`] and [`Path::ends_with`], are case sensitive no
19//! matter the platform or filesystem. An exception to this is made for Windows
20//! drive letters.
21//!
22//! ## Simple usage
23//!
24//! Path manipulation includes both parsing components from slices and building
25//! new owned paths.
26//!
27//! To parse a path, you can create a [`Path`] slice from a [`str`]
28//! slice and start asking questions:
29//!
30//! ```
31//! use std::path::Path;
32//! use std::ffi::OsStr;
33//!
34//! let path = Path::new("/tmp/foo/bar.txt");
35//!
36//! let parent = path.parent();
37//! assert_eq!(parent, Some(Path::new("/tmp/foo")));
38//!
39//! let file_stem = path.file_stem();
40//! assert_eq!(file_stem, Some(OsStr::new("bar")));
41//!
42//! let extension = path.extension();
43//! assert_eq!(extension, Some(OsStr::new("txt")));
44//! ```
45//!
46//! To build or modify paths, use [`PathBuf`]:
47//!
48//! ```
49//! use std::path::PathBuf;
50//!
51//! // This way works...
52//! let mut path = PathBuf::from("c:\\");
53//!
54//! path.push("windows");
55//! path.push("system32");
56//!
57//! path.set_extension("dll");
58//!
59//! // ... but push is best used if you don't know everything up
60//! // front. If you do, this way is better:
61//! let path: PathBuf = ["c:\\", "windows", "system32.dll"].iter().collect();
62//! ```
63//!
64//! [`components`]: Path::components
65//! [`push`]: PathBuf::push
66
67#![stable(feature = "rust1", since = "1.0.0")]
68#![deny(unsafe_op_in_unsafe_fn)]
69
70use core::clone::CloneToUninit;
71
72use crate::borrow::{Borrow, Cow};
73use crate::collections::TryReserveError;
74use crate::error::Error;
75use crate::ffi::{OsStr, OsString, os_str};
76use crate::hash::{Hash, Hasher};
77use crate::iter::FusedIterator;
78use crate::ops::{self, Deref};
79use crate::rc::Rc;
80use crate::str::FromStr;
81use crate::sync::Arc;
82use crate::sys::path::{MAIN_SEP_STR, is_sep_byte, is_verbatim_sep, parse_prefix};
83use crate::{cmp, fmt, fs, io, sys};
84
85////////////////////////////////////////////////////////////////////////////////
86// GENERAL NOTES
87////////////////////////////////////////////////////////////////////////////////
88//
89// Parsing in this module is done by directly transmuting OsStr to [u8] slices,
90// taking advantage of the fact that OsStr always encodes ASCII characters
91// as-is. Eventually, this transmutation should be replaced by direct uses of
92// OsStr APIs for parsing, but it will take a while for those to become
93// available.
94
95////////////////////////////////////////////////////////////////////////////////
96// Windows Prefixes
97////////////////////////////////////////////////////////////////////////////////
98
99/// Windows path prefixes, e.g., `C:` or `\\server\share`.
100///
101/// Windows uses a variety of path prefix styles, including references to drive
102/// volumes (like `C:`), network shared folders (like `\\server\share`), and
103/// others. In addition, some path prefixes are "verbatim" (i.e., prefixed with
104/// `\\?\`), in which case `/` is *not* treated as a separator and essentially
105/// no normalization is performed.
106///
107/// # Examples
108///
109/// ```
110/// use std::path::{Component, Path, Prefix};
111/// use std::path::Prefix::*;
112/// use std::ffi::OsStr;
113///
114/// fn get_path_prefix(s: &str) -> Prefix<'_> {
115/// let path = Path::new(s);
116/// match path.components().next().unwrap() {
117/// Component::Prefix(prefix_component) => prefix_component.kind(),
118/// _ => panic!(),
119/// }
120/// }
121///
122/// # if cfg!(windows) {
123/// assert_eq!(Verbatim(OsStr::new("pictures")),
124/// get_path_prefix(r"\\?\pictures\kittens"));
125/// assert_eq!(VerbatimUNC(OsStr::new("server"), OsStr::new("share")),
126/// get_path_prefix(r"\\?\UNC\server\share"));
127/// assert_eq!(VerbatimDisk(b'C'), get_path_prefix(r"\\?\c:\"));
128/// assert_eq!(DeviceNS(OsStr::new("BrainInterface")),
129/// get_path_prefix(r"\\.\BrainInterface"));
130/// assert_eq!(UNC(OsStr::new("server"), OsStr::new("share")),
131/// get_path_prefix(r"\\server\share"));
132/// assert_eq!(Disk(b'C'), get_path_prefix(r"C:\Users\Rust\Pictures\Ferris"));
133/// # }
134/// ```
135#[derive(Copy, Clone, Debug, Hash, PartialOrd, Ord, PartialEq, Eq)]
136#[stable(feature = "rust1", since = "1.0.0")]
137pub enum Prefix<'a> {
138 /// Verbatim prefix, e.g., `\\?\cat_pics`.
139 ///
140 /// Verbatim prefixes consist of `\\?\` immediately followed by the given
141 /// component.
142 #[stable(feature = "rust1", since = "1.0.0")]
143 Verbatim(#[stable(feature = "rust1", since = "1.0.0")] &'a OsStr),
144
145 /// Verbatim prefix using Windows' _**U**niform **N**aming **C**onvention_,
146 /// e.g., `\\?\UNC\server\share`.
147 ///
148 /// Verbatim UNC prefixes consist of `\\?\UNC\` immediately followed by the
149 /// server's hostname and a share name.
150 #[stable(feature = "rust1", since = "1.0.0")]
151 VerbatimUNC(
152 #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
153 #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
154 ),
155
156 /// Verbatim disk prefix, e.g., `\\?\C:`.
157 ///
158 /// Verbatim disk prefixes consist of `\\?\` immediately followed by the
159 /// drive letter and `:`.
160 #[stable(feature = "rust1", since = "1.0.0")]
161 VerbatimDisk(#[stable(feature = "rust1", since = "1.0.0")] u8),
162
163 /// Device namespace prefix, e.g., `\\.\COM42`.
164 ///
165 /// Device namespace prefixes consist of `\\.\` (possibly using `/`
166 /// instead of `\`), immediately followed by the device name.
167 #[stable(feature = "rust1", since = "1.0.0")]
168 DeviceNS(#[stable(feature = "rust1", since = "1.0.0")] &'a OsStr),
169
170 /// Prefix using Windows' _**U**niform **N**aming **C**onvention_, e.g.
171 /// `\\server\share`.
172 ///
173 /// UNC prefixes consist of the server's hostname and a share name.
174 #[stable(feature = "rust1", since = "1.0.0")]
175 UNC(
176 #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
177 #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
178 ),
179
180 /// Prefix `C:` for the given disk drive.
181 #[stable(feature = "rust1", since = "1.0.0")]
182 Disk(#[stable(feature = "rust1", since = "1.0.0")] u8),
183}
184
185impl<'a> Prefix<'a> {
186 #[inline]
187 fn len(&self) -> usize {
188 use self::Prefix::*;
189 fn os_str_len(s: &OsStr) -> usize {
190 s.as_encoded_bytes().len()
191 }
192 match *self {
193 Verbatim(x) => 4 + os_str_len(x),
194 VerbatimUNC(x, y) => {
195 8 + os_str_len(x) + if os_str_len(y) > 0 { 1 + os_str_len(y) } else { 0 }
196 }
197 VerbatimDisk(_) => 6,
198 UNC(x, y) => 2 + os_str_len(x) + if os_str_len(y) > 0 { 1 + os_str_len(y) } else { 0 },
199 DeviceNS(x) => 4 + os_str_len(x),
200 Disk(_) => 2,
201 }
202 }
203
204 /// Determines if the prefix is verbatim, i.e., begins with `\\?\`.
205 ///
206 /// # Examples
207 ///
208 /// ```
209 /// use std::path::Prefix::*;
210 /// use std::ffi::OsStr;
211 ///
212 /// assert!(Verbatim(OsStr::new("pictures")).is_verbatim());
213 /// assert!(VerbatimUNC(OsStr::new("server"), OsStr::new("share")).is_verbatim());
214 /// assert!(VerbatimDisk(b'C').is_verbatim());
215 /// assert!(!DeviceNS(OsStr::new("BrainInterface")).is_verbatim());
216 /// assert!(!UNC(OsStr::new("server"), OsStr::new("share")).is_verbatim());
217 /// assert!(!Disk(b'C').is_verbatim());
218 /// ```
219 #[inline]
220 #[must_use]
221 #[stable(feature = "rust1", since = "1.0.0")]
222 pub fn is_verbatim(&self) -> bool {
223 use self::Prefix::*;
224 matches!(*self, Verbatim(_) | VerbatimDisk(_) | VerbatimUNC(..))
225 }
226
227 #[inline]
228 fn is_drive(&self) -> bool {
229 matches!(*self, Prefix::Disk(_))
230 }
231
232 #[inline]
233 fn has_implicit_root(&self) -> bool {
234 !self.is_drive()
235 }
236}
237
238////////////////////////////////////////////////////////////////////////////////
239// Exposed parsing helpers
240////////////////////////////////////////////////////////////////////////////////
241
242/// Determines whether the character is one of the permitted path
243/// separators for the current platform.
244///
245/// # Examples
246///
247/// ```
248/// use std::path;
249///
250/// assert!(path::is_separator('/')); // '/' works for both Unix and Windows
251/// assert!(!path::is_separator('❤'));
252/// ```
253#[must_use]
254#[stable(feature = "rust1", since = "1.0.0")]
255pub fn is_separator(c: char) -> bool {
256 c.is_ascii() && is_sep_byte(c as u8)
257}
258
259/// The primary separator of path components for the current platform.
260///
261/// For example, `/` on Unix and `\` on Windows.
262#[stable(feature = "rust1", since = "1.0.0")]
263#[cfg_attr(not(test), rustc_diagnostic_item = "path_main_separator")]
264pub const MAIN_SEPARATOR: char = crate::sys::path::MAIN_SEP;
265
266/// The primary separator of path components for the current platform.
267///
268/// For example, `/` on Unix and `\` on Windows.
269#[stable(feature = "main_separator_str", since = "1.68.0")]
270pub const MAIN_SEPARATOR_STR: &str = crate::sys::path::MAIN_SEP_STR;
271
272////////////////////////////////////////////////////////////////////////////////
273// Misc helpers
274////////////////////////////////////////////////////////////////////////////////
275
276// Iterate through `iter` while it matches `prefix`; return `None` if `prefix`
277// is not a prefix of `iter`, otherwise return `Some(iter_after_prefix)` giving
278// `iter` after having exhausted `prefix`.
279fn iter_after<'a, 'b, I, J>(mut iter: I, mut prefix: J) -> Option<I>
280where
281 I: Iterator<Item = Component<'a>> + Clone,
282 J: Iterator<Item = Component<'b>>,
283{
284 loop {
285 let mut iter_next = iter.clone();
286 match (iter_next.next(), prefix.next()) {
287 (Some(ref x), Some(ref y)) if x == y => (),
288 (Some(_), Some(_)) => return None,
289 (Some(_), None) => return Some(iter),
290 (None, None) => return Some(iter),
291 (None, Some(_)) => return None,
292 }
293 iter = iter_next;
294 }
295}
296
297////////////////////////////////////////////////////////////////////////////////
298// Cross-platform, iterator-independent parsing
299////////////////////////////////////////////////////////////////////////////////
300
301/// Says whether the first byte after the prefix is a separator.
302fn has_physical_root(s: &[u8], prefix: Option<Prefix<'_>>) -> bool {
303 let path = if let Some(p) = prefix { &s[p.len()..] } else { s };
304 !path.is_empty() && is_sep_byte(path[0])
305}
306
307// basic workhorse for splitting stem and extension
308fn rsplit_file_at_dot(file: &OsStr) -> (Option<&OsStr>, Option<&OsStr>) {
309 if file.as_encoded_bytes() == b".." {
310 return (Some(file), None);
311 }
312
313 // The unsafety here stems from converting between &OsStr and &[u8]
314 // and back. This is safe to do because (1) we only look at ASCII
315 // contents of the encoding and (2) new &OsStr values are produced
316 // only from ASCII-bounded slices of existing &OsStr values.
317 let mut iter = file.as_encoded_bytes().rsplitn(2, |b| *b == b'.');
318 let after = iter.next();
319 let before = iter.next();
320 if before == Some(b"") {
321 (Some(file), None)
322 } else {
323 unsafe {
324 (
325 before.map(|s| OsStr::from_encoded_bytes_unchecked(s)),
326 after.map(|s| OsStr::from_encoded_bytes_unchecked(s)),
327 )
328 }
329 }
330}
331
332fn split_file_at_dot(file: &OsStr) -> (&OsStr, Option<&OsStr>) {
333 let slice = file.as_encoded_bytes();
334 if slice == b".." {
335 return (file, None);
336 }
337
338 // The unsafety here stems from converting between &OsStr and &[u8]
339 // and back. This is safe to do because (1) we only look at ASCII
340 // contents of the encoding and (2) new &OsStr values are produced
341 // only from ASCII-bounded slices of existing &OsStr values.
342 let i = match slice[1..].iter().position(|b| *b == b'.') {
343 Some(i) => i + 1,
344 None => return (file, None),
345 };
346 let before = &slice[..i];
347 let after = &slice[i + 1..];
348 unsafe {
349 (
350 OsStr::from_encoded_bytes_unchecked(before),
351 Some(OsStr::from_encoded_bytes_unchecked(after)),
352 )
353 }
354}
355
356/// Checks whether the string is valid as a file extension, or panics otherwise.
357fn validate_extension(extension: &OsStr) {
358 for &b in extension.as_encoded_bytes() {
359 if is_sep_byte(b) {
360 panic!("extension cannot contain path separators: {extension:?}");
361 }
362 }
363}
364
365////////////////////////////////////////////////////////////////////////////////
366// The core iterators
367////////////////////////////////////////////////////////////////////////////////
368
369/// Component parsing works by a double-ended state machine; the cursors at the
370/// front and back of the path each keep track of what parts of the path have
371/// been consumed so far.
372///
373/// Going front to back, a path is made up of a prefix, a starting
374/// directory component, and a body (of normal components)
375#[derive(Copy, Clone, PartialEq, PartialOrd, Debug)]
376enum State {
377 Prefix = 0, // c:
378 StartDir = 1, // / or . or nothing
379 Body = 2, // foo/bar/baz
380 Done = 3,
381}
382
383/// A structure wrapping a Windows path prefix as well as its unparsed string
384/// representation.
385///
386/// In addition to the parsed [`Prefix`] information returned by [`kind`],
387/// `PrefixComponent` also holds the raw and unparsed [`OsStr`] slice,
388/// returned by [`as_os_str`].
389///
390/// Instances of this `struct` can be obtained by matching against the
391/// [`Prefix` variant] on [`Component`].
392///
393/// Does not occur on Unix.
394///
395/// # Examples
396///
397/// ```
398/// # if cfg!(windows) {
399/// use std::path::{Component, Path, Prefix};
400/// use std::ffi::OsStr;
401///
402/// let path = Path::new(r"c:\you\later\");
403/// match path.components().next().unwrap() {
404/// Component::Prefix(prefix_component) => {
405/// assert_eq!(Prefix::Disk(b'C'), prefix_component.kind());
406/// assert_eq!(OsStr::new("c:"), prefix_component.as_os_str());
407/// }
408/// _ => unreachable!(),
409/// }
410/// # }
411/// ```
412///
413/// [`as_os_str`]: PrefixComponent::as_os_str
414/// [`kind`]: PrefixComponent::kind
415/// [`Prefix` variant]: Component::Prefix
416#[stable(feature = "rust1", since = "1.0.0")]
417#[derive(Copy, Clone, Eq, Debug)]
418pub struct PrefixComponent<'a> {
419 /// The prefix as an unparsed `OsStr` slice.
420 raw: &'a OsStr,
421
422 /// The parsed prefix data.
423 parsed: Prefix<'a>,
424}
425
426impl<'a> PrefixComponent<'a> {
427 /// Returns the parsed prefix data.
428 ///
429 /// See [`Prefix`]'s documentation for more information on the different
430 /// kinds of prefixes.
431 #[stable(feature = "rust1", since = "1.0.0")]
432 #[must_use]
433 #[inline]
434 pub fn kind(&self) -> Prefix<'a> {
435 self.parsed
436 }
437
438 /// Returns the raw [`OsStr`] slice for this prefix.
439 #[stable(feature = "rust1", since = "1.0.0")]
440 #[must_use]
441 #[inline]
442 pub fn as_os_str(&self) -> &'a OsStr {
443 self.raw
444 }
445}
446
447#[stable(feature = "rust1", since = "1.0.0")]
448impl<'a> PartialEq for PrefixComponent<'a> {
449 #[inline]
450 fn eq(&self, other: &PrefixComponent<'a>) -> bool {
451 self.parsed == other.parsed
452 }
453}
454
455#[stable(feature = "rust1", since = "1.0.0")]
456impl<'a> PartialOrd for PrefixComponent<'a> {
457 #[inline]
458 fn partial_cmp(&self, other: &PrefixComponent<'a>) -> Option<cmp::Ordering> {
459 PartialOrd::partial_cmp(&self.parsed, &other.parsed)
460 }
461}
462
463#[stable(feature = "rust1", since = "1.0.0")]
464impl Ord for PrefixComponent<'_> {
465 #[inline]
466 fn cmp(&self, other: &Self) -> cmp::Ordering {
467 Ord::cmp(&self.parsed, &other.parsed)
468 }
469}
470
471#[stable(feature = "rust1", since = "1.0.0")]
472impl Hash for PrefixComponent<'_> {
473 fn hash<H: Hasher>(&self, h: &mut H) {
474 self.parsed.hash(h);
475 }
476}
477
478/// A single component of a path.
479///
480/// A `Component` roughly corresponds to a substring between path separators
481/// (`/` or `\`).
482///
483/// This `enum` is created by iterating over [`Components`], which in turn is
484/// created by the [`components`](Path::components) method on [`Path`].
485///
486/// # Examples
487///
488/// ```rust
489/// use std::path::{Component, Path};
490///
491/// let path = Path::new("/tmp/foo/bar.txt");
492/// let components = path.components().collect::<Vec<_>>();
493/// assert_eq!(&components, &[
494/// Component::RootDir,
495/// Component::Normal("tmp".as_ref()),
496/// Component::Normal("foo".as_ref()),
497/// Component::Normal("bar.txt".as_ref()),
498/// ]);
499/// ```
500#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
501#[stable(feature = "rust1", since = "1.0.0")]
502pub enum Component<'a> {
503 /// A Windows path prefix, e.g., `C:` or `\\server\share`.
504 ///
505 /// There is a large variety of prefix types, see [`Prefix`]'s documentation
506 /// for more.
507 ///
508 /// Does not occur on Unix.
509 #[stable(feature = "rust1", since = "1.0.0")]
510 Prefix(#[stable(feature = "rust1", since = "1.0.0")] PrefixComponent<'a>),
511
512 /// The root directory component, appears after any prefix and before anything else.
513 ///
514 /// It represents a separator that designates that a path starts from root.
515 #[stable(feature = "rust1", since = "1.0.0")]
516 RootDir,
517
518 /// A reference to the current directory, i.e., `.`.
519 #[stable(feature = "rust1", since = "1.0.0")]
520 CurDir,
521
522 /// A reference to the parent directory, i.e., `..`.
523 #[stable(feature = "rust1", since = "1.0.0")]
524 ParentDir,
525
526 /// A normal component, e.g., `a` and `b` in `a/b`.
527 ///
528 /// This variant is the most common one, it represents references to files
529 /// or directories.
530 #[stable(feature = "rust1", since = "1.0.0")]
531 Normal(#[stable(feature = "rust1", since = "1.0.0")] &'a OsStr),
532}
533
534impl<'a> Component<'a> {
535 /// Extracts the underlying [`OsStr`] slice.
536 ///
537 /// # Examples
538 ///
539 /// ```
540 /// use std::path::Path;
541 ///
542 /// let path = Path::new("./tmp/foo/bar.txt");
543 /// let components: Vec<_> = path.components().map(|comp| comp.as_os_str()).collect();
544 /// assert_eq!(&components, &[".", "tmp", "foo", "bar.txt"]);
545 /// ```
546 #[must_use = "`self` will be dropped if the result is not used"]
547 #[stable(feature = "rust1", since = "1.0.0")]
548 pub fn as_os_str(self) -> &'a OsStr {
549 match self {
550 Component::Prefix(p) => p.as_os_str(),
551 Component::RootDir => OsStr::new(MAIN_SEP_STR),
552 Component::CurDir => OsStr::new("."),
553 Component::ParentDir => OsStr::new(".."),
554 Component::Normal(path) => path,
555 }
556 }
557}
558
559#[stable(feature = "rust1", since = "1.0.0")]
560impl AsRef<OsStr> for Component<'_> {
561 #[inline]
562 fn as_ref(&self) -> &OsStr {
563 self.as_os_str()
564 }
565}
566
567#[stable(feature = "path_component_asref", since = "1.25.0")]
568impl AsRef<Path> for Component<'_> {
569 #[inline]
570 fn as_ref(&self) -> &Path {
571 self.as_os_str().as_ref()
572 }
573}
574
575/// An iterator over the [`Component`]s of a [`Path`].
576///
577/// This `struct` is created by the [`components`] method on [`Path`].
578/// See its documentation for more.
579///
580/// # Examples
581///
582/// ```
583/// use std::path::Path;
584///
585/// let path = Path::new("/tmp/foo/bar.txt");
586///
587/// for component in path.components() {
588/// println!("{component:?}");
589/// }
590/// ```
591///
592/// [`components`]: Path::components
593#[derive(Clone)]
594#[must_use = "iterators are lazy and do nothing unless consumed"]
595#[stable(feature = "rust1", since = "1.0.0")]
596pub struct Components<'a> {
597 // The path left to parse components from
598 path: &'a [u8],
599
600 // The prefix as it was originally parsed, if any
601 prefix: Option<Prefix<'a>>,
602
603 // true if path *physically* has a root separator; for most Windows
604 // prefixes, it may have a "logical" root separator for the purposes of
605 // normalization, e.g., \\server\share == \\server\share\.
606 has_physical_root: bool,
607
608 // The iterator is double-ended, and these two states keep track of what has
609 // been produced from either end
610 front: State,
611 back: State,
612}
613
614/// An iterator over the [`Component`]s of a [`Path`], as [`OsStr`] slices.
615///
616/// This `struct` is created by the [`iter`] method on [`Path`].
617/// See its documentation for more.
618///
619/// [`iter`]: Path::iter
620#[derive(Clone)]
621#[must_use = "iterators are lazy and do nothing unless consumed"]
622#[stable(feature = "rust1", since = "1.0.0")]
623pub struct Iter<'a> {
624 inner: Components<'a>,
625}
626
627#[stable(feature = "path_components_debug", since = "1.13.0")]
628impl fmt::Debug for Components<'_> {
629 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
630 struct DebugHelper<'a>(&'a Path);
631
632 impl fmt::Debug for DebugHelper<'_> {
633 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
634 f.debug_list().entries(self.0.components()).finish()
635 }
636 }
637
638 f.debug_tuple("Components").field(&DebugHelper(self.as_path())).finish()
639 }
640}
641
642impl<'a> Components<'a> {
643 // how long is the prefix, if any?
644 #[inline]
645 fn prefix_len(&self) -> usize {
646 self.prefix.as_ref().map(Prefix::len).unwrap_or(0)
647 }
648
649 #[inline]
650 fn prefix_verbatim(&self) -> bool {
651 self.prefix.as_ref().map(Prefix::is_verbatim).unwrap_or(false)
652 }
653
654 /// how much of the prefix is left from the point of view of iteration?
655 #[inline]
656 fn prefix_remaining(&self) -> usize {
657 if self.front == State::Prefix { self.prefix_len() } else { 0 }
658 }
659
660 // Given the iteration so far, how much of the pre-State::Body path is left?
661 #[inline]
662 fn len_before_body(&self) -> usize {
663 let root = if self.front <= State::StartDir && self.has_physical_root { 1 } else { 0 };
664 let cur_dir = if self.front <= State::StartDir && self.include_cur_dir() { 1 } else { 0 };
665 self.prefix_remaining() + root + cur_dir
666 }
667
668 // is the iteration complete?
669 #[inline]
670 fn finished(&self) -> bool {
671 self.front == State::Done || self.back == State::Done || self.front > self.back
672 }
673
674 #[inline]
675 fn is_sep_byte(&self, b: u8) -> bool {
676 if self.prefix_verbatim() { is_verbatim_sep(b) } else { is_sep_byte(b) }
677 }
678
679 /// Extracts a slice corresponding to the portion of the path remaining for iteration.
680 ///
681 /// # Examples
682 ///
683 /// ```
684 /// use std::path::Path;
685 ///
686 /// let mut components = Path::new("/tmp/foo/bar.txt").components();
687 /// components.next();
688 /// components.next();
689 ///
690 /// assert_eq!(Path::new("foo/bar.txt"), components.as_path());
691 /// ```
692 #[must_use]
693 #[stable(feature = "rust1", since = "1.0.0")]
694 pub fn as_path(&self) -> &'a Path {
695 let mut comps = self.clone();
696 if comps.front == State::Body {
697 comps.trim_left();
698 }
699 if comps.back == State::Body {
700 comps.trim_right();
701 }
702 unsafe { Path::from_u8_slice(comps.path) }
703 }
704
705 /// Is the *original* path rooted?
706 fn has_root(&self) -> bool {
707 if self.has_physical_root {
708 return true;
709 }
710 if let Some(p) = self.prefix {
711 if p.has_implicit_root() {
712 return true;
713 }
714 }
715 false
716 }
717
718 /// Should the normalized path include a leading . ?
719 fn include_cur_dir(&self) -> bool {
720 if self.has_root() {
721 return false;
722 }
723 let mut iter = self.path[self.prefix_remaining()..].iter();
724 match (iter.next(), iter.next()) {
725 (Some(&b'.'), None) => true,
726 (Some(&b'.'), Some(&b)) => self.is_sep_byte(b),
727 _ => false,
728 }
729 }
730
731 // parse a given byte sequence following the OsStr encoding into the
732 // corresponding path component
733 unsafe fn parse_single_component<'b>(&self, comp: &'b [u8]) -> Option<Component<'b>> {
734 match comp {
735 b"." if self.prefix_verbatim() => Some(Component::CurDir),
736 b"." => None, // . components are normalized away, except at
737 // the beginning of a path, which is treated
738 // separately via `include_cur_dir`
739 b".." => Some(Component::ParentDir),
740 b"" => None,
741 _ => Some(Component::Normal(unsafe { OsStr::from_encoded_bytes_unchecked(comp) })),
742 }
743 }
744
745 // parse a component from the left, saying how many bytes to consume to
746 // remove the component
747 fn parse_next_component(&self) -> (usize, Option<Component<'a>>) {
748 debug_assert!(self.front == State::Body);
749 let (extra, comp) = match self.path.iter().position(|b| self.is_sep_byte(*b)) {
750 None => (0, self.path),
751 Some(i) => (1, &self.path[..i]),
752 };
753 // SAFETY: `comp` is a valid substring, since it is split on a separator.
754 (comp.len() + extra, unsafe { self.parse_single_component(comp) })
755 }
756
757 // parse a component from the right, saying how many bytes to consume to
758 // remove the component
759 fn parse_next_component_back(&self) -> (usize, Option<Component<'a>>) {
760 debug_assert!(self.back == State::Body);
761 let start = self.len_before_body();
762 let (extra, comp) = match self.path[start..].iter().rposition(|b| self.is_sep_byte(*b)) {
763 None => (0, &self.path[start..]),
764 Some(i) => (1, &self.path[start + i + 1..]),
765 };
766 // SAFETY: `comp` is a valid substring, since it is split on a separator.
767 (comp.len() + extra, unsafe { self.parse_single_component(comp) })
768 }
769
770 // trim away repeated separators (i.e., empty components) on the left
771 fn trim_left(&mut self) {
772 while !self.path.is_empty() {
773 let (size, comp) = self.parse_next_component();
774 if comp.is_some() {
775 return;
776 } else {
777 self.path = &self.path[size..];
778 }
779 }
780 }
781
782 // trim away repeated separators (i.e., empty components) on the right
783 fn trim_right(&mut self) {
784 while self.path.len() > self.len_before_body() {
785 let (size, comp) = self.parse_next_component_back();
786 if comp.is_some() {
787 return;
788 } else {
789 self.path = &self.path[..self.path.len() - size];
790 }
791 }
792 }
793}
794
795#[stable(feature = "rust1", since = "1.0.0")]
796impl AsRef<Path> for Components<'_> {
797 #[inline]
798 fn as_ref(&self) -> &Path {
799 self.as_path()
800 }
801}
802
803#[stable(feature = "rust1", since = "1.0.0")]
804impl AsRef<OsStr> for Components<'_> {
805 #[inline]
806 fn as_ref(&self) -> &OsStr {
807 self.as_path().as_os_str()
808 }
809}
810
811#[stable(feature = "path_iter_debug", since = "1.13.0")]
812impl fmt::Debug for Iter<'_> {
813 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
814 struct DebugHelper<'a>(&'a Path);
815
816 impl fmt::Debug for DebugHelper<'_> {
817 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
818 f.debug_list().entries(self.0.iter()).finish()
819 }
820 }
821
822 f.debug_tuple("Iter").field(&DebugHelper(self.as_path())).finish()
823 }
824}
825
826impl<'a> Iter<'a> {
827 /// Extracts a slice corresponding to the portion of the path remaining for iteration.
828 ///
829 /// # Examples
830 ///
831 /// ```
832 /// use std::path::Path;
833 ///
834 /// let mut iter = Path::new("/tmp/foo/bar.txt").iter();
835 /// iter.next();
836 /// iter.next();
837 ///
838 /// assert_eq!(Path::new("foo/bar.txt"), iter.as_path());
839 /// ```
840 #[stable(feature = "rust1", since = "1.0.0")]
841 #[must_use]
842 #[inline]
843 pub fn as_path(&self) -> &'a Path {
844 self.inner.as_path()
845 }
846}
847
848#[stable(feature = "rust1", since = "1.0.0")]
849impl AsRef<Path> for Iter<'_> {
850 #[inline]
851 fn as_ref(&self) -> &Path {
852 self.as_path()
853 }
854}
855
856#[stable(feature = "rust1", since = "1.0.0")]
857impl AsRef<OsStr> for Iter<'_> {
858 #[inline]
859 fn as_ref(&self) -> &OsStr {
860 self.as_path().as_os_str()
861 }
862}
863
864#[stable(feature = "rust1", since = "1.0.0")]
865impl<'a> Iterator for Iter<'a> {
866 type Item = &'a OsStr;
867
868 #[inline]
869 fn next(&mut self) -> Option<&'a OsStr> {
870 self.inner.next().map(Component::as_os_str)
871 }
872}
873
874#[stable(feature = "rust1", since = "1.0.0")]
875impl<'a> DoubleEndedIterator for Iter<'a> {
876 #[inline]
877 fn next_back(&mut self) -> Option<&'a OsStr> {
878 self.inner.next_back().map(Component::as_os_str)
879 }
880}
881
882#[stable(feature = "fused", since = "1.26.0")]
883impl FusedIterator for Iter<'_> {}
884
885#[stable(feature = "rust1", since = "1.0.0")]
886impl<'a> Iterator for Components<'a> {
887 type Item = Component<'a>;
888
889 fn next(&mut self) -> Option<Component<'a>> {
890 while !self.finished() {
891 match self.front {
892 State::Prefix if self.prefix_len() > 0 => {
893 self.front = State::StartDir;
894 debug_assert!(self.prefix_len() <= self.path.len());
895 let raw = &self.path[..self.prefix_len()];
896 self.path = &self.path[self.prefix_len()..];
897 return Some(Component::Prefix(PrefixComponent {
898 raw: unsafe { OsStr::from_encoded_bytes_unchecked(raw) },
899 parsed: self.prefix.unwrap(),
900 }));
901 }
902 State::Prefix => {
903 self.front = State::StartDir;
904 }
905 State::StartDir => {
906 self.front = State::Body;
907 if self.has_physical_root {
908 debug_assert!(!self.path.is_empty());
909 self.path = &self.path[1..];
910 return Some(Component::RootDir);
911 } else if let Some(p) = self.prefix {
912 if p.has_implicit_root() && !p.is_verbatim() {
913 return Some(Component::RootDir);
914 }
915 } else if self.include_cur_dir() {
916 debug_assert!(!self.path.is_empty());
917 self.path = &self.path[1..];
918 return Some(Component::CurDir);
919 }
920 }
921 State::Body if !self.path.is_empty() => {
922 let (size, comp) = self.parse_next_component();
923 self.path = &self.path[size..];
924 if comp.is_some() {
925 return comp;
926 }
927 }
928 State::Body => {
929 self.front = State::Done;
930 }
931 State::Done => unreachable!(),
932 }
933 }
934 None
935 }
936}
937
938#[stable(feature = "rust1", since = "1.0.0")]
939impl<'a> DoubleEndedIterator for Components<'a> {
940 fn next_back(&mut self) -> Option<Component<'a>> {
941 while !self.finished() {
942 match self.back {
943 State::Body if self.path.len() > self.len_before_body() => {
944 let (size, comp) = self.parse_next_component_back();
945 self.path = &self.path[..self.path.len() - size];
946 if comp.is_some() {
947 return comp;
948 }
949 }
950 State::Body => {
951 self.back = State::StartDir;
952 }
953 State::StartDir => {
954 self.back = State::Prefix;
955 if self.has_physical_root {
956 self.path = &self.path[..self.path.len() - 1];
957 return Some(Component::RootDir);
958 } else if let Some(p) = self.prefix {
959 if p.has_implicit_root() && !p.is_verbatim() {
960 return Some(Component::RootDir);
961 }
962 } else if self.include_cur_dir() {
963 self.path = &self.path[..self.path.len() - 1];
964 return Some(Component::CurDir);
965 }
966 }
967 State::Prefix if self.prefix_len() > 0 => {
968 self.back = State::Done;
969 return Some(Component::Prefix(PrefixComponent {
970 raw: unsafe { OsStr::from_encoded_bytes_unchecked(self.path) },
971 parsed: self.prefix.unwrap(),
972 }));
973 }
974 State::Prefix => {
975 self.back = State::Done;
976 return None;
977 }
978 State::Done => unreachable!(),
979 }
980 }
981 None
982 }
983}
984
985#[stable(feature = "fused", since = "1.26.0")]
986impl FusedIterator for Components<'_> {}
987
988#[stable(feature = "rust1", since = "1.0.0")]
989impl<'a> PartialEq for Components<'a> {
990 #[inline]
991 fn eq(&self, other: &Components<'a>) -> bool {
992 let Components { path: _, front: _, back: _, has_physical_root: _, prefix: _ } = self;
993
994 // Fast path for exact matches, e.g. for hashmap lookups.
995 // Don't explicitly compare the prefix or has_physical_root fields since they'll
996 // either be covered by the `path` buffer or are only relevant for `prefix_verbatim()`.
997 if self.path.len() == other.path.len()
998 && self.front == other.front
999 && self.back == State::Body
1000 && other.back == State::Body
1001 && self.prefix_verbatim() == other.prefix_verbatim()
1002 {
1003 // possible future improvement: this could bail out earlier if there were a
1004 // reverse memcmp/bcmp comparing back to front
1005 if self.path == other.path {
1006 return true;
1007 }
1008 }
1009
1010 // compare back to front since absolute paths often share long prefixes
1011 Iterator::eq(self.clone().rev(), other.clone().rev())
1012 }
1013}
1014
1015#[stable(feature = "rust1", since = "1.0.0")]
1016impl Eq for Components<'_> {}
1017
1018#[stable(feature = "rust1", since = "1.0.0")]
1019impl<'a> PartialOrd for Components<'a> {
1020 #[inline]
1021 fn partial_cmp(&self, other: &Components<'a>) -> Option<cmp::Ordering> {
1022 Some(compare_components(self.clone(), other.clone()))
1023 }
1024}
1025
1026#[stable(feature = "rust1", since = "1.0.0")]
1027impl Ord for Components<'_> {
1028 #[inline]
1029 fn cmp(&self, other: &Self) -> cmp::Ordering {
1030 compare_components(self.clone(), other.clone())
1031 }
1032}
1033
1034fn compare_components(mut left: Components<'_>, mut right: Components<'_>) -> cmp::Ordering {
1035 // Fast path for long shared prefixes
1036 //
1037 // - compare raw bytes to find first mismatch
1038 // - backtrack to find separator before mismatch to avoid ambiguous parsings of '.' or '..' characters
1039 // - if found update state to only do a component-wise comparison on the remainder,
1040 // otherwise do it on the full path
1041 //
1042 // The fast path isn't taken for paths with a PrefixComponent to avoid backtracking into
1043 // the middle of one
1044 if left.prefix.is_none() && right.prefix.is_none() && left.front == right.front {
1045 // possible future improvement: a [u8]::first_mismatch simd implementation
1046 let first_difference = match left.path.iter().zip(right.path).position(|(&a, &b)| a != b) {
1047 None if left.path.len() == right.path.len() => return cmp::Ordering::Equal,
1048 None => left.path.len().min(right.path.len()),
1049 Some(diff) => diff,
1050 };
1051
1052 if let Some(previous_sep) =
1053 left.path[..first_difference].iter().rposition(|&b| left.is_sep_byte(b))
1054 {
1055 let mismatched_component_start = previous_sep + 1;
1056 left.path = &left.path[mismatched_component_start..];
1057 left.front = State::Body;
1058 right.path = &right.path[mismatched_component_start..];
1059 right.front = State::Body;
1060 }
1061 }
1062
1063 Iterator::cmp(left, right)
1064}
1065
1066/// An iterator over [`Path`] and its ancestors.
1067///
1068/// This `struct` is created by the [`ancestors`] method on [`Path`].
1069/// See its documentation for more.
1070///
1071/// # Examples
1072///
1073/// ```
1074/// use std::path::Path;
1075///
1076/// let path = Path::new("/foo/bar");
1077///
1078/// for ancestor in path.ancestors() {
1079/// println!("{}", ancestor.display());
1080/// }
1081/// ```
1082///
1083/// [`ancestors`]: Path::ancestors
1084#[derive(Copy, Clone, Debug)]
1085#[must_use = "iterators are lazy and do nothing unless consumed"]
1086#[stable(feature = "path_ancestors", since = "1.28.0")]
1087pub struct Ancestors<'a> {
1088 next: Option<&'a Path>,
1089}
1090
1091#[stable(feature = "path_ancestors", since = "1.28.0")]
1092impl<'a> Iterator for Ancestors<'a> {
1093 type Item = &'a Path;
1094
1095 #[inline]
1096 fn next(&mut self) -> Option<Self::Item> {
1097 let next = self.next;
1098 self.next = next.and_then(Path::parent);
1099 next
1100 }
1101}
1102
1103#[stable(feature = "path_ancestors", since = "1.28.0")]
1104impl FusedIterator for Ancestors<'_> {}
1105
1106////////////////////////////////////////////////////////////////////////////////
1107// Basic types and traits
1108////////////////////////////////////////////////////////////////////////////////
1109
1110/// An owned, mutable path (akin to [`String`]).
1111///
1112/// This type provides methods like [`push`] and [`set_extension`] that mutate
1113/// the path in place. It also implements [`Deref`] to [`Path`], meaning that
1114/// all methods on [`Path`] slices are available on `PathBuf` values as well.
1115///
1116/// [`push`]: PathBuf::push
1117/// [`set_extension`]: PathBuf::set_extension
1118///
1119/// More details about the overall approach can be found in
1120/// the [module documentation](self).
1121///
1122/// # Examples
1123///
1124/// You can use [`push`] to build up a `PathBuf` from
1125/// components:
1126///
1127/// ```
1128/// use std::path::PathBuf;
1129///
1130/// let mut path = PathBuf::new();
1131///
1132/// path.push(r"C:\");
1133/// path.push("windows");
1134/// path.push("system32");
1135///
1136/// path.set_extension("dll");
1137/// ```
1138///
1139/// However, [`push`] is best used for dynamic situations. This is a better way
1140/// to do this when you know all of the components ahead of time:
1141///
1142/// ```
1143/// use std::path::PathBuf;
1144///
1145/// let path: PathBuf = [r"C:\", "windows", "system32.dll"].iter().collect();
1146/// ```
1147///
1148/// We can still do better than this! Since these are all strings, we can use
1149/// `From::from`:
1150///
1151/// ```
1152/// use std::path::PathBuf;
1153///
1154/// let path = PathBuf::from(r"C:\windows\system32.dll");
1155/// ```
1156///
1157/// Which method works best depends on what kind of situation you're in.
1158///
1159/// Note that `PathBuf` does not always sanitize arguments, for example
1160/// [`push`] allows paths built from strings which include separators:
1161///
1162/// ```
1163/// use std::path::PathBuf;
1164///
1165/// let mut path = PathBuf::new();
1166///
1167/// path.push(r"C:\");
1168/// path.push("windows");
1169/// path.push(r"..\otherdir");
1170/// path.push("system32");
1171/// ```
1172///
1173/// The behavior of `PathBuf` may be changed to a panic on such inputs
1174/// in the future. [`Extend::extend`] should be used to add multi-part paths.
1175#[cfg_attr(not(test), rustc_diagnostic_item = "PathBuf")]
1176#[stable(feature = "rust1", since = "1.0.0")]
1177pub struct PathBuf {
1178 inner: OsString,
1179}
1180
1181impl PathBuf {
1182 /// Allocates an empty `PathBuf`.
1183 ///
1184 /// # Examples
1185 ///
1186 /// ```
1187 /// use std::path::PathBuf;
1188 ///
1189 /// let path = PathBuf::new();
1190 /// ```
1191 #[stable(feature = "rust1", since = "1.0.0")]
1192 #[must_use]
1193 #[inline]
1194 #[rustc_const_unstable(feature = "const_pathbuf_osstring_new", issue = "141520")]
1195 pub const fn new() -> PathBuf {
1196 PathBuf { inner: OsString::new() }
1197 }
1198
1199 /// Creates a new `PathBuf` with a given capacity used to create the
1200 /// internal [`OsString`]. See [`with_capacity`] defined on [`OsString`].
1201 ///
1202 /// # Examples
1203 ///
1204 /// ```
1205 /// use std::path::PathBuf;
1206 ///
1207 /// let mut path = PathBuf::with_capacity(10);
1208 /// let capacity = path.capacity();
1209 ///
1210 /// // This push is done without reallocating
1211 /// path.push(r"C:\");
1212 ///
1213 /// assert_eq!(capacity, path.capacity());
1214 /// ```
1215 ///
1216 /// [`with_capacity`]: OsString::with_capacity
1217 #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1218 #[must_use]
1219 #[inline]
1220 pub fn with_capacity(capacity: usize) -> PathBuf {
1221 PathBuf { inner: OsString::with_capacity(capacity) }
1222 }
1223
1224 /// Coerces to a [`Path`] slice.
1225 ///
1226 /// # Examples
1227 ///
1228 /// ```
1229 /// use std::path::{Path, PathBuf};
1230 ///
1231 /// let p = PathBuf::from("/test");
1232 /// assert_eq!(Path::new("/test"), p.as_path());
1233 /// ```
1234 #[cfg_attr(not(test), rustc_diagnostic_item = "pathbuf_as_path")]
1235 #[stable(feature = "rust1", since = "1.0.0")]
1236 #[must_use]
1237 #[inline]
1238 pub fn as_path(&self) -> &Path {
1239 self
1240 }
1241
1242 /// Consumes and leaks the `PathBuf`, returning a mutable reference to the contents,
1243 /// `&'a mut Path`.
1244 ///
1245 /// The caller has free choice over the returned lifetime, including 'static.
1246 /// Indeed, this function is ideally used for data that lives for the remainder of
1247 /// the program’s life, as dropping the returned reference will cause a memory leak.
1248 ///
1249 /// It does not reallocate or shrink the `PathBuf`, so the leaked allocation may include
1250 /// unused capacity that is not part of the returned slice. If you want to discard excess
1251 /// capacity, call [`into_boxed_path`], and then [`Box::leak`] instead.
1252 /// However, keep in mind that trimming the capacity may result in a reallocation and copy.
1253 ///
1254 /// [`into_boxed_path`]: Self::into_boxed_path
1255 #[unstable(feature = "os_string_pathbuf_leak", issue = "125965")]
1256 #[inline]
1257 pub fn leak<'a>(self) -> &'a mut Path {
1258 Path::from_inner_mut(self.inner.leak())
1259 }
1260
1261 /// Extends `self` with `path`.
1262 ///
1263 /// If `path` is absolute, it replaces the current path.
1264 ///
1265 /// On Windows:
1266 ///
1267 /// * if `path` has a root but no prefix (e.g., `\windows`), it
1268 /// replaces everything except for the prefix (if any) of `self`.
1269 /// * if `path` has a prefix but no root, it replaces `self`.
1270 /// * if `self` has a verbatim prefix (e.g. `\\?\C:\windows`)
1271 /// and `path` is not empty, the new path is normalized: all references
1272 /// to `.` and `..` are removed.
1273 ///
1274 /// Consider using [`Path::join`] if you need a new `PathBuf` instead of
1275 /// using this function on a cloned `PathBuf`.
1276 ///
1277 /// # Examples
1278 ///
1279 /// Pushing a relative path extends the existing path:
1280 ///
1281 /// ```
1282 /// use std::path::PathBuf;
1283 ///
1284 /// let mut path = PathBuf::from("/tmp");
1285 /// path.push("file.bk");
1286 /// assert_eq!(path, PathBuf::from("/tmp/file.bk"));
1287 /// ```
1288 ///
1289 /// Pushing an absolute path replaces the existing path:
1290 ///
1291 /// ```
1292 /// use std::path::PathBuf;
1293 ///
1294 /// let mut path = PathBuf::from("/tmp");
1295 /// path.push("/etc");
1296 /// assert_eq!(path, PathBuf::from("/etc"));
1297 /// ```
1298 #[stable(feature = "rust1", since = "1.0.0")]
1299 #[rustc_confusables("append", "put")]
1300 pub fn push<P: AsRef<Path>>(&mut self, path: P) {
1301 self._push(path.as_ref())
1302 }
1303
1304 fn _push(&mut self, path: &Path) {
1305 // in general, a separator is needed if the rightmost byte is not a separator
1306 let buf = self.inner.as_encoded_bytes();
1307 let mut need_sep = buf.last().map(|c| !is_sep_byte(*c)).unwrap_or(false);
1308
1309 // in the special case of `C:` on Windows, do *not* add a separator
1310 let comps = self.components();
1311
1312 if comps.prefix_len() > 0
1313 && comps.prefix_len() == comps.path.len()
1314 && comps.prefix.unwrap().is_drive()
1315 {
1316 need_sep = false
1317 }
1318
1319 // absolute `path` replaces `self`
1320 if path.is_absolute() || path.prefix().is_some() {
1321 self.inner.truncate(0);
1322
1323 // verbatim paths need . and .. removed
1324 } else if comps.prefix_verbatim() && !path.inner.is_empty() {
1325 let mut buf: Vec<_> = comps.collect();
1326 for c in path.components() {
1327 match c {
1328 Component::RootDir => {
1329 buf.truncate(1);
1330 buf.push(c);
1331 }
1332 Component::CurDir => (),
1333 Component::ParentDir => {
1334 if let Some(Component::Normal(_)) = buf.last() {
1335 buf.pop();
1336 }
1337 }
1338 _ => buf.push(c),
1339 }
1340 }
1341
1342 let mut res = OsString::new();
1343 let mut need_sep = false;
1344
1345 for c in buf {
1346 if need_sep && c != Component::RootDir {
1347 res.push(MAIN_SEP_STR);
1348 }
1349 res.push(c.as_os_str());
1350
1351 need_sep = match c {
1352 Component::RootDir => false,
1353 Component::Prefix(prefix) => {
1354 !prefix.parsed.is_drive() && prefix.parsed.len() > 0
1355 }
1356 _ => true,
1357 }
1358 }
1359
1360 self.inner = res;
1361 return;
1362
1363 // `path` has a root but no prefix, e.g., `\windows` (Windows only)
1364 } else if path.has_root() {
1365 let prefix_len = self.components().prefix_remaining();
1366 self.inner.truncate(prefix_len);
1367
1368 // `path` is a pure relative path
1369 } else if need_sep {
1370 self.inner.push(MAIN_SEP_STR);
1371 }
1372
1373 self.inner.push(path);
1374 }
1375
1376 /// Truncates `self` to [`self.parent`].
1377 ///
1378 /// Returns `false` and does nothing if [`self.parent`] is [`None`].
1379 /// Otherwise, returns `true`.
1380 ///
1381 /// [`self.parent`]: Path::parent
1382 ///
1383 /// # Examples
1384 ///
1385 /// ```
1386 /// use std::path::{Path, PathBuf};
1387 ///
1388 /// let mut p = PathBuf::from("/spirited/away.rs");
1389 ///
1390 /// p.pop();
1391 /// assert_eq!(Path::new("/spirited"), p);
1392 /// p.pop();
1393 /// assert_eq!(Path::new("/"), p);
1394 /// ```
1395 #[stable(feature = "rust1", since = "1.0.0")]
1396 pub fn pop(&mut self) -> bool {
1397 match self.parent().map(|p| p.as_u8_slice().len()) {
1398 Some(len) => {
1399 self.inner.truncate(len);
1400 true
1401 }
1402 None => false,
1403 }
1404 }
1405
1406 /// Updates [`self.file_name`] to `file_name`.
1407 ///
1408 /// If [`self.file_name`] was [`None`], this is equivalent to pushing
1409 /// `file_name`.
1410 ///
1411 /// Otherwise it is equivalent to calling [`pop`] and then pushing
1412 /// `file_name`. The new path will be a sibling of the original path.
1413 /// (That is, it will have the same parent.)
1414 ///
1415 /// The argument is not sanitized, so can include separators. This
1416 /// behavior may be changed to a panic in the future.
1417 ///
1418 /// [`self.file_name`]: Path::file_name
1419 /// [`pop`]: PathBuf::pop
1420 ///
1421 /// # Examples
1422 ///
1423 /// ```
1424 /// use std::path::PathBuf;
1425 ///
1426 /// let mut buf = PathBuf::from("/");
1427 /// assert!(buf.file_name() == None);
1428 ///
1429 /// buf.set_file_name("foo.txt");
1430 /// assert!(buf == PathBuf::from("/foo.txt"));
1431 /// assert!(buf.file_name().is_some());
1432 ///
1433 /// buf.set_file_name("bar.txt");
1434 /// assert!(buf == PathBuf::from("/bar.txt"));
1435 ///
1436 /// buf.set_file_name("baz");
1437 /// assert!(buf == PathBuf::from("/baz"));
1438 ///
1439 /// buf.set_file_name("../b/c.txt");
1440 /// assert!(buf == PathBuf::from("/../b/c.txt"));
1441 ///
1442 /// buf.set_file_name("baz");
1443 /// assert!(buf == PathBuf::from("/../b/baz"));
1444 /// ```
1445 #[stable(feature = "rust1", since = "1.0.0")]
1446 pub fn set_file_name<S: AsRef<OsStr>>(&mut self, file_name: S) {
1447 self._set_file_name(file_name.as_ref())
1448 }
1449
1450 fn _set_file_name(&mut self, file_name: &OsStr) {
1451 if self.file_name().is_some() {
1452 let popped = self.pop();
1453 debug_assert!(popped);
1454 }
1455 self.push(file_name);
1456 }
1457
1458 /// Updates [`self.extension`] to `Some(extension)` or to `None` if
1459 /// `extension` is empty.
1460 ///
1461 /// Returns `false` and does nothing if [`self.file_name`] is [`None`],
1462 /// returns `true` and updates the extension otherwise.
1463 ///
1464 /// If [`self.extension`] is [`None`], the extension is added; otherwise
1465 /// it is replaced.
1466 ///
1467 /// If `extension` is the empty string, [`self.extension`] will be [`None`]
1468 /// afterwards, not `Some("")`.
1469 ///
1470 /// # Panics
1471 ///
1472 /// Panics if the passed extension contains a path separator (see
1473 /// [`is_separator`]).
1474 ///
1475 /// # Caveats
1476 ///
1477 /// The new `extension` may contain dots and will be used in its entirety,
1478 /// but only the part after the final dot will be reflected in
1479 /// [`self.extension`].
1480 ///
1481 /// If the file stem contains internal dots and `extension` is empty, part
1482 /// of the old file stem will be considered the new [`self.extension`].
1483 ///
1484 /// See the examples below.
1485 ///
1486 /// [`self.file_name`]: Path::file_name
1487 /// [`self.extension`]: Path::extension
1488 ///
1489 /// # Examples
1490 ///
1491 /// ```
1492 /// use std::path::{Path, PathBuf};
1493 ///
1494 /// let mut p = PathBuf::from("/feel/the");
1495 ///
1496 /// p.set_extension("force");
1497 /// assert_eq!(Path::new("/feel/the.force"), p.as_path());
1498 ///
1499 /// p.set_extension("dark.side");
1500 /// assert_eq!(Path::new("/feel/the.dark.side"), p.as_path());
1501 ///
1502 /// p.set_extension("cookie");
1503 /// assert_eq!(Path::new("/feel/the.dark.cookie"), p.as_path());
1504 ///
1505 /// p.set_extension("");
1506 /// assert_eq!(Path::new("/feel/the.dark"), p.as_path());
1507 ///
1508 /// p.set_extension("");
1509 /// assert_eq!(Path::new("/feel/the"), p.as_path());
1510 ///
1511 /// p.set_extension("");
1512 /// assert_eq!(Path::new("/feel/the"), p.as_path());
1513 /// ```
1514 #[stable(feature = "rust1", since = "1.0.0")]
1515 pub fn set_extension<S: AsRef<OsStr>>(&mut self, extension: S) -> bool {
1516 self._set_extension(extension.as_ref())
1517 }
1518
1519 fn _set_extension(&mut self, extension: &OsStr) -> bool {
1520 validate_extension(extension);
1521
1522 let file_stem = match self.file_stem() {
1523 None => return false,
1524 Some(f) => f.as_encoded_bytes(),
1525 };
1526
1527 // truncate until right after the file stem
1528 let end_file_stem = file_stem[file_stem.len()..].as_ptr().addr();
1529 let start = self.inner.as_encoded_bytes().as_ptr().addr();
1530 self.inner.truncate(end_file_stem.wrapping_sub(start));
1531
1532 // add the new extension, if any
1533 let new = extension.as_encoded_bytes();
1534 if !new.is_empty() {
1535 self.inner.reserve_exact(new.len() + 1);
1536 self.inner.push(".");
1537 // SAFETY: Since a UTF-8 string was just pushed, it is not possible
1538 // for the buffer to end with a surrogate half.
1539 unsafe { self.inner.extend_from_slice_unchecked(new) };
1540 }
1541
1542 true
1543 }
1544
1545 /// Append [`self.extension`] with `extension`.
1546 ///
1547 /// Returns `false` and does nothing if [`self.file_name`] is [`None`],
1548 /// returns `true` and updates the extension otherwise.
1549 ///
1550 /// # Panics
1551 ///
1552 /// Panics if the passed extension contains a path separator (see
1553 /// [`is_separator`]).
1554 ///
1555 /// # Caveats
1556 ///
1557 /// The appended `extension` may contain dots and will be used in its entirety,
1558 /// but only the part after the final dot will be reflected in
1559 /// [`self.extension`].
1560 ///
1561 /// See the examples below.
1562 ///
1563 /// [`self.file_name`]: Path::file_name
1564 /// [`self.extension`]: Path::extension
1565 ///
1566 /// # Examples
1567 ///
1568 /// ```
1569 /// #![feature(path_add_extension)]
1570 ///
1571 /// use std::path::{Path, PathBuf};
1572 ///
1573 /// let mut p = PathBuf::from("/feel/the");
1574 ///
1575 /// p.add_extension("formatted");
1576 /// assert_eq!(Path::new("/feel/the.formatted"), p.as_path());
1577 ///
1578 /// p.add_extension("dark.side");
1579 /// assert_eq!(Path::new("/feel/the.formatted.dark.side"), p.as_path());
1580 ///
1581 /// p.set_extension("cookie");
1582 /// assert_eq!(Path::new("/feel/the.formatted.dark.cookie"), p.as_path());
1583 ///
1584 /// p.set_extension("");
1585 /// assert_eq!(Path::new("/feel/the.formatted.dark"), p.as_path());
1586 ///
1587 /// p.add_extension("");
1588 /// assert_eq!(Path::new("/feel/the.formatted.dark"), p.as_path());
1589 /// ```
1590 #[unstable(feature = "path_add_extension", issue = "127292")]
1591 pub fn add_extension<S: AsRef<OsStr>>(&mut self, extension: S) -> bool {
1592 self._add_extension(extension.as_ref())
1593 }
1594
1595 fn _add_extension(&mut self, extension: &OsStr) -> bool {
1596 validate_extension(extension);
1597
1598 let file_name = match self.file_name() {
1599 None => return false,
1600 Some(f) => f.as_encoded_bytes(),
1601 };
1602
1603 let new = extension.as_encoded_bytes();
1604 if !new.is_empty() {
1605 // truncate until right after the file name
1606 // this is necessary for trimming the trailing slash
1607 let end_file_name = file_name[file_name.len()..].as_ptr().addr();
1608 let start = self.inner.as_encoded_bytes().as_ptr().addr();
1609 self.inner.truncate(end_file_name.wrapping_sub(start));
1610
1611 // append the new extension
1612 self.inner.reserve_exact(new.len() + 1);
1613 self.inner.push(".");
1614 // SAFETY: Since a UTF-8 string was just pushed, it is not possible
1615 // for the buffer to end with a surrogate half.
1616 unsafe { self.inner.extend_from_slice_unchecked(new) };
1617 }
1618
1619 true
1620 }
1621
1622 /// Yields a mutable reference to the underlying [`OsString`] instance.
1623 ///
1624 /// # Examples
1625 ///
1626 /// ```
1627 /// use std::path::{Path, PathBuf};
1628 ///
1629 /// let mut path = PathBuf::from("/foo");
1630 ///
1631 /// path.push("bar");
1632 /// assert_eq!(path, Path::new("/foo/bar"));
1633 ///
1634 /// // OsString's `push` does not add a separator.
1635 /// path.as_mut_os_string().push("baz");
1636 /// assert_eq!(path, Path::new("/foo/barbaz"));
1637 /// ```
1638 #[stable(feature = "path_as_mut_os_str", since = "1.70.0")]
1639 #[must_use]
1640 #[inline]
1641 pub fn as_mut_os_string(&mut self) -> &mut OsString {
1642 &mut self.inner
1643 }
1644
1645 /// Consumes the `PathBuf`, yielding its internal [`OsString`] storage.
1646 ///
1647 /// # Examples
1648 ///
1649 /// ```
1650 /// use std::path::PathBuf;
1651 ///
1652 /// let p = PathBuf::from("/the/head");
1653 /// let os_str = p.into_os_string();
1654 /// ```
1655 #[stable(feature = "rust1", since = "1.0.0")]
1656 #[must_use = "`self` will be dropped if the result is not used"]
1657 #[inline]
1658 pub fn into_os_string(self) -> OsString {
1659 self.inner
1660 }
1661
1662 /// Converts this `PathBuf` into a [boxed](Box) [`Path`].
1663 #[stable(feature = "into_boxed_path", since = "1.20.0")]
1664 #[must_use = "`self` will be dropped if the result is not used"]
1665 #[inline]
1666 pub fn into_boxed_path(self) -> Box<Path> {
1667 let rw = Box::into_raw(self.inner.into_boxed_os_str()) as *mut Path;
1668 unsafe { Box::from_raw(rw) }
1669 }
1670
1671 /// Invokes [`capacity`] on the underlying instance of [`OsString`].
1672 ///
1673 /// [`capacity`]: OsString::capacity
1674 #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1675 #[must_use]
1676 #[inline]
1677 pub fn capacity(&self) -> usize {
1678 self.inner.capacity()
1679 }
1680
1681 /// Invokes [`clear`] on the underlying instance of [`OsString`].
1682 ///
1683 /// [`clear`]: OsString::clear
1684 #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1685 #[inline]
1686 pub fn clear(&mut self) {
1687 self.inner.clear()
1688 }
1689
1690 /// Invokes [`reserve`] on the underlying instance of [`OsString`].
1691 ///
1692 /// [`reserve`]: OsString::reserve
1693 #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1694 #[inline]
1695 pub fn reserve(&mut self, additional: usize) {
1696 self.inner.reserve(additional)
1697 }
1698
1699 /// Invokes [`try_reserve`] on the underlying instance of [`OsString`].
1700 ///
1701 /// [`try_reserve`]: OsString::try_reserve
1702 #[stable(feature = "try_reserve_2", since = "1.63.0")]
1703 #[inline]
1704 pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1705 self.inner.try_reserve(additional)
1706 }
1707
1708 /// Invokes [`reserve_exact`] on the underlying instance of [`OsString`].
1709 ///
1710 /// [`reserve_exact`]: OsString::reserve_exact
1711 #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1712 #[inline]
1713 pub fn reserve_exact(&mut self, additional: usize) {
1714 self.inner.reserve_exact(additional)
1715 }
1716
1717 /// Invokes [`try_reserve_exact`] on the underlying instance of [`OsString`].
1718 ///
1719 /// [`try_reserve_exact`]: OsString::try_reserve_exact
1720 #[stable(feature = "try_reserve_2", since = "1.63.0")]
1721 #[inline]
1722 pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1723 self.inner.try_reserve_exact(additional)
1724 }
1725
1726 /// Invokes [`shrink_to_fit`] on the underlying instance of [`OsString`].
1727 ///
1728 /// [`shrink_to_fit`]: OsString::shrink_to_fit
1729 #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1730 #[inline]
1731 pub fn shrink_to_fit(&mut self) {
1732 self.inner.shrink_to_fit()
1733 }
1734
1735 /// Invokes [`shrink_to`] on the underlying instance of [`OsString`].
1736 ///
1737 /// [`shrink_to`]: OsString::shrink_to
1738 #[stable(feature = "shrink_to", since = "1.56.0")]
1739 #[inline]
1740 pub fn shrink_to(&mut self, min_capacity: usize) {
1741 self.inner.shrink_to(min_capacity)
1742 }
1743}
1744
1745#[stable(feature = "rust1", since = "1.0.0")]
1746impl Clone for PathBuf {
1747 #[inline]
1748 fn clone(&self) -> Self {
1749 PathBuf { inner: self.inner.clone() }
1750 }
1751
1752 /// Clones the contents of `source` into `self`.
1753 ///
1754 /// This method is preferred over simply assigning `source.clone()` to `self`,
1755 /// as it avoids reallocation if possible.
1756 #[inline]
1757 fn clone_from(&mut self, source: &Self) {
1758 self.inner.clone_from(&source.inner)
1759 }
1760}
1761
1762#[stable(feature = "box_from_path", since = "1.17.0")]
1763impl From<&Path> for Box<Path> {
1764 /// Creates a boxed [`Path`] from a reference.
1765 ///
1766 /// This will allocate and clone `path` to it.
1767 fn from(path: &Path) -> Box<Path> {
1768 let boxed: Box<OsStr> = path.inner.into();
1769 let rw = Box::into_raw(boxed) as *mut Path;
1770 unsafe { Box::from_raw(rw) }
1771 }
1772}
1773
1774#[stable(feature = "box_from_mut_slice", since = "1.84.0")]
1775impl From<&mut Path> for Box<Path> {
1776 /// Creates a boxed [`Path`] from a reference.
1777 ///
1778 /// This will allocate and clone `path` to it.
1779 fn from(path: &mut Path) -> Box<Path> {
1780 Self::from(&*path)
1781 }
1782}
1783
1784#[stable(feature = "box_from_cow", since = "1.45.0")]
1785impl From<Cow<'_, Path>> for Box<Path> {
1786 /// Creates a boxed [`Path`] from a clone-on-write pointer.
1787 ///
1788 /// Converting from a `Cow::Owned` does not clone or allocate.
1789 #[inline]
1790 fn from(cow: Cow<'_, Path>) -> Box<Path> {
1791 match cow {
1792 Cow::Borrowed(path) => Box::from(path),
1793 Cow::Owned(path) => Box::from(path),
1794 }
1795 }
1796}
1797
1798#[stable(feature = "path_buf_from_box", since = "1.18.0")]
1799impl From<Box<Path>> for PathBuf {
1800 /// Converts a <code>[Box]<[Path]></code> into a [`PathBuf`].
1801 ///
1802 /// This conversion does not allocate or copy memory.
1803 #[inline]
1804 fn from(boxed: Box<Path>) -> PathBuf {
1805 boxed.into_path_buf()
1806 }
1807}
1808
1809#[stable(feature = "box_from_path_buf", since = "1.20.0")]
1810impl From<PathBuf> for Box<Path> {
1811 /// Converts a [`PathBuf`] into a <code>[Box]<[Path]></code>.
1812 ///
1813 /// This conversion currently should not allocate memory,
1814 /// but this behavior is not guaranteed on all platforms or in all future versions.
1815 #[inline]
1816 fn from(p: PathBuf) -> Box<Path> {
1817 p.into_boxed_path()
1818 }
1819}
1820
1821#[stable(feature = "more_box_slice_clone", since = "1.29.0")]
1822impl Clone for Box<Path> {
1823 #[inline]
1824 fn clone(&self) -> Self {
1825 self.to_path_buf().into_boxed_path()
1826 }
1827}
1828
1829#[stable(feature = "rust1", since = "1.0.0")]
1830impl<T: ?Sized + AsRef<OsStr>> From<&T> for PathBuf {
1831 /// Converts a borrowed [`OsStr`] to a [`PathBuf`].
1832 ///
1833 /// Allocates a [`PathBuf`] and copies the data into it.
1834 #[inline]
1835 fn from(s: &T) -> PathBuf {
1836 PathBuf::from(s.as_ref().to_os_string())
1837 }
1838}
1839
1840#[stable(feature = "rust1", since = "1.0.0")]
1841impl From<OsString> for PathBuf {
1842 /// Converts an [`OsString`] into a [`PathBuf`].
1843 ///
1844 /// This conversion does not allocate or copy memory.
1845 #[inline]
1846 fn from(s: OsString) -> PathBuf {
1847 PathBuf { inner: s }
1848 }
1849}
1850
1851#[stable(feature = "from_path_buf_for_os_string", since = "1.14.0")]
1852impl From<PathBuf> for OsString {
1853 /// Converts a [`PathBuf`] into an [`OsString`]
1854 ///
1855 /// This conversion does not allocate or copy memory.
1856 #[inline]
1857 fn from(path_buf: PathBuf) -> OsString {
1858 path_buf.inner
1859 }
1860}
1861
1862#[stable(feature = "rust1", since = "1.0.0")]
1863impl From<String> for PathBuf {
1864 /// Converts a [`String`] into a [`PathBuf`]
1865 ///
1866 /// This conversion does not allocate or copy memory.
1867 #[inline]
1868 fn from(s: String) -> PathBuf {
1869 PathBuf::from(OsString::from(s))
1870 }
1871}
1872
1873#[stable(feature = "path_from_str", since = "1.32.0")]
1874impl FromStr for PathBuf {
1875 type Err = core::convert::Infallible;
1876
1877 #[inline]
1878 fn from_str(s: &str) -> Result<Self, Self::Err> {
1879 Ok(PathBuf::from(s))
1880 }
1881}
1882
1883#[stable(feature = "rust1", since = "1.0.0")]
1884impl<P: AsRef<Path>> FromIterator<P> for PathBuf {
1885 fn from_iter<I: IntoIterator<Item = P>>(iter: I) -> PathBuf {
1886 let mut buf = PathBuf::new();
1887 buf.extend(iter);
1888 buf
1889 }
1890}
1891
1892#[stable(feature = "rust1", since = "1.0.0")]
1893impl<P: AsRef<Path>> Extend<P> for PathBuf {
1894 fn extend<I: IntoIterator<Item = P>>(&mut self, iter: I) {
1895 iter.into_iter().for_each(move |p| self.push(p.as_ref()));
1896 }
1897
1898 #[inline]
1899 fn extend_one(&mut self, p: P) {
1900 self.push(p.as_ref());
1901 }
1902}
1903
1904#[stable(feature = "rust1", since = "1.0.0")]
1905impl fmt::Debug for PathBuf {
1906 fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1907 fmt::Debug::fmt(&**self, formatter)
1908 }
1909}
1910
1911#[stable(feature = "rust1", since = "1.0.0")]
1912impl ops::Deref for PathBuf {
1913 type Target = Path;
1914 #[inline]
1915 fn deref(&self) -> &Path {
1916 Path::new(&self.inner)
1917 }
1918}
1919
1920#[stable(feature = "path_buf_deref_mut", since = "1.68.0")]
1921impl ops::DerefMut for PathBuf {
1922 #[inline]
1923 fn deref_mut(&mut self) -> &mut Path {
1924 Path::from_inner_mut(&mut self.inner)
1925 }
1926}
1927
1928#[stable(feature = "rust1", since = "1.0.0")]
1929impl Borrow<Path> for PathBuf {
1930 #[inline]
1931 fn borrow(&self) -> &Path {
1932 self.deref()
1933 }
1934}
1935
1936#[stable(feature = "default_for_pathbuf", since = "1.17.0")]
1937impl Default for PathBuf {
1938 #[inline]
1939 fn default() -> Self {
1940 PathBuf::new()
1941 }
1942}
1943
1944#[stable(feature = "cow_from_path", since = "1.6.0")]
1945impl<'a> From<&'a Path> for Cow<'a, Path> {
1946 /// Creates a clone-on-write pointer from a reference to
1947 /// [`Path`].
1948 ///
1949 /// This conversion does not clone or allocate.
1950 #[inline]
1951 fn from(s: &'a Path) -> Cow<'a, Path> {
1952 Cow::Borrowed(s)
1953 }
1954}
1955
1956#[stable(feature = "cow_from_path", since = "1.6.0")]
1957impl<'a> From<PathBuf> for Cow<'a, Path> {
1958 /// Creates a clone-on-write pointer from an owned
1959 /// instance of [`PathBuf`].
1960 ///
1961 /// This conversion does not clone or allocate.
1962 #[inline]
1963 fn from(s: PathBuf) -> Cow<'a, Path> {
1964 Cow::Owned(s)
1965 }
1966}
1967
1968#[stable(feature = "cow_from_pathbuf_ref", since = "1.28.0")]
1969impl<'a> From<&'a PathBuf> for Cow<'a, Path> {
1970 /// Creates a clone-on-write pointer from a reference to
1971 /// [`PathBuf`].
1972 ///
1973 /// This conversion does not clone or allocate.
1974 #[inline]
1975 fn from(p: &'a PathBuf) -> Cow<'a, Path> {
1976 Cow::Borrowed(p.as_path())
1977 }
1978}
1979
1980#[stable(feature = "pathbuf_from_cow_path", since = "1.28.0")]
1981impl<'a> From<Cow<'a, Path>> for PathBuf {
1982 /// Converts a clone-on-write pointer to an owned path.
1983 ///
1984 /// Converting from a `Cow::Owned` does not clone or allocate.
1985 #[inline]
1986 fn from(p: Cow<'a, Path>) -> Self {
1987 p.into_owned()
1988 }
1989}
1990
1991#[stable(feature = "shared_from_slice2", since = "1.24.0")]
1992impl From<PathBuf> for Arc<Path> {
1993 /// Converts a [`PathBuf`] into an <code>[Arc]<[Path]></code> by moving the [`PathBuf`] data
1994 /// into a new [`Arc`] buffer.
1995 #[inline]
1996 fn from(s: PathBuf) -> Arc<Path> {
1997 let arc: Arc<OsStr> = Arc::from(s.into_os_string());
1998 unsafe { Arc::from_raw(Arc::into_raw(arc) as *const Path) }
1999 }
2000}
2001
2002#[stable(feature = "shared_from_slice2", since = "1.24.0")]
2003impl From<&Path> for Arc<Path> {
2004 /// Converts a [`Path`] into an [`Arc`] by copying the [`Path`] data into a new [`Arc`] buffer.
2005 #[inline]
2006 fn from(s: &Path) -> Arc<Path> {
2007 let arc: Arc<OsStr> = Arc::from(s.as_os_str());
2008 unsafe { Arc::from_raw(Arc::into_raw(arc) as *const Path) }
2009 }
2010}
2011
2012#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
2013impl From<&mut Path> for Arc<Path> {
2014 /// Converts a [`Path`] into an [`Arc`] by copying the [`Path`] data into a new [`Arc`] buffer.
2015 #[inline]
2016 fn from(s: &mut Path) -> Arc<Path> {
2017 Arc::from(&*s)
2018 }
2019}
2020
2021#[stable(feature = "shared_from_slice2", since = "1.24.0")]
2022impl From<PathBuf> for Rc<Path> {
2023 /// Converts a [`PathBuf`] into an <code>[Rc]<[Path]></code> by moving the [`PathBuf`] data into
2024 /// a new [`Rc`] buffer.
2025 #[inline]
2026 fn from(s: PathBuf) -> Rc<Path> {
2027 let rc: Rc<OsStr> = Rc::from(s.into_os_string());
2028 unsafe { Rc::from_raw(Rc::into_raw(rc) as *const Path) }
2029 }
2030}
2031
2032#[stable(feature = "shared_from_slice2", since = "1.24.0")]
2033impl From<&Path> for Rc<Path> {
2034 /// Converts a [`Path`] into an [`Rc`] by copying the [`Path`] data into a new [`Rc`] buffer.
2035 #[inline]
2036 fn from(s: &Path) -> Rc<Path> {
2037 let rc: Rc<OsStr> = Rc::from(s.as_os_str());
2038 unsafe { Rc::from_raw(Rc::into_raw(rc) as *const Path) }
2039 }
2040}
2041
2042#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
2043impl From<&mut Path> for Rc<Path> {
2044 /// Converts a [`Path`] into an [`Rc`] by copying the [`Path`] data into a new [`Rc`] buffer.
2045 #[inline]
2046 fn from(s: &mut Path) -> Rc<Path> {
2047 Rc::from(&*s)
2048 }
2049}
2050
2051#[stable(feature = "rust1", since = "1.0.0")]
2052impl ToOwned for Path {
2053 type Owned = PathBuf;
2054 #[inline]
2055 fn to_owned(&self) -> PathBuf {
2056 self.to_path_buf()
2057 }
2058 #[inline]
2059 fn clone_into(&self, target: &mut PathBuf) {
2060 self.inner.clone_into(&mut target.inner);
2061 }
2062}
2063
2064#[stable(feature = "rust1", since = "1.0.0")]
2065impl PartialEq for PathBuf {
2066 #[inline]
2067 fn eq(&self, other: &PathBuf) -> bool {
2068 self.components() == other.components()
2069 }
2070}
2071
2072#[stable(feature = "rust1", since = "1.0.0")]
2073impl Hash for PathBuf {
2074 fn hash<H: Hasher>(&self, h: &mut H) {
2075 self.as_path().hash(h)
2076 }
2077}
2078
2079#[stable(feature = "rust1", since = "1.0.0")]
2080impl Eq for PathBuf {}
2081
2082#[stable(feature = "rust1", since = "1.0.0")]
2083impl PartialOrd for PathBuf {
2084 #[inline]
2085 fn partial_cmp(&self, other: &PathBuf) -> Option<cmp::Ordering> {
2086 Some(compare_components(self.components(), other.components()))
2087 }
2088}
2089
2090#[stable(feature = "rust1", since = "1.0.0")]
2091impl Ord for PathBuf {
2092 #[inline]
2093 fn cmp(&self, other: &PathBuf) -> cmp::Ordering {
2094 compare_components(self.components(), other.components())
2095 }
2096}
2097
2098#[stable(feature = "rust1", since = "1.0.0")]
2099impl AsRef<OsStr> for PathBuf {
2100 #[inline]
2101 fn as_ref(&self) -> &OsStr {
2102 &self.inner[..]
2103 }
2104}
2105
2106/// A slice of a path (akin to [`str`]).
2107///
2108/// This type supports a number of operations for inspecting a path, including
2109/// breaking the path into its components (separated by `/` on Unix and by either
2110/// `/` or `\` on Windows), extracting the file name, determining whether the path
2111/// is absolute, and so on.
2112///
2113/// This is an *unsized* type, meaning that it must always be used behind a
2114/// pointer like `&` or [`Box`]. For an owned version of this type,
2115/// see [`PathBuf`].
2116///
2117/// More details about the overall approach can be found in
2118/// the [module documentation](self).
2119///
2120/// # Examples
2121///
2122/// ```
2123/// use std::path::Path;
2124/// use std::ffi::OsStr;
2125///
2126/// // Note: this example does work on Windows
2127/// let path = Path::new("./foo/bar.txt");
2128///
2129/// let parent = path.parent();
2130/// assert_eq!(parent, Some(Path::new("./foo")));
2131///
2132/// let file_stem = path.file_stem();
2133/// assert_eq!(file_stem, Some(OsStr::new("bar")));
2134///
2135/// let extension = path.extension();
2136/// assert_eq!(extension, Some(OsStr::new("txt")));
2137/// ```
2138#[cfg_attr(not(test), rustc_diagnostic_item = "Path")]
2139#[stable(feature = "rust1", since = "1.0.0")]
2140// `Path::new` and `impl CloneToUninit for Path` current implementation relies
2141// on `Path` being layout-compatible with `OsStr`.
2142// However, `Path` layout is considered an implementation detail and must not be relied upon.
2143#[repr(transparent)]
2144pub struct Path {
2145 inner: OsStr,
2146}
2147
2148/// An error returned from [`Path::strip_prefix`] if the prefix was not found.
2149///
2150/// This `struct` is created by the [`strip_prefix`] method on [`Path`].
2151/// See its documentation for more.
2152///
2153/// [`strip_prefix`]: Path::strip_prefix
2154#[derive(Debug, Clone, PartialEq, Eq)]
2155#[stable(since = "1.7.0", feature = "strip_prefix")]
2156pub struct StripPrefixError(());
2157
2158/// An error returned from [`Path::normalize_lexically`] if a `..` parent reference
2159/// would escape the path.
2160#[unstable(feature = "normalize_lexically", issue = "134694")]
2161#[derive(Debug, PartialEq)]
2162#[non_exhaustive]
2163pub struct NormalizeError;
2164
2165impl Path {
2166 // The following (private!) function allows construction of a path from a u8
2167 // slice, which is only safe when it is known to follow the OsStr encoding.
2168 unsafe fn from_u8_slice(s: &[u8]) -> &Path {
2169 unsafe { Path::new(OsStr::from_encoded_bytes_unchecked(s)) }
2170 }
2171 // The following (private!) function reveals the byte encoding used for OsStr.
2172 pub(crate) fn as_u8_slice(&self) -> &[u8] {
2173 self.inner.as_encoded_bytes()
2174 }
2175
2176 /// Directly wraps a string slice as a `Path` slice.
2177 ///
2178 /// This is a cost-free conversion.
2179 ///
2180 /// # Examples
2181 ///
2182 /// ```
2183 /// use std::path::Path;
2184 ///
2185 /// Path::new("foo.txt");
2186 /// ```
2187 ///
2188 /// You can create `Path`s from `String`s, or even other `Path`s:
2189 ///
2190 /// ```
2191 /// use std::path::Path;
2192 ///
2193 /// let string = String::from("foo.txt");
2194 /// let from_string = Path::new(&string);
2195 /// let from_path = Path::new(&from_string);
2196 /// assert_eq!(from_string, from_path);
2197 /// ```
2198 #[stable(feature = "rust1", since = "1.0.0")]
2199 pub fn new<S: AsRef<OsStr> + ?Sized>(s: &S) -> &Path {
2200 unsafe { &*(s.as_ref() as *const OsStr as *const Path) }
2201 }
2202
2203 fn from_inner_mut(inner: &mut OsStr) -> &mut Path {
2204 // SAFETY: Path is just a wrapper around OsStr,
2205 // therefore converting &mut OsStr to &mut Path is safe.
2206 unsafe { &mut *(inner as *mut OsStr as *mut Path) }
2207 }
2208
2209 /// Yields the underlying [`OsStr`] slice.
2210 ///
2211 /// # Examples
2212 ///
2213 /// ```
2214 /// use std::path::Path;
2215 ///
2216 /// let os_str = Path::new("foo.txt").as_os_str();
2217 /// assert_eq!(os_str, std::ffi::OsStr::new("foo.txt"));
2218 /// ```
2219 #[stable(feature = "rust1", since = "1.0.0")]
2220 #[must_use]
2221 #[inline]
2222 pub fn as_os_str(&self) -> &OsStr {
2223 &self.inner
2224 }
2225
2226 /// Yields a mutable reference to the underlying [`OsStr`] slice.
2227 ///
2228 /// # Examples
2229 ///
2230 /// ```
2231 /// use std::path::{Path, PathBuf};
2232 ///
2233 /// let mut path = PathBuf::from("Foo.TXT");
2234 ///
2235 /// assert_ne!(path, Path::new("foo.txt"));
2236 ///
2237 /// path.as_mut_os_str().make_ascii_lowercase();
2238 /// assert_eq!(path, Path::new("foo.txt"));
2239 /// ```
2240 #[stable(feature = "path_as_mut_os_str", since = "1.70.0")]
2241 #[must_use]
2242 #[inline]
2243 pub fn as_mut_os_str(&mut self) -> &mut OsStr {
2244 &mut self.inner
2245 }
2246
2247 /// Yields a [`&str`] slice if the `Path` is valid unicode.
2248 ///
2249 /// This conversion may entail doing a check for UTF-8 validity.
2250 /// Note that validation is performed because non-UTF-8 strings are
2251 /// perfectly valid for some OS.
2252 ///
2253 /// [`&str`]: str
2254 ///
2255 /// # Examples
2256 ///
2257 /// ```
2258 /// use std::path::Path;
2259 ///
2260 /// let path = Path::new("foo.txt");
2261 /// assert_eq!(path.to_str(), Some("foo.txt"));
2262 /// ```
2263 #[stable(feature = "rust1", since = "1.0.0")]
2264 #[must_use = "this returns the result of the operation, \
2265 without modifying the original"]
2266 #[inline]
2267 pub fn to_str(&self) -> Option<&str> {
2268 self.inner.to_str()
2269 }
2270
2271 /// Converts a `Path` to a [`Cow<str>`].
2272 ///
2273 /// Any non-UTF-8 sequences are replaced with
2274 /// [`U+FFFD REPLACEMENT CHARACTER`][U+FFFD].
2275 ///
2276 /// [U+FFFD]: super::char::REPLACEMENT_CHARACTER
2277 ///
2278 /// # Examples
2279 ///
2280 /// Calling `to_string_lossy` on a `Path` with valid unicode:
2281 ///
2282 /// ```
2283 /// use std::path::Path;
2284 ///
2285 /// let path = Path::new("foo.txt");
2286 /// assert_eq!(path.to_string_lossy(), "foo.txt");
2287 /// ```
2288 ///
2289 /// Had `path` contained invalid unicode, the `to_string_lossy` call might
2290 /// have returned `"fo�.txt"`.
2291 #[stable(feature = "rust1", since = "1.0.0")]
2292 #[must_use = "this returns the result of the operation, \
2293 without modifying the original"]
2294 #[inline]
2295 pub fn to_string_lossy(&self) -> Cow<'_, str> {
2296 self.inner.to_string_lossy()
2297 }
2298
2299 /// Converts a `Path` to an owned [`PathBuf`].
2300 ///
2301 /// # Examples
2302 ///
2303 /// ```
2304 /// use std::path::{Path, PathBuf};
2305 ///
2306 /// let path_buf = Path::new("foo.txt").to_path_buf();
2307 /// assert_eq!(path_buf, PathBuf::from("foo.txt"));
2308 /// ```
2309 #[rustc_conversion_suggestion]
2310 #[must_use = "this returns the result of the operation, \
2311 without modifying the original"]
2312 #[stable(feature = "rust1", since = "1.0.0")]
2313 #[cfg_attr(not(test), rustc_diagnostic_item = "path_to_pathbuf")]
2314 pub fn to_path_buf(&self) -> PathBuf {
2315 PathBuf::from(self.inner.to_os_string())
2316 }
2317
2318 /// Returns `true` if the `Path` is absolute, i.e., if it is independent of
2319 /// the current directory.
2320 ///
2321 /// * On Unix, a path is absolute if it starts with the root, so
2322 /// `is_absolute` and [`has_root`] are equivalent.
2323 ///
2324 /// * On Windows, a path is absolute if it has a prefix and starts with the
2325 /// root: `c:\windows` is absolute, while `c:temp` and `\temp` are not.
2326 ///
2327 /// # Examples
2328 ///
2329 /// ```
2330 /// use std::path::Path;
2331 ///
2332 /// assert!(!Path::new("foo.txt").is_absolute());
2333 /// ```
2334 ///
2335 /// [`has_root`]: Path::has_root
2336 #[stable(feature = "rust1", since = "1.0.0")]
2337 #[must_use]
2338 #[allow(deprecated)]
2339 pub fn is_absolute(&self) -> bool {
2340 sys::path::is_absolute(self)
2341 }
2342
2343 /// Returns `true` if the `Path` is relative, i.e., not absolute.
2344 ///
2345 /// See [`is_absolute`]'s documentation for more details.
2346 ///
2347 /// # Examples
2348 ///
2349 /// ```
2350 /// use std::path::Path;
2351 ///
2352 /// assert!(Path::new("foo.txt").is_relative());
2353 /// ```
2354 ///
2355 /// [`is_absolute`]: Path::is_absolute
2356 #[stable(feature = "rust1", since = "1.0.0")]
2357 #[must_use]
2358 #[inline]
2359 pub fn is_relative(&self) -> bool {
2360 !self.is_absolute()
2361 }
2362
2363 pub(crate) fn prefix(&self) -> Option<Prefix<'_>> {
2364 self.components().prefix
2365 }
2366
2367 /// Returns `true` if the `Path` has a root.
2368 ///
2369 /// * On Unix, a path has a root if it begins with `/`.
2370 ///
2371 /// * On Windows, a path has a root if it:
2372 /// * has no prefix and begins with a separator, e.g., `\windows`
2373 /// * has a prefix followed by a separator, e.g., `c:\windows` but not `c:windows`
2374 /// * has any non-disk prefix, e.g., `\\server\share`
2375 ///
2376 /// # Examples
2377 ///
2378 /// ```
2379 /// use std::path::Path;
2380 ///
2381 /// assert!(Path::new("/etc/passwd").has_root());
2382 /// ```
2383 #[stable(feature = "rust1", since = "1.0.0")]
2384 #[must_use]
2385 #[inline]
2386 pub fn has_root(&self) -> bool {
2387 self.components().has_root()
2388 }
2389
2390 /// Returns the `Path` without its final component, if there is one.
2391 ///
2392 /// This means it returns `Some("")` for relative paths with one component.
2393 ///
2394 /// Returns [`None`] if the path terminates in a root or prefix, or if it's
2395 /// the empty string.
2396 ///
2397 /// # Examples
2398 ///
2399 /// ```
2400 /// use std::path::Path;
2401 ///
2402 /// let path = Path::new("/foo/bar");
2403 /// let parent = path.parent().unwrap();
2404 /// assert_eq!(parent, Path::new("/foo"));
2405 ///
2406 /// let grand_parent = parent.parent().unwrap();
2407 /// assert_eq!(grand_parent, Path::new("/"));
2408 /// assert_eq!(grand_parent.parent(), None);
2409 ///
2410 /// let relative_path = Path::new("foo/bar");
2411 /// let parent = relative_path.parent();
2412 /// assert_eq!(parent, Some(Path::new("foo")));
2413 /// let grand_parent = parent.and_then(Path::parent);
2414 /// assert_eq!(grand_parent, Some(Path::new("")));
2415 /// let great_grand_parent = grand_parent.and_then(Path::parent);
2416 /// assert_eq!(great_grand_parent, None);
2417 /// ```
2418 #[stable(feature = "rust1", since = "1.0.0")]
2419 #[doc(alias = "dirname")]
2420 #[must_use]
2421 pub fn parent(&self) -> Option<&Path> {
2422 let mut comps = self.components();
2423 let comp = comps.next_back();
2424 comp.and_then(|p| match p {
2425 Component::Normal(_) | Component::CurDir | Component::ParentDir => {
2426 Some(comps.as_path())
2427 }
2428 _ => None,
2429 })
2430 }
2431
2432 /// Produces an iterator over `Path` and its ancestors.
2433 ///
2434 /// The iterator will yield the `Path` that is returned if the [`parent`] method is used zero
2435 /// or more times. If the [`parent`] method returns [`None`], the iterator will do likewise.
2436 /// The iterator will always yield at least one value, namely `Some(&self)`. Next it will yield
2437 /// `&self.parent()`, `&self.parent().and_then(Path::parent)` and so on.
2438 ///
2439 /// # Examples
2440 ///
2441 /// ```
2442 /// use std::path::Path;
2443 ///
2444 /// let mut ancestors = Path::new("/foo/bar").ancestors();
2445 /// assert_eq!(ancestors.next(), Some(Path::new("/foo/bar")));
2446 /// assert_eq!(ancestors.next(), Some(Path::new("/foo")));
2447 /// assert_eq!(ancestors.next(), Some(Path::new("/")));
2448 /// assert_eq!(ancestors.next(), None);
2449 ///
2450 /// let mut ancestors = Path::new("../foo/bar").ancestors();
2451 /// assert_eq!(ancestors.next(), Some(Path::new("../foo/bar")));
2452 /// assert_eq!(ancestors.next(), Some(Path::new("../foo")));
2453 /// assert_eq!(ancestors.next(), Some(Path::new("..")));
2454 /// assert_eq!(ancestors.next(), Some(Path::new("")));
2455 /// assert_eq!(ancestors.next(), None);
2456 /// ```
2457 ///
2458 /// [`parent`]: Path::parent
2459 #[stable(feature = "path_ancestors", since = "1.28.0")]
2460 #[inline]
2461 pub fn ancestors(&self) -> Ancestors<'_> {
2462 Ancestors { next: Some(&self) }
2463 }
2464
2465 /// Returns the final component of the `Path`, if there is one.
2466 ///
2467 /// If the path is a normal file, this is the file name. If it's the path of a directory, this
2468 /// is the directory name.
2469 ///
2470 /// Returns [`None`] if the path terminates in `..`.
2471 ///
2472 /// # Examples
2473 ///
2474 /// ```
2475 /// use std::path::Path;
2476 /// use std::ffi::OsStr;
2477 ///
2478 /// assert_eq!(Some(OsStr::new("bin")), Path::new("/usr/bin/").file_name());
2479 /// assert_eq!(Some(OsStr::new("foo.txt")), Path::new("tmp/foo.txt").file_name());
2480 /// assert_eq!(Some(OsStr::new("foo.txt")), Path::new("foo.txt/.").file_name());
2481 /// assert_eq!(Some(OsStr::new("foo.txt")), Path::new("foo.txt/.//").file_name());
2482 /// assert_eq!(None, Path::new("foo.txt/..").file_name());
2483 /// assert_eq!(None, Path::new("/").file_name());
2484 /// ```
2485 #[stable(feature = "rust1", since = "1.0.0")]
2486 #[doc(alias = "basename")]
2487 #[must_use]
2488 pub fn file_name(&self) -> Option<&OsStr> {
2489 self.components().next_back().and_then(|p| match p {
2490 Component::Normal(p) => Some(p),
2491 _ => None,
2492 })
2493 }
2494
2495 /// Returns a path that, when joined onto `base`, yields `self`.
2496 ///
2497 /// # Errors
2498 ///
2499 /// If `base` is not a prefix of `self` (i.e., [`starts_with`]
2500 /// returns `false`), returns [`Err`].
2501 ///
2502 /// [`starts_with`]: Path::starts_with
2503 ///
2504 /// # Examples
2505 ///
2506 /// ```
2507 /// use std::path::{Path, PathBuf};
2508 ///
2509 /// let path = Path::new("/test/haha/foo.txt");
2510 ///
2511 /// assert_eq!(path.strip_prefix("/"), Ok(Path::new("test/haha/foo.txt")));
2512 /// assert_eq!(path.strip_prefix("/test"), Ok(Path::new("haha/foo.txt")));
2513 /// assert_eq!(path.strip_prefix("/test/"), Ok(Path::new("haha/foo.txt")));
2514 /// assert_eq!(path.strip_prefix("/test/haha/foo.txt"), Ok(Path::new("")));
2515 /// assert_eq!(path.strip_prefix("/test/haha/foo.txt/"), Ok(Path::new("")));
2516 ///
2517 /// assert!(path.strip_prefix("test").is_err());
2518 /// assert!(path.strip_prefix("/te").is_err());
2519 /// assert!(path.strip_prefix("/haha").is_err());
2520 ///
2521 /// let prefix = PathBuf::from("/test/");
2522 /// assert_eq!(path.strip_prefix(prefix), Ok(Path::new("haha/foo.txt")));
2523 /// ```
2524 #[stable(since = "1.7.0", feature = "path_strip_prefix")]
2525 pub fn strip_prefix<P>(&self, base: P) -> Result<&Path, StripPrefixError>
2526 where
2527 P: AsRef<Path>,
2528 {
2529 self._strip_prefix(base.as_ref())
2530 }
2531
2532 fn _strip_prefix(&self, base: &Path) -> Result<&Path, StripPrefixError> {
2533 iter_after(self.components(), base.components())
2534 .map(|c| c.as_path())
2535 .ok_or(StripPrefixError(()))
2536 }
2537
2538 /// Determines whether `base` is a prefix of `self`.
2539 ///
2540 /// Only considers whole path components to match.
2541 ///
2542 /// # Examples
2543 ///
2544 /// ```
2545 /// use std::path::Path;
2546 ///
2547 /// let path = Path::new("/etc/passwd");
2548 ///
2549 /// assert!(path.starts_with("/etc"));
2550 /// assert!(path.starts_with("/etc/"));
2551 /// assert!(path.starts_with("/etc/passwd"));
2552 /// assert!(path.starts_with("/etc/passwd/")); // extra slash is okay
2553 /// assert!(path.starts_with("/etc/passwd///")); // multiple extra slashes are okay
2554 ///
2555 /// assert!(!path.starts_with("/e"));
2556 /// assert!(!path.starts_with("/etc/passwd.txt"));
2557 ///
2558 /// assert!(!Path::new("/etc/foo.rs").starts_with("/etc/foo"));
2559 /// ```
2560 #[stable(feature = "rust1", since = "1.0.0")]
2561 #[must_use]
2562 pub fn starts_with<P: AsRef<Path>>(&self, base: P) -> bool {
2563 self._starts_with(base.as_ref())
2564 }
2565
2566 fn _starts_with(&self, base: &Path) -> bool {
2567 iter_after(self.components(), base.components()).is_some()
2568 }
2569
2570 /// Determines whether `child` is a suffix of `self`.
2571 ///
2572 /// Only considers whole path components to match.
2573 ///
2574 /// # Examples
2575 ///
2576 /// ```
2577 /// use std::path::Path;
2578 ///
2579 /// let path = Path::new("/etc/resolv.conf");
2580 ///
2581 /// assert!(path.ends_with("resolv.conf"));
2582 /// assert!(path.ends_with("etc/resolv.conf"));
2583 /// assert!(path.ends_with("/etc/resolv.conf"));
2584 ///
2585 /// assert!(!path.ends_with("/resolv.conf"));
2586 /// assert!(!path.ends_with("conf")); // use .extension() instead
2587 /// ```
2588 #[stable(feature = "rust1", since = "1.0.0")]
2589 #[must_use]
2590 pub fn ends_with<P: AsRef<Path>>(&self, child: P) -> bool {
2591 self._ends_with(child.as_ref())
2592 }
2593
2594 fn _ends_with(&self, child: &Path) -> bool {
2595 iter_after(self.components().rev(), child.components().rev()).is_some()
2596 }
2597
2598 /// Extracts the stem (non-extension) portion of [`self.file_name`].
2599 ///
2600 /// [`self.file_name`]: Path::file_name
2601 ///
2602 /// The stem is:
2603 ///
2604 /// * [`None`], if there is no file name;
2605 /// * The entire file name if there is no embedded `.`;
2606 /// * The entire file name if the file name begins with `.` and has no other `.`s within;
2607 /// * Otherwise, the portion of the file name before the final `.`
2608 ///
2609 /// # Examples
2610 ///
2611 /// ```
2612 /// use std::path::Path;
2613 ///
2614 /// assert_eq!("foo", Path::new("foo.rs").file_stem().unwrap());
2615 /// assert_eq!("foo.tar", Path::new("foo.tar.gz").file_stem().unwrap());
2616 /// ```
2617 ///
2618 /// # See Also
2619 /// This method is similar to [`Path::file_prefix`], which extracts the portion of the file name
2620 /// before the *first* `.`
2621 ///
2622 /// [`Path::file_prefix`]: Path::file_prefix
2623 ///
2624 #[stable(feature = "rust1", since = "1.0.0")]
2625 #[must_use]
2626 pub fn file_stem(&self) -> Option<&OsStr> {
2627 self.file_name().map(rsplit_file_at_dot).and_then(|(before, after)| before.or(after))
2628 }
2629
2630 /// Extracts the prefix of [`self.file_name`].
2631 ///
2632 /// The prefix is:
2633 ///
2634 /// * [`None`], if there is no file name;
2635 /// * The entire file name if there is no embedded `.`;
2636 /// * The portion of the file name before the first non-beginning `.`;
2637 /// * The entire file name if the file name begins with `.` and has no other `.`s within;
2638 /// * The portion of the file name before the second `.` if the file name begins with `.`
2639 ///
2640 /// [`self.file_name`]: Path::file_name
2641 ///
2642 /// # Examples
2643 ///
2644 /// ```
2645 /// # #![feature(path_file_prefix)]
2646 /// use std::path::Path;
2647 ///
2648 /// assert_eq!("foo", Path::new("foo.rs").file_prefix().unwrap());
2649 /// assert_eq!("foo", Path::new("foo.tar.gz").file_prefix().unwrap());
2650 /// ```
2651 ///
2652 /// # See Also
2653 /// This method is similar to [`Path::file_stem`], which extracts the portion of the file name
2654 /// before the *last* `.`
2655 ///
2656 /// [`Path::file_stem`]: Path::file_stem
2657 ///
2658 #[unstable(feature = "path_file_prefix", issue = "86319")]
2659 #[must_use]
2660 pub fn file_prefix(&self) -> Option<&OsStr> {
2661 self.file_name().map(split_file_at_dot).and_then(|(before, _after)| Some(before))
2662 }
2663
2664 /// Extracts the extension (without the leading dot) of [`self.file_name`], if possible.
2665 ///
2666 /// The extension is:
2667 ///
2668 /// * [`None`], if there is no file name;
2669 /// * [`None`], if there is no embedded `.`;
2670 /// * [`None`], if the file name begins with `.` and has no other `.`s within;
2671 /// * Otherwise, the portion of the file name after the final `.`
2672 ///
2673 /// [`self.file_name`]: Path::file_name
2674 ///
2675 /// # Examples
2676 ///
2677 /// ```
2678 /// use std::path::Path;
2679 ///
2680 /// assert_eq!("rs", Path::new("foo.rs").extension().unwrap());
2681 /// assert_eq!("gz", Path::new("foo.tar.gz").extension().unwrap());
2682 /// ```
2683 #[stable(feature = "rust1", since = "1.0.0")]
2684 #[must_use]
2685 pub fn extension(&self) -> Option<&OsStr> {
2686 self.file_name().map(rsplit_file_at_dot).and_then(|(before, after)| before.and(after))
2687 }
2688
2689 /// Creates an owned [`PathBuf`] with `path` adjoined to `self`.
2690 ///
2691 /// If `path` is absolute, it replaces the current path.
2692 ///
2693 /// See [`PathBuf::push`] for more details on what it means to adjoin a path.
2694 ///
2695 /// # Examples
2696 ///
2697 /// ```
2698 /// use std::path::{Path, PathBuf};
2699 ///
2700 /// assert_eq!(Path::new("/etc").join("passwd"), PathBuf::from("/etc/passwd"));
2701 /// assert_eq!(Path::new("/etc").join("/bin/sh"), PathBuf::from("/bin/sh"));
2702 /// ```
2703 #[stable(feature = "rust1", since = "1.0.0")]
2704 #[must_use]
2705 pub fn join<P: AsRef<Path>>(&self, path: P) -> PathBuf {
2706 self._join(path.as_ref())
2707 }
2708
2709 fn _join(&self, path: &Path) -> PathBuf {
2710 let mut buf = self.to_path_buf();
2711 buf.push(path);
2712 buf
2713 }
2714
2715 /// Creates an owned [`PathBuf`] like `self` but with the given file name.
2716 ///
2717 /// See [`PathBuf::set_file_name`] for more details.
2718 ///
2719 /// # Examples
2720 ///
2721 /// ```
2722 /// use std::path::{Path, PathBuf};
2723 ///
2724 /// let path = Path::new("/tmp/foo.png");
2725 /// assert_eq!(path.with_file_name("bar"), PathBuf::from("/tmp/bar"));
2726 /// assert_eq!(path.with_file_name("bar.txt"), PathBuf::from("/tmp/bar.txt"));
2727 ///
2728 /// let path = Path::new("/tmp");
2729 /// assert_eq!(path.with_file_name("var"), PathBuf::from("/var"));
2730 /// ```
2731 #[stable(feature = "rust1", since = "1.0.0")]
2732 #[must_use]
2733 pub fn with_file_name<S: AsRef<OsStr>>(&self, file_name: S) -> PathBuf {
2734 self._with_file_name(file_name.as_ref())
2735 }
2736
2737 fn _with_file_name(&self, file_name: &OsStr) -> PathBuf {
2738 let mut buf = self.to_path_buf();
2739 buf.set_file_name(file_name);
2740 buf
2741 }
2742
2743 /// Creates an owned [`PathBuf`] like `self` but with the given extension.
2744 ///
2745 /// See [`PathBuf::set_extension`] for more details.
2746 ///
2747 /// # Examples
2748 ///
2749 /// ```
2750 /// use std::path::Path;
2751 ///
2752 /// let path = Path::new("foo.rs");
2753 /// assert_eq!(path.with_extension("txt"), Path::new("foo.txt"));
2754 /// assert_eq!(path.with_extension(""), Path::new("foo"));
2755 /// ```
2756 ///
2757 /// Handling multiple extensions:
2758 ///
2759 /// ```
2760 /// use std::path::Path;
2761 ///
2762 /// let path = Path::new("foo.tar.gz");
2763 /// assert_eq!(path.with_extension("xz"), Path::new("foo.tar.xz"));
2764 /// assert_eq!(path.with_extension("").with_extension("txt"), Path::new("foo.txt"));
2765 /// ```
2766 ///
2767 /// Adding an extension where one did not exist:
2768 ///
2769 /// ```
2770 /// use std::path::Path;
2771 ///
2772 /// let path = Path::new("foo");
2773 /// assert_eq!(path.with_extension("rs"), Path::new("foo.rs"));
2774 /// ```
2775 #[stable(feature = "rust1", since = "1.0.0")]
2776 pub fn with_extension<S: AsRef<OsStr>>(&self, extension: S) -> PathBuf {
2777 self._with_extension(extension.as_ref())
2778 }
2779
2780 fn _with_extension(&self, extension: &OsStr) -> PathBuf {
2781 let self_len = self.as_os_str().len();
2782 let self_bytes = self.as_os_str().as_encoded_bytes();
2783
2784 let (new_capacity, slice_to_copy) = match self.extension() {
2785 None => {
2786 // Enough capacity for the extension and the dot
2787 let capacity = self_len + extension.len() + 1;
2788 let whole_path = self_bytes;
2789 (capacity, whole_path)
2790 }
2791 Some(previous_extension) => {
2792 let capacity = self_len + extension.len() - previous_extension.len();
2793 let path_till_dot = &self_bytes[..self_len - previous_extension.len()];
2794 (capacity, path_till_dot)
2795 }
2796 };
2797
2798 let mut new_path = PathBuf::with_capacity(new_capacity);
2799 // SAFETY: The path is empty, so cannot have surrogate halves.
2800 unsafe { new_path.inner.extend_from_slice_unchecked(slice_to_copy) };
2801 new_path.set_extension(extension);
2802 new_path
2803 }
2804
2805 /// Creates an owned [`PathBuf`] like `self` but with the extension added.
2806 ///
2807 /// See [`PathBuf::add_extension`] for more details.
2808 ///
2809 /// # Examples
2810 ///
2811 /// ```
2812 /// #![feature(path_add_extension)]
2813 ///
2814 /// use std::path::{Path, PathBuf};
2815 ///
2816 /// let path = Path::new("foo.rs");
2817 /// assert_eq!(path.with_added_extension("txt"), PathBuf::from("foo.rs.txt"));
2818 ///
2819 /// let path = Path::new("foo.tar.gz");
2820 /// assert_eq!(path.with_added_extension(""), PathBuf::from("foo.tar.gz"));
2821 /// assert_eq!(path.with_added_extension("xz"), PathBuf::from("foo.tar.gz.xz"));
2822 /// assert_eq!(path.with_added_extension("").with_added_extension("txt"), PathBuf::from("foo.tar.gz.txt"));
2823 /// ```
2824 #[unstable(feature = "path_add_extension", issue = "127292")]
2825 pub fn with_added_extension<S: AsRef<OsStr>>(&self, extension: S) -> PathBuf {
2826 let mut new_path = self.to_path_buf();
2827 new_path.add_extension(extension);
2828 new_path
2829 }
2830
2831 /// Produces an iterator over the [`Component`]s of the path.
2832 ///
2833 /// When parsing the path, there is a small amount of normalization:
2834 ///
2835 /// * Repeated separators are ignored, so `a/b` and `a//b` both have
2836 /// `a` and `b` as components.
2837 ///
2838 /// * Occurrences of `.` are normalized away, except if they are at the
2839 /// beginning of the path. For example, `a/./b`, `a/b/`, `a/b/.` and
2840 /// `a/b` all have `a` and `b` as components, but `./a/b` starts with
2841 /// an additional [`CurDir`] component.
2842 ///
2843 /// * A trailing slash is normalized away, `/a/b` and `/a/b/` are equivalent.
2844 ///
2845 /// Note that no other normalization takes place; in particular, `a/c`
2846 /// and `a/b/../c` are distinct, to account for the possibility that `b`
2847 /// is a symbolic link (so its parent isn't `a`).
2848 ///
2849 /// # Examples
2850 ///
2851 /// ```
2852 /// use std::path::{Path, Component};
2853 /// use std::ffi::OsStr;
2854 ///
2855 /// let mut components = Path::new("/tmp/foo.txt").components();
2856 ///
2857 /// assert_eq!(components.next(), Some(Component::RootDir));
2858 /// assert_eq!(components.next(), Some(Component::Normal(OsStr::new("tmp"))));
2859 /// assert_eq!(components.next(), Some(Component::Normal(OsStr::new("foo.txt"))));
2860 /// assert_eq!(components.next(), None)
2861 /// ```
2862 ///
2863 /// [`CurDir`]: Component::CurDir
2864 #[stable(feature = "rust1", since = "1.0.0")]
2865 pub fn components(&self) -> Components<'_> {
2866 let prefix = parse_prefix(self.as_os_str());
2867 Components {
2868 path: self.as_u8_slice(),
2869 prefix,
2870 has_physical_root: has_physical_root(self.as_u8_slice(), prefix),
2871 front: State::Prefix,
2872 back: State::Body,
2873 }
2874 }
2875
2876 /// Produces an iterator over the path's components viewed as [`OsStr`]
2877 /// slices.
2878 ///
2879 /// For more information about the particulars of how the path is separated
2880 /// into components, see [`components`].
2881 ///
2882 /// [`components`]: Path::components
2883 ///
2884 /// # Examples
2885 ///
2886 /// ```
2887 /// use std::path::{self, Path};
2888 /// use std::ffi::OsStr;
2889 ///
2890 /// let mut it = Path::new("/tmp/foo.txt").iter();
2891 /// assert_eq!(it.next(), Some(OsStr::new(&path::MAIN_SEPARATOR.to_string())));
2892 /// assert_eq!(it.next(), Some(OsStr::new("tmp")));
2893 /// assert_eq!(it.next(), Some(OsStr::new("foo.txt")));
2894 /// assert_eq!(it.next(), None)
2895 /// ```
2896 #[stable(feature = "rust1", since = "1.0.0")]
2897 #[inline]
2898 pub fn iter(&self) -> Iter<'_> {
2899 Iter { inner: self.components() }
2900 }
2901
2902 /// Returns an object that implements [`Display`] for safely printing paths
2903 /// that may contain non-Unicode data. This may perform lossy conversion,
2904 /// depending on the platform. If you would like an implementation which
2905 /// escapes the path please use [`Debug`] instead.
2906 ///
2907 /// [`Display`]: fmt::Display
2908 /// [`Debug`]: fmt::Debug
2909 ///
2910 /// # Examples
2911 ///
2912 /// ```
2913 /// use std::path::Path;
2914 ///
2915 /// let path = Path::new("/tmp/foo.rs");
2916 ///
2917 /// println!("{}", path.display());
2918 /// ```
2919 #[stable(feature = "rust1", since = "1.0.0")]
2920 #[must_use = "this does not display the path, \
2921 it returns an object that can be displayed"]
2922 #[inline]
2923 pub fn display(&self) -> Display<'_> {
2924 Display { inner: self.inner.display() }
2925 }
2926
2927 /// Queries the file system to get information about a file, directory, etc.
2928 ///
2929 /// This function will traverse symbolic links to query information about the
2930 /// destination file.
2931 ///
2932 /// This is an alias to [`fs::metadata`].
2933 ///
2934 /// # Examples
2935 ///
2936 /// ```no_run
2937 /// use std::path::Path;
2938 ///
2939 /// let path = Path::new("/Minas/tirith");
2940 /// let metadata = path.metadata().expect("metadata call failed");
2941 /// println!("{:?}", metadata.file_type());
2942 /// ```
2943 #[stable(feature = "path_ext", since = "1.5.0")]
2944 #[inline]
2945 pub fn metadata(&self) -> io::Result<fs::Metadata> {
2946 fs::metadata(self)
2947 }
2948
2949 /// Queries the metadata about a file without following symlinks.
2950 ///
2951 /// This is an alias to [`fs::symlink_metadata`].
2952 ///
2953 /// # Examples
2954 ///
2955 /// ```no_run
2956 /// use std::path::Path;
2957 ///
2958 /// let path = Path::new("/Minas/tirith");
2959 /// let metadata = path.symlink_metadata().expect("symlink_metadata call failed");
2960 /// println!("{:?}", metadata.file_type());
2961 /// ```
2962 #[stable(feature = "path_ext", since = "1.5.0")]
2963 #[inline]
2964 pub fn symlink_metadata(&self) -> io::Result<fs::Metadata> {
2965 fs::symlink_metadata(self)
2966 }
2967
2968 /// Returns the canonical, absolute form of the path with all intermediate
2969 /// components normalized and symbolic links resolved.
2970 ///
2971 /// This is an alias to [`fs::canonicalize`].
2972 ///
2973 /// # Examples
2974 ///
2975 /// ```no_run
2976 /// use std::path::{Path, PathBuf};
2977 ///
2978 /// let path = Path::new("/foo/test/../test/bar.rs");
2979 /// assert_eq!(path.canonicalize().unwrap(), PathBuf::from("/foo/test/bar.rs"));
2980 /// ```
2981 #[stable(feature = "path_ext", since = "1.5.0")]
2982 #[inline]
2983 pub fn canonicalize(&self) -> io::Result<PathBuf> {
2984 fs::canonicalize(self)
2985 }
2986
2987 /// Normalize a path, including `..` without traversing the filesystem.
2988 ///
2989 /// Returns an error if normalization would leave leading `..` components.
2990 ///
2991 /// <div class="warning">
2992 ///
2993 /// This function always resolves `..` to the "lexical" parent.
2994 /// That is "a/b/../c" will always resolve to `a/c` which can change the meaning of the path.
2995 /// In particular, `a/c` and `a/b/../c` are distinct on many systems because `b` may be a symbolic link, so its parent isn’t `a`.
2996 ///
2997 /// </div>
2998 ///
2999 /// [`path::absolute`](absolute) is an alternative that preserves `..`.
3000 /// Or [`Path::canonicalize`] can be used to resolve any `..` by querying the filesystem.
3001 #[unstable(feature = "normalize_lexically", issue = "134694")]
3002 pub fn normalize_lexically(&self) -> Result<PathBuf, NormalizeError> {
3003 let mut lexical = PathBuf::new();
3004 let mut iter = self.components().peekable();
3005
3006 // Find the root, if any, and add it to the lexical path.
3007 // Here we treat the Windows path "C:\" as a single "root" even though
3008 // `components` splits it into two: (Prefix, RootDir).
3009 let root = match iter.peek() {
3010 Some(Component::ParentDir) => return Err(NormalizeError),
3011 Some(p @ Component::RootDir) | Some(p @ Component::CurDir) => {
3012 lexical.push(p);
3013 iter.next();
3014 lexical.as_os_str().len()
3015 }
3016 Some(Component::Prefix(prefix)) => {
3017 lexical.push(prefix.as_os_str());
3018 iter.next();
3019 if let Some(p @ Component::RootDir) = iter.peek() {
3020 lexical.push(p);
3021 iter.next();
3022 }
3023 lexical.as_os_str().len()
3024 }
3025 None => return Ok(PathBuf::new()),
3026 Some(Component::Normal(_)) => 0,
3027 };
3028
3029 for component in iter {
3030 match component {
3031 Component::RootDir => unreachable!(),
3032 Component::Prefix(_) => return Err(NormalizeError),
3033 Component::CurDir => continue,
3034 Component::ParentDir => {
3035 // It's an error if ParentDir causes us to go above the "root".
3036 if lexical.as_os_str().len() == root {
3037 return Err(NormalizeError);
3038 } else {
3039 lexical.pop();
3040 }
3041 }
3042 Component::Normal(path) => lexical.push(path),
3043 }
3044 }
3045 Ok(lexical)
3046 }
3047
3048 /// Reads a symbolic link, returning the file that the link points to.
3049 ///
3050 /// This is an alias to [`fs::read_link`].
3051 ///
3052 /// # Examples
3053 ///
3054 /// ```no_run
3055 /// use std::path::Path;
3056 ///
3057 /// let path = Path::new("/laputa/sky_castle.rs");
3058 /// let path_link = path.read_link().expect("read_link call failed");
3059 /// ```
3060 #[stable(feature = "path_ext", since = "1.5.0")]
3061 #[inline]
3062 pub fn read_link(&self) -> io::Result<PathBuf> {
3063 fs::read_link(self)
3064 }
3065
3066 /// Returns an iterator over the entries within a directory.
3067 ///
3068 /// The iterator will yield instances of <code>[io::Result]<[fs::DirEntry]></code>. New
3069 /// errors may be encountered after an iterator is initially constructed.
3070 ///
3071 /// This is an alias to [`fs::read_dir`].
3072 ///
3073 /// # Examples
3074 ///
3075 /// ```no_run
3076 /// use std::path::Path;
3077 ///
3078 /// let path = Path::new("/laputa");
3079 /// for entry in path.read_dir().expect("read_dir call failed") {
3080 /// if let Ok(entry) = entry {
3081 /// println!("{:?}", entry.path());
3082 /// }
3083 /// }
3084 /// ```
3085 #[stable(feature = "path_ext", since = "1.5.0")]
3086 #[inline]
3087 pub fn read_dir(&self) -> io::Result<fs::ReadDir> {
3088 fs::read_dir(self)
3089 }
3090
3091 /// Returns `true` if the path points at an existing entity.
3092 ///
3093 /// Warning: this method may be error-prone, consider using [`try_exists()`] instead!
3094 /// It also has a risk of introducing time-of-check to time-of-use (TOCTOU) bugs.
3095 ///
3096 /// This function will traverse symbolic links to query information about the
3097 /// destination file.
3098 ///
3099 /// If you cannot access the metadata of the file, e.g. because of a
3100 /// permission error or broken symbolic links, this will return `false`.
3101 ///
3102 /// # Examples
3103 ///
3104 /// ```no_run
3105 /// use std::path::Path;
3106 /// assert!(!Path::new("does_not_exist.txt").exists());
3107 /// ```
3108 ///
3109 /// # See Also
3110 ///
3111 /// This is a convenience function that coerces errors to false. If you want to
3112 /// check errors, call [`Path::try_exists`].
3113 ///
3114 /// [`try_exists()`]: Self::try_exists
3115 #[stable(feature = "path_ext", since = "1.5.0")]
3116 #[must_use]
3117 #[inline]
3118 pub fn exists(&self) -> bool {
3119 fs::metadata(self).is_ok()
3120 }
3121
3122 /// Returns `Ok(true)` if the path points at an existing entity.
3123 ///
3124 /// This function will traverse symbolic links to query information about the
3125 /// destination file. In case of broken symbolic links this will return `Ok(false)`.
3126 ///
3127 /// [`Path::exists()`] only checks whether or not a path was both found and readable. By
3128 /// contrast, `try_exists` will return `Ok(true)` or `Ok(false)`, respectively, if the path
3129 /// was _verified_ to exist or not exist. If its existence can neither be confirmed nor
3130 /// denied, it will propagate an `Err(_)` instead. This can be the case if e.g. listing
3131 /// permission is denied on one of the parent directories.
3132 ///
3133 /// Note that while this avoids some pitfalls of the `exists()` method, it still can not
3134 /// prevent time-of-check to time-of-use (TOCTOU) bugs. You should only use it in scenarios
3135 /// where those bugs are not an issue.
3136 ///
3137 /// This is an alias for [`std::fs::exists`](crate::fs::exists).
3138 ///
3139 /// # Examples
3140 ///
3141 /// ```no_run
3142 /// use std::path::Path;
3143 /// assert!(!Path::new("does_not_exist.txt").try_exists().expect("Can't check existence of file does_not_exist.txt"));
3144 /// assert!(Path::new("/root/secret_file.txt").try_exists().is_err());
3145 /// ```
3146 ///
3147 /// [`exists()`]: Self::exists
3148 #[stable(feature = "path_try_exists", since = "1.63.0")]
3149 #[inline]
3150 pub fn try_exists(&self) -> io::Result<bool> {
3151 fs::exists(self)
3152 }
3153
3154 /// Returns `true` if the path exists on disk and is pointing at a regular file.
3155 ///
3156 /// This function will traverse symbolic links to query information about the
3157 /// destination file.
3158 ///
3159 /// If you cannot access the metadata of the file, e.g. because of a
3160 /// permission error or broken symbolic links, this will return `false`.
3161 ///
3162 /// # Examples
3163 ///
3164 /// ```no_run
3165 /// use std::path::Path;
3166 /// assert_eq!(Path::new("./is_a_directory/").is_file(), false);
3167 /// assert_eq!(Path::new("a_file.txt").is_file(), true);
3168 /// ```
3169 ///
3170 /// # See Also
3171 ///
3172 /// This is a convenience function that coerces errors to false. If you want to
3173 /// check errors, call [`fs::metadata`] and handle its [`Result`]. Then call
3174 /// [`fs::Metadata::is_file`] if it was [`Ok`].
3175 ///
3176 /// When the goal is simply to read from (or write to) the source, the most
3177 /// reliable way to test the source can be read (or written to) is to open
3178 /// it. Only using `is_file` can break workflows like `diff <( prog_a )` on
3179 /// a Unix-like system for example. See [`fs::File::open`] or
3180 /// [`fs::OpenOptions::open`] for more information.
3181 #[stable(feature = "path_ext", since = "1.5.0")]
3182 #[must_use]
3183 pub fn is_file(&self) -> bool {
3184 fs::metadata(self).map(|m| m.is_file()).unwrap_or(false)
3185 }
3186
3187 /// Returns `true` if the path exists on disk and is pointing at a directory.
3188 ///
3189 /// This function will traverse symbolic links to query information about the
3190 /// destination file.
3191 ///
3192 /// If you cannot access the metadata of the file, e.g. because of a
3193 /// permission error or broken symbolic links, this will return `false`.
3194 ///
3195 /// # Examples
3196 ///
3197 /// ```no_run
3198 /// use std::path::Path;
3199 /// assert_eq!(Path::new("./is_a_directory/").is_dir(), true);
3200 /// assert_eq!(Path::new("a_file.txt").is_dir(), false);
3201 /// ```
3202 ///
3203 /// # See Also
3204 ///
3205 /// This is a convenience function that coerces errors to false. If you want to
3206 /// check errors, call [`fs::metadata`] and handle its [`Result`]. Then call
3207 /// [`fs::Metadata::is_dir`] if it was [`Ok`].
3208 #[stable(feature = "path_ext", since = "1.5.0")]
3209 #[must_use]
3210 pub fn is_dir(&self) -> bool {
3211 fs::metadata(self).map(|m| m.is_dir()).unwrap_or(false)
3212 }
3213
3214 /// Returns `true` if the path exists on disk and is pointing at a symbolic link.
3215 ///
3216 /// This function will not traverse symbolic links.
3217 /// In case of a broken symbolic link this will also return true.
3218 ///
3219 /// If you cannot access the directory containing the file, e.g., because of a
3220 /// permission error, this will return false.
3221 ///
3222 /// # Examples
3223 ///
3224 #[cfg_attr(unix, doc = "```no_run")]
3225 #[cfg_attr(not(unix), doc = "```ignore")]
3226 /// use std::path::Path;
3227 /// use std::os::unix::fs::symlink;
3228 ///
3229 /// let link_path = Path::new("link");
3230 /// symlink("/origin_does_not_exist/", link_path).unwrap();
3231 /// assert_eq!(link_path.is_symlink(), true);
3232 /// assert_eq!(link_path.exists(), false);
3233 /// ```
3234 ///
3235 /// # See Also
3236 ///
3237 /// This is a convenience function that coerces errors to false. If you want to
3238 /// check errors, call [`fs::symlink_metadata`] and handle its [`Result`]. Then call
3239 /// [`fs::Metadata::is_symlink`] if it was [`Ok`].
3240 #[must_use]
3241 #[stable(feature = "is_symlink", since = "1.58.0")]
3242 pub fn is_symlink(&self) -> bool {
3243 fs::symlink_metadata(self).map(|m| m.is_symlink()).unwrap_or(false)
3244 }
3245
3246 /// Converts a [`Box<Path>`](Box) into a [`PathBuf`] without copying or
3247 /// allocating.
3248 #[stable(feature = "into_boxed_path", since = "1.20.0")]
3249 #[must_use = "`self` will be dropped if the result is not used"]
3250 pub fn into_path_buf(self: Box<Self>) -> PathBuf {
3251 let rw = Box::into_raw(self) as *mut OsStr;
3252 let inner = unsafe { Box::from_raw(rw) };
3253 PathBuf { inner: OsString::from(inner) }
3254 }
3255}
3256
3257#[unstable(feature = "clone_to_uninit", issue = "126799")]
3258unsafe impl CloneToUninit for Path {
3259 #[inline]
3260 #[cfg_attr(debug_assertions, track_caller)]
3261 unsafe fn clone_to_uninit(&self, dst: *mut u8) {
3262 // SAFETY: Path is just a transparent wrapper around OsStr
3263 unsafe { self.inner.clone_to_uninit(dst) }
3264 }
3265}
3266
3267#[stable(feature = "rust1", since = "1.0.0")]
3268impl AsRef<OsStr> for Path {
3269 #[inline]
3270 fn as_ref(&self) -> &OsStr {
3271 &self.inner
3272 }
3273}
3274
3275#[stable(feature = "rust1", since = "1.0.0")]
3276impl fmt::Debug for Path {
3277 fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
3278 fmt::Debug::fmt(&self.inner, formatter)
3279 }
3280}
3281
3282/// Helper struct for safely printing paths with [`format!`] and `{}`.
3283///
3284/// A [`Path`] might contain non-Unicode data. This `struct` implements the
3285/// [`Display`] trait in a way that mitigates that. It is created by the
3286/// [`display`](Path::display) method on [`Path`]. This may perform lossy
3287/// conversion, depending on the platform. If you would like an implementation
3288/// which escapes the path please use [`Debug`] instead.
3289///
3290/// # Examples
3291///
3292/// ```
3293/// use std::path::Path;
3294///
3295/// let path = Path::new("/tmp/foo.rs");
3296///
3297/// println!("{}", path.display());
3298/// ```
3299///
3300/// [`Display`]: fmt::Display
3301/// [`format!`]: crate::format
3302#[stable(feature = "rust1", since = "1.0.0")]
3303pub struct Display<'a> {
3304 inner: os_str::Display<'a>,
3305}
3306
3307#[stable(feature = "rust1", since = "1.0.0")]
3308impl fmt::Debug for Display<'_> {
3309 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3310 fmt::Debug::fmt(&self.inner, f)
3311 }
3312}
3313
3314#[stable(feature = "rust1", since = "1.0.0")]
3315impl fmt::Display for Display<'_> {
3316 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3317 fmt::Display::fmt(&self.inner, f)
3318 }
3319}
3320
3321#[stable(feature = "rust1", since = "1.0.0")]
3322impl PartialEq for Path {
3323 #[inline]
3324 fn eq(&self, other: &Path) -> bool {
3325 self.components() == other.components()
3326 }
3327}
3328
3329#[stable(feature = "rust1", since = "1.0.0")]
3330impl Hash for Path {
3331 fn hash<H: Hasher>(&self, h: &mut H) {
3332 let bytes = self.as_u8_slice();
3333 let (prefix_len, verbatim) = match parse_prefix(&self.inner) {
3334 Some(prefix) => {
3335 prefix.hash(h);
3336 (prefix.len(), prefix.is_verbatim())
3337 }
3338 None => (0, false),
3339 };
3340 let bytes = &bytes[prefix_len..];
3341
3342 let mut component_start = 0;
3343 // track some extra state to avoid prefix collisions.
3344 // ["foo", "bar"] and ["foobar"], will have the same payload bytes
3345 // but result in different chunk_bits
3346 let mut chunk_bits: usize = 0;
3347
3348 for i in 0..bytes.len() {
3349 let is_sep = if verbatim { is_verbatim_sep(bytes[i]) } else { is_sep_byte(bytes[i]) };
3350 if is_sep {
3351 if i > component_start {
3352 let to_hash = &bytes[component_start..i];
3353 chunk_bits = chunk_bits.wrapping_add(to_hash.len());
3354 chunk_bits = chunk_bits.rotate_right(2);
3355 h.write(to_hash);
3356 }
3357
3358 // skip over separator and optionally a following CurDir item
3359 // since components() would normalize these away.
3360 component_start = i + 1;
3361
3362 let tail = &bytes[component_start..];
3363
3364 if !verbatim {
3365 component_start += match tail {
3366 [b'.'] => 1,
3367 [b'.', sep, ..] if is_sep_byte(*sep) => 1,
3368 _ => 0,
3369 };
3370 }
3371 }
3372 }
3373
3374 if component_start < bytes.len() {
3375 let to_hash = &bytes[component_start..];
3376 chunk_bits = chunk_bits.wrapping_add(to_hash.len());
3377 chunk_bits = chunk_bits.rotate_right(2);
3378 h.write(to_hash);
3379 }
3380
3381 h.write_usize(chunk_bits);
3382 }
3383}
3384
3385#[stable(feature = "rust1", since = "1.0.0")]
3386impl Eq for Path {}
3387
3388#[stable(feature = "rust1", since = "1.0.0")]
3389impl PartialOrd for Path {
3390 #[inline]
3391 fn partial_cmp(&self, other: &Path) -> Option<cmp::Ordering> {
3392 Some(compare_components(self.components(), other.components()))
3393 }
3394}
3395
3396#[stable(feature = "rust1", since = "1.0.0")]
3397impl Ord for Path {
3398 #[inline]
3399 fn cmp(&self, other: &Path) -> cmp::Ordering {
3400 compare_components(self.components(), other.components())
3401 }
3402}
3403
3404#[stable(feature = "rust1", since = "1.0.0")]
3405impl AsRef<Path> for Path {
3406 #[inline]
3407 fn as_ref(&self) -> &Path {
3408 self
3409 }
3410}
3411
3412#[stable(feature = "rust1", since = "1.0.0")]
3413impl AsRef<Path> for OsStr {
3414 #[inline]
3415 fn as_ref(&self) -> &Path {
3416 Path::new(self)
3417 }
3418}
3419
3420#[stable(feature = "cow_os_str_as_ref_path", since = "1.8.0")]
3421impl AsRef<Path> for Cow<'_, OsStr> {
3422 #[inline]
3423 fn as_ref(&self) -> &Path {
3424 Path::new(self)
3425 }
3426}
3427
3428#[stable(feature = "rust1", since = "1.0.0")]
3429impl AsRef<Path> for OsString {
3430 #[inline]
3431 fn as_ref(&self) -> &Path {
3432 Path::new(self)
3433 }
3434}
3435
3436#[stable(feature = "rust1", since = "1.0.0")]
3437impl AsRef<Path> for str {
3438 #[inline]
3439 fn as_ref(&self) -> &Path {
3440 Path::new(self)
3441 }
3442}
3443
3444#[stable(feature = "rust1", since = "1.0.0")]
3445impl AsRef<Path> for String {
3446 #[inline]
3447 fn as_ref(&self) -> &Path {
3448 Path::new(self)
3449 }
3450}
3451
3452#[stable(feature = "rust1", since = "1.0.0")]
3453impl AsRef<Path> for PathBuf {
3454 #[inline]
3455 fn as_ref(&self) -> &Path {
3456 self
3457 }
3458}
3459
3460#[stable(feature = "path_into_iter", since = "1.6.0")]
3461impl<'a> IntoIterator for &'a PathBuf {
3462 type Item = &'a OsStr;
3463 type IntoIter = Iter<'a>;
3464 #[inline]
3465 fn into_iter(self) -> Iter<'a> {
3466 self.iter()
3467 }
3468}
3469
3470#[stable(feature = "path_into_iter", since = "1.6.0")]
3471impl<'a> IntoIterator for &'a Path {
3472 type Item = &'a OsStr;
3473 type IntoIter = Iter<'a>;
3474 #[inline]
3475 fn into_iter(self) -> Iter<'a> {
3476 self.iter()
3477 }
3478}
3479
3480macro_rules! impl_cmp {
3481 (<$($life:lifetime),*> $lhs:ty, $rhs: ty) => {
3482 #[stable(feature = "partialeq_path", since = "1.6.0")]
3483 impl<$($life),*> PartialEq<$rhs> for $lhs {
3484 #[inline]
3485 fn eq(&self, other: &$rhs) -> bool {
3486 <Path as PartialEq>::eq(self, other)
3487 }
3488 }
3489
3490 #[stable(feature = "partialeq_path", since = "1.6.0")]
3491 impl<$($life),*> PartialEq<$lhs> for $rhs {
3492 #[inline]
3493 fn eq(&self, other: &$lhs) -> bool {
3494 <Path as PartialEq>::eq(self, other)
3495 }
3496 }
3497
3498 #[stable(feature = "cmp_path", since = "1.8.0")]
3499 impl<$($life),*> PartialOrd<$rhs> for $lhs {
3500 #[inline]
3501 fn partial_cmp(&self, other: &$rhs) -> Option<cmp::Ordering> {
3502 <Path as PartialOrd>::partial_cmp(self, other)
3503 }
3504 }
3505
3506 #[stable(feature = "cmp_path", since = "1.8.0")]
3507 impl<$($life),*> PartialOrd<$lhs> for $rhs {
3508 #[inline]
3509 fn partial_cmp(&self, other: &$lhs) -> Option<cmp::Ordering> {
3510 <Path as PartialOrd>::partial_cmp(self, other)
3511 }
3512 }
3513 };
3514}
3515
3516impl_cmp!(<> PathBuf, Path);
3517impl_cmp!(<'a> PathBuf, &'a Path);
3518impl_cmp!(<'a> Cow<'a, Path>, Path);
3519impl_cmp!(<'a, 'b> Cow<'a, Path>, &'b Path);
3520impl_cmp!(<'a> Cow<'a, Path>, PathBuf);
3521
3522macro_rules! impl_cmp_os_str {
3523 (<$($life:lifetime),*> $lhs:ty, $rhs: ty) => {
3524 #[stable(feature = "cmp_path", since = "1.8.0")]
3525 impl<$($life),*> PartialEq<$rhs> for $lhs {
3526 #[inline]
3527 fn eq(&self, other: &$rhs) -> bool {
3528 <Path as PartialEq>::eq(self, other.as_ref())
3529 }
3530 }
3531
3532 #[stable(feature = "cmp_path", since = "1.8.0")]
3533 impl<$($life),*> PartialEq<$lhs> for $rhs {
3534 #[inline]
3535 fn eq(&self, other: &$lhs) -> bool {
3536 <Path as PartialEq>::eq(self.as_ref(), other)
3537 }
3538 }
3539
3540 #[stable(feature = "cmp_path", since = "1.8.0")]
3541 impl<$($life),*> PartialOrd<$rhs> for $lhs {
3542 #[inline]
3543 fn partial_cmp(&self, other: &$rhs) -> Option<cmp::Ordering> {
3544 <Path as PartialOrd>::partial_cmp(self, other.as_ref())
3545 }
3546 }
3547
3548 #[stable(feature = "cmp_path", since = "1.8.0")]
3549 impl<$($life),*> PartialOrd<$lhs> for $rhs {
3550 #[inline]
3551 fn partial_cmp(&self, other: &$lhs) -> Option<cmp::Ordering> {
3552 <Path as PartialOrd>::partial_cmp(self.as_ref(), other)
3553 }
3554 }
3555 };
3556}
3557
3558impl_cmp_os_str!(<> PathBuf, OsStr);
3559impl_cmp_os_str!(<'a> PathBuf, &'a OsStr);
3560impl_cmp_os_str!(<'a> PathBuf, Cow<'a, OsStr>);
3561impl_cmp_os_str!(<> PathBuf, OsString);
3562impl_cmp_os_str!(<> Path, OsStr);
3563impl_cmp_os_str!(<'a> Path, &'a OsStr);
3564impl_cmp_os_str!(<'a> Path, Cow<'a, OsStr>);
3565impl_cmp_os_str!(<> Path, OsString);
3566impl_cmp_os_str!(<'a> &'a Path, OsStr);
3567impl_cmp_os_str!(<'a, 'b> &'a Path, Cow<'b, OsStr>);
3568impl_cmp_os_str!(<'a> &'a Path, OsString);
3569impl_cmp_os_str!(<'a> Cow<'a, Path>, OsStr);
3570impl_cmp_os_str!(<'a, 'b> Cow<'a, Path>, &'b OsStr);
3571impl_cmp_os_str!(<'a> Cow<'a, Path>, OsString);
3572
3573#[stable(since = "1.7.0", feature = "strip_prefix")]
3574impl fmt::Display for StripPrefixError {
3575 #[allow(deprecated, deprecated_in_future)]
3576 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3577 self.description().fmt(f)
3578 }
3579}
3580
3581#[stable(since = "1.7.0", feature = "strip_prefix")]
3582impl Error for StripPrefixError {
3583 #[allow(deprecated)]
3584 fn description(&self) -> &str {
3585 "prefix not found"
3586 }
3587}
3588
3589#[unstable(feature = "normalize_lexically", issue = "134694")]
3590impl fmt::Display for NormalizeError {
3591 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3592 f.write_str("parent reference `..` points outside of base directory")
3593 }
3594}
3595#[unstable(feature = "normalize_lexically", issue = "134694")]
3596impl Error for NormalizeError {}
3597
3598/// Makes the path absolute without accessing the filesystem.
3599///
3600/// If the path is relative, the current directory is used as the base directory.
3601/// All intermediate components will be resolved according to platform-specific
3602/// rules, but unlike [`canonicalize`][crate::fs::canonicalize], this does not
3603/// resolve symlinks and may succeed even if the path does not exist.
3604///
3605/// If the `path` is empty or getting the
3606/// [current directory][crate::env::current_dir] fails, then an error will be
3607/// returned.
3608///
3609/// # Platform-specific behavior
3610///
3611/// On POSIX platforms, the path is resolved using [POSIX semantics][posix-semantics],
3612/// except that it stops short of resolving symlinks. This means it will keep `..`
3613/// components and trailing slashes.
3614///
3615/// On Windows, for verbatim paths, this will simply return the path as given. For other
3616/// paths, this is currently equivalent to calling
3617/// [`GetFullPathNameW`][windows-path].
3618///
3619/// Note that these [may change in the future][changes].
3620///
3621/// # Errors
3622///
3623/// This function may return an error in the following situations:
3624///
3625/// * If `path` is syntactically invalid; in particular, if it is empty.
3626/// * If getting the [current directory][crate::env::current_dir] fails.
3627///
3628/// # Examples
3629///
3630/// ## POSIX paths
3631///
3632/// ```
3633/// # #[cfg(unix)]
3634/// fn main() -> std::io::Result<()> {
3635/// use std::path::{self, Path};
3636///
3637/// // Relative to absolute
3638/// let absolute = path::absolute("foo/./bar")?;
3639/// assert!(absolute.ends_with("foo/bar"));
3640///
3641/// // Absolute to absolute
3642/// let absolute = path::absolute("/foo//test/.././bar.rs")?;
3643/// assert_eq!(absolute, Path::new("/foo/test/../bar.rs"));
3644/// Ok(())
3645/// }
3646/// # #[cfg(not(unix))]
3647/// # fn main() {}
3648/// ```
3649///
3650/// ## Windows paths
3651///
3652/// ```
3653/// # #[cfg(windows)]
3654/// fn main() -> std::io::Result<()> {
3655/// use std::path::{self, Path};
3656///
3657/// // Relative to absolute
3658/// let absolute = path::absolute("foo/./bar")?;
3659/// assert!(absolute.ends_with(r"foo\bar"));
3660///
3661/// // Absolute to absolute
3662/// let absolute = path::absolute(r"C:\foo//test\..\./bar.rs")?;
3663///
3664/// assert_eq!(absolute, Path::new(r"C:\foo\bar.rs"));
3665/// Ok(())
3666/// }
3667/// # #[cfg(not(windows))]
3668/// # fn main() {}
3669/// ```
3670///
3671/// Note that this [may change in the future][changes].
3672///
3673/// [changes]: io#platform-specific-behavior
3674/// [posix-semantics]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_13
3675/// [windows-path]: https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-getfullpathnamew
3676#[stable(feature = "absolute_path", since = "1.79.0")]
3677pub fn absolute<P: AsRef<Path>>(path: P) -> io::Result<PathBuf> {
3678 let path = path.as_ref();
3679 if path.as_os_str().is_empty() {
3680 Err(io::const_error!(io::ErrorKind::InvalidInput, "cannot make an empty path absolute"))
3681 } else {
3682 sys::path::absolute(path)
3683 }
3684}