std/
path.rs

1//! Cross-platform path manipulation.
2//!
3//! This module provides two types, [`PathBuf`] and [`Path`] (akin to [`String`]
4//! and [`str`]), for working with paths abstractly. These types are thin wrappers
5//! around [`OsString`] and [`OsStr`] respectively, meaning that they work directly
6//! on strings according to the local platform's path syntax.
7//!
8//! Paths can be parsed into [`Component`]s by iterating over the structure
9//! returned by the [`components`] method on [`Path`]. [`Component`]s roughly
10//! correspond to the substrings between path separators (`/` or `\`). You can
11//! reconstruct an equivalent path from components with the [`push`] method on
12//! [`PathBuf`]; note that the paths may differ syntactically by the
13//! normalization described in the documentation for the [`components`] method.
14//!
15//! ## Case sensitivity
16//!
17//! Unless otherwise indicated path methods that do not access the filesystem,
18//! such as [`Path::starts_with`] and [`Path::ends_with`], are case sensitive no
19//! matter the platform or filesystem. An exception to this is made for Windows
20//! drive letters.
21//!
22//! ## Simple usage
23//!
24//! Path manipulation includes both parsing components from slices and building
25//! new owned paths.
26//!
27//! To parse a path, you can create a [`Path`] slice from a [`str`]
28//! slice and start asking questions:
29//!
30//! ```
31//! use std::path::Path;
32//! use std::ffi::OsStr;
33//!
34//! let path = Path::new("/tmp/foo/bar.txt");
35//!
36//! let parent = path.parent();
37//! assert_eq!(parent, Some(Path::new("/tmp/foo")));
38//!
39//! let file_stem = path.file_stem();
40//! assert_eq!(file_stem, Some(OsStr::new("bar")));
41//!
42//! let extension = path.extension();
43//! assert_eq!(extension, Some(OsStr::new("txt")));
44//! ```
45//!
46//! To build or modify paths, use [`PathBuf`]:
47//!
48//! ```
49//! use std::path::PathBuf;
50//!
51//! // This way works...
52//! let mut path = PathBuf::from("c:\\");
53//!
54//! path.push("windows");
55//! path.push("system32");
56//!
57//! path.set_extension("dll");
58//!
59//! // ... but push is best used if you don't know everything up
60//! // front. If you do, this way is better:
61//! let path: PathBuf = ["c:\\", "windows", "system32.dll"].iter().collect();
62//! ```
63//!
64//! [`components`]: Path::components
65//! [`push`]: PathBuf::push
66
67#![stable(feature = "rust1", since = "1.0.0")]
68#![deny(unsafe_op_in_unsafe_fn)]
69
70use core::clone::CloneToUninit;
71
72use crate::borrow::{Borrow, Cow};
73use crate::collections::TryReserveError;
74use crate::error::Error;
75use crate::ffi::{OsStr, OsString, os_str};
76use crate::hash::{Hash, Hasher};
77use crate::iter::FusedIterator;
78use crate::ops::{self, Deref};
79use crate::rc::Rc;
80use crate::str::FromStr;
81use crate::sync::Arc;
82use crate::sys::path::{MAIN_SEP_STR, is_sep_byte, is_verbatim_sep, parse_prefix};
83use crate::{cmp, fmt, fs, io, sys};
84
85////////////////////////////////////////////////////////////////////////////////
86// GENERAL NOTES
87////////////////////////////////////////////////////////////////////////////////
88//
89// Parsing in this module is done by directly transmuting OsStr to [u8] slices,
90// taking advantage of the fact that OsStr always encodes ASCII characters
91// as-is.  Eventually, this transmutation should be replaced by direct uses of
92// OsStr APIs for parsing, but it will take a while for those to become
93// available.
94
95////////////////////////////////////////////////////////////////////////////////
96// Windows Prefixes
97////////////////////////////////////////////////////////////////////////////////
98
99/// Windows path prefixes, e.g., `C:` or `\\server\share`.
100///
101/// Windows uses a variety of path prefix styles, including references to drive
102/// volumes (like `C:`), network shared folders (like `\\server\share`), and
103/// others. In addition, some path prefixes are "verbatim" (i.e., prefixed with
104/// `\\?\`), in which case `/` is *not* treated as a separator and essentially
105/// no normalization is performed.
106///
107/// # Examples
108///
109/// ```
110/// use std::path::{Component, Path, Prefix};
111/// use std::path::Prefix::*;
112/// use std::ffi::OsStr;
113///
114/// fn get_path_prefix(s: &str) -> Prefix<'_> {
115///     let path = Path::new(s);
116///     match path.components().next().unwrap() {
117///         Component::Prefix(prefix_component) => prefix_component.kind(),
118///         _ => panic!(),
119///     }
120/// }
121///
122/// # if cfg!(windows) {
123/// assert_eq!(Verbatim(OsStr::new("pictures")),
124///            get_path_prefix(r"\\?\pictures\kittens"));
125/// assert_eq!(VerbatimUNC(OsStr::new("server"), OsStr::new("share")),
126///            get_path_prefix(r"\\?\UNC\server\share"));
127/// assert_eq!(VerbatimDisk(b'C'), get_path_prefix(r"\\?\c:\"));
128/// assert_eq!(DeviceNS(OsStr::new("BrainInterface")),
129///            get_path_prefix(r"\\.\BrainInterface"));
130/// assert_eq!(UNC(OsStr::new("server"), OsStr::new("share")),
131///            get_path_prefix(r"\\server\share"));
132/// assert_eq!(Disk(b'C'), get_path_prefix(r"C:\Users\Rust\Pictures\Ferris"));
133/// # }
134/// ```
135#[derive(Copy, Clone, Debug, Hash, PartialOrd, Ord, PartialEq, Eq)]
136#[stable(feature = "rust1", since = "1.0.0")]
137pub enum Prefix<'a> {
138    /// Verbatim prefix, e.g., `\\?\cat_pics`.
139    ///
140    /// Verbatim prefixes consist of `\\?\` immediately followed by the given
141    /// component.
142    #[stable(feature = "rust1", since = "1.0.0")]
143    Verbatim(#[stable(feature = "rust1", since = "1.0.0")] &'a OsStr),
144
145    /// Verbatim prefix using Windows' _**U**niform **N**aming **C**onvention_,
146    /// e.g., `\\?\UNC\server\share`.
147    ///
148    /// Verbatim UNC prefixes consist of `\\?\UNC\` immediately followed by the
149    /// server's hostname and a share name.
150    #[stable(feature = "rust1", since = "1.0.0")]
151    VerbatimUNC(
152        #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
153        #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
154    ),
155
156    /// Verbatim disk prefix, e.g., `\\?\C:`.
157    ///
158    /// Verbatim disk prefixes consist of `\\?\` immediately followed by the
159    /// drive letter and `:`.
160    #[stable(feature = "rust1", since = "1.0.0")]
161    VerbatimDisk(#[stable(feature = "rust1", since = "1.0.0")] u8),
162
163    /// Device namespace prefix, e.g., `\\.\COM42`.
164    ///
165    /// Device namespace prefixes consist of `\\.\` (possibly using `/`
166    /// instead of `\`), immediately followed by the device name.
167    #[stable(feature = "rust1", since = "1.0.0")]
168    DeviceNS(#[stable(feature = "rust1", since = "1.0.0")] &'a OsStr),
169
170    /// Prefix using Windows' _**U**niform **N**aming **C**onvention_, e.g.
171    /// `\\server\share`.
172    ///
173    /// UNC prefixes consist of the server's hostname and a share name.
174    #[stable(feature = "rust1", since = "1.0.0")]
175    UNC(
176        #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
177        #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
178    ),
179
180    /// Prefix `C:` for the given disk drive.
181    #[stable(feature = "rust1", since = "1.0.0")]
182    Disk(#[stable(feature = "rust1", since = "1.0.0")] u8),
183}
184
185impl<'a> Prefix<'a> {
186    #[inline]
187    fn len(&self) -> usize {
188        use self::Prefix::*;
189        fn os_str_len(s: &OsStr) -> usize {
190            s.as_encoded_bytes().len()
191        }
192        match *self {
193            Verbatim(x) => 4 + os_str_len(x),
194            VerbatimUNC(x, y) => {
195                8 + os_str_len(x) + if os_str_len(y) > 0 { 1 + os_str_len(y) } else { 0 }
196            }
197            VerbatimDisk(_) => 6,
198            UNC(x, y) => 2 + os_str_len(x) + if os_str_len(y) > 0 { 1 + os_str_len(y) } else { 0 },
199            DeviceNS(x) => 4 + os_str_len(x),
200            Disk(_) => 2,
201        }
202    }
203
204    /// Determines if the prefix is verbatim, i.e., begins with `\\?\`.
205    ///
206    /// # Examples
207    ///
208    /// ```
209    /// use std::path::Prefix::*;
210    /// use std::ffi::OsStr;
211    ///
212    /// assert!(Verbatim(OsStr::new("pictures")).is_verbatim());
213    /// assert!(VerbatimUNC(OsStr::new("server"), OsStr::new("share")).is_verbatim());
214    /// assert!(VerbatimDisk(b'C').is_verbatim());
215    /// assert!(!DeviceNS(OsStr::new("BrainInterface")).is_verbatim());
216    /// assert!(!UNC(OsStr::new("server"), OsStr::new("share")).is_verbatim());
217    /// assert!(!Disk(b'C').is_verbatim());
218    /// ```
219    #[inline]
220    #[must_use]
221    #[stable(feature = "rust1", since = "1.0.0")]
222    pub fn is_verbatim(&self) -> bool {
223        use self::Prefix::*;
224        matches!(*self, Verbatim(_) | VerbatimDisk(_) | VerbatimUNC(..))
225    }
226
227    #[inline]
228    fn is_drive(&self) -> bool {
229        matches!(*self, Prefix::Disk(_))
230    }
231
232    #[inline]
233    fn has_implicit_root(&self) -> bool {
234        !self.is_drive()
235    }
236}
237
238////////////////////////////////////////////////////////////////////////////////
239// Exposed parsing helpers
240////////////////////////////////////////////////////////////////////////////////
241
242/// Determines whether the character is one of the permitted path
243/// separators for the current platform.
244///
245/// # Examples
246///
247/// ```
248/// use std::path;
249///
250/// assert!(path::is_separator('/')); // '/' works for both Unix and Windows
251/// assert!(!path::is_separator('❤'));
252/// ```
253#[must_use]
254#[stable(feature = "rust1", since = "1.0.0")]
255pub fn is_separator(c: char) -> bool {
256    c.is_ascii() && is_sep_byte(c as u8)
257}
258
259/// The primary separator of path components for the current platform.
260///
261/// For example, `/` on Unix and `\` on Windows.
262#[stable(feature = "rust1", since = "1.0.0")]
263#[cfg_attr(not(test), rustc_diagnostic_item = "path_main_separator")]
264pub const MAIN_SEPARATOR: char = crate::sys::path::MAIN_SEP;
265
266/// The primary separator of path components for the current platform.
267///
268/// For example, `/` on Unix and `\` on Windows.
269#[stable(feature = "main_separator_str", since = "1.68.0")]
270pub const MAIN_SEPARATOR_STR: &str = crate::sys::path::MAIN_SEP_STR;
271
272////////////////////////////////////////////////////////////////////////////////
273// Misc helpers
274////////////////////////////////////////////////////////////////////////////////
275
276// Iterate through `iter` while it matches `prefix`; return `None` if `prefix`
277// is not a prefix of `iter`, otherwise return `Some(iter_after_prefix)` giving
278// `iter` after having exhausted `prefix`.
279fn iter_after<'a, 'b, I, J>(mut iter: I, mut prefix: J) -> Option<I>
280where
281    I: Iterator<Item = Component<'a>> + Clone,
282    J: Iterator<Item = Component<'b>>,
283{
284    loop {
285        let mut iter_next = iter.clone();
286        match (iter_next.next(), prefix.next()) {
287            (Some(ref x), Some(ref y)) if x == y => (),
288            (Some(_), Some(_)) => return None,
289            (Some(_), None) => return Some(iter),
290            (None, None) => return Some(iter),
291            (None, Some(_)) => return None,
292        }
293        iter = iter_next;
294    }
295}
296
297////////////////////////////////////////////////////////////////////////////////
298// Cross-platform, iterator-independent parsing
299////////////////////////////////////////////////////////////////////////////////
300
301/// Says whether the first byte after the prefix is a separator.
302fn has_physical_root(s: &[u8], prefix: Option<Prefix<'_>>) -> bool {
303    let path = if let Some(p) = prefix { &s[p.len()..] } else { s };
304    !path.is_empty() && is_sep_byte(path[0])
305}
306
307// basic workhorse for splitting stem and extension
308fn rsplit_file_at_dot(file: &OsStr) -> (Option<&OsStr>, Option<&OsStr>) {
309    if file.as_encoded_bytes() == b".." {
310        return (Some(file), None);
311    }
312
313    // The unsafety here stems from converting between &OsStr and &[u8]
314    // and back. This is safe to do because (1) we only look at ASCII
315    // contents of the encoding and (2) new &OsStr values are produced
316    // only from ASCII-bounded slices of existing &OsStr values.
317    let mut iter = file.as_encoded_bytes().rsplitn(2, |b| *b == b'.');
318    let after = iter.next();
319    let before = iter.next();
320    if before == Some(b"") {
321        (Some(file), None)
322    } else {
323        unsafe {
324            (
325                before.map(|s| OsStr::from_encoded_bytes_unchecked(s)),
326                after.map(|s| OsStr::from_encoded_bytes_unchecked(s)),
327            )
328        }
329    }
330}
331
332fn split_file_at_dot(file: &OsStr) -> (&OsStr, Option<&OsStr>) {
333    let slice = file.as_encoded_bytes();
334    if slice == b".." {
335        return (file, None);
336    }
337
338    // The unsafety here stems from converting between &OsStr and &[u8]
339    // and back. This is safe to do because (1) we only look at ASCII
340    // contents of the encoding and (2) new &OsStr values are produced
341    // only from ASCII-bounded slices of existing &OsStr values.
342    let i = match slice[1..].iter().position(|b| *b == b'.') {
343        Some(i) => i + 1,
344        None => return (file, None),
345    };
346    let before = &slice[..i];
347    let after = &slice[i + 1..];
348    unsafe {
349        (
350            OsStr::from_encoded_bytes_unchecked(before),
351            Some(OsStr::from_encoded_bytes_unchecked(after)),
352        )
353    }
354}
355
356/// Checks whether the string is valid as a file extension, or panics otherwise.
357fn validate_extension(extension: &OsStr) {
358    for &b in extension.as_encoded_bytes() {
359        if is_sep_byte(b) {
360            panic!("extension cannot contain path separators: {extension:?}");
361        }
362    }
363}
364
365////////////////////////////////////////////////////////////////////////////////
366// The core iterators
367////////////////////////////////////////////////////////////////////////////////
368
369/// Component parsing works by a double-ended state machine; the cursors at the
370/// front and back of the path each keep track of what parts of the path have
371/// been consumed so far.
372///
373/// Going front to back, a path is made up of a prefix, a starting
374/// directory component, and a body (of normal components)
375#[derive(Copy, Clone, PartialEq, PartialOrd, Debug)]
376enum State {
377    Prefix = 0,   // c:
378    StartDir = 1, // / or . or nothing
379    Body = 2,     // foo/bar/baz
380    Done = 3,
381}
382
383/// A structure wrapping a Windows path prefix as well as its unparsed string
384/// representation.
385///
386/// In addition to the parsed [`Prefix`] information returned by [`kind`],
387/// `PrefixComponent` also holds the raw and unparsed [`OsStr`] slice,
388/// returned by [`as_os_str`].
389///
390/// Instances of this `struct` can be obtained by matching against the
391/// [`Prefix` variant] on [`Component`].
392///
393/// Does not occur on Unix.
394///
395/// # Examples
396///
397/// ```
398/// # if cfg!(windows) {
399/// use std::path::{Component, Path, Prefix};
400/// use std::ffi::OsStr;
401///
402/// let path = Path::new(r"c:\you\later\");
403/// match path.components().next().unwrap() {
404///     Component::Prefix(prefix_component) => {
405///         assert_eq!(Prefix::Disk(b'C'), prefix_component.kind());
406///         assert_eq!(OsStr::new("c:"), prefix_component.as_os_str());
407///     }
408///     _ => unreachable!(),
409/// }
410/// # }
411/// ```
412///
413/// [`as_os_str`]: PrefixComponent::as_os_str
414/// [`kind`]: PrefixComponent::kind
415/// [`Prefix` variant]: Component::Prefix
416#[stable(feature = "rust1", since = "1.0.0")]
417#[derive(Copy, Clone, Eq, Debug)]
418pub struct PrefixComponent<'a> {
419    /// The prefix as an unparsed `OsStr` slice.
420    raw: &'a OsStr,
421
422    /// The parsed prefix data.
423    parsed: Prefix<'a>,
424}
425
426impl<'a> PrefixComponent<'a> {
427    /// Returns the parsed prefix data.
428    ///
429    /// See [`Prefix`]'s documentation for more information on the different
430    /// kinds of prefixes.
431    #[stable(feature = "rust1", since = "1.0.0")]
432    #[must_use]
433    #[inline]
434    pub fn kind(&self) -> Prefix<'a> {
435        self.parsed
436    }
437
438    /// Returns the raw [`OsStr`] slice for this prefix.
439    #[stable(feature = "rust1", since = "1.0.0")]
440    #[must_use]
441    #[inline]
442    pub fn as_os_str(&self) -> &'a OsStr {
443        self.raw
444    }
445}
446
447#[stable(feature = "rust1", since = "1.0.0")]
448impl<'a> PartialEq for PrefixComponent<'a> {
449    #[inline]
450    fn eq(&self, other: &PrefixComponent<'a>) -> bool {
451        self.parsed == other.parsed
452    }
453}
454
455#[stable(feature = "rust1", since = "1.0.0")]
456impl<'a> PartialOrd for PrefixComponent<'a> {
457    #[inline]
458    fn partial_cmp(&self, other: &PrefixComponent<'a>) -> Option<cmp::Ordering> {
459        PartialOrd::partial_cmp(&self.parsed, &other.parsed)
460    }
461}
462
463#[stable(feature = "rust1", since = "1.0.0")]
464impl Ord for PrefixComponent<'_> {
465    #[inline]
466    fn cmp(&self, other: &Self) -> cmp::Ordering {
467        Ord::cmp(&self.parsed, &other.parsed)
468    }
469}
470
471#[stable(feature = "rust1", since = "1.0.0")]
472impl Hash for PrefixComponent<'_> {
473    fn hash<H: Hasher>(&self, h: &mut H) {
474        self.parsed.hash(h);
475    }
476}
477
478/// A single component of a path.
479///
480/// A `Component` roughly corresponds to a substring between path separators
481/// (`/` or `\`).
482///
483/// This `enum` is created by iterating over [`Components`], which in turn is
484/// created by the [`components`](Path::components) method on [`Path`].
485///
486/// # Examples
487///
488/// ```rust
489/// use std::path::{Component, Path};
490///
491/// let path = Path::new("/tmp/foo/bar.txt");
492/// let components = path.components().collect::<Vec<_>>();
493/// assert_eq!(&components, &[
494///     Component::RootDir,
495///     Component::Normal("tmp".as_ref()),
496///     Component::Normal("foo".as_ref()),
497///     Component::Normal("bar.txt".as_ref()),
498/// ]);
499/// ```
500#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
501#[stable(feature = "rust1", since = "1.0.0")]
502pub enum Component<'a> {
503    /// A Windows path prefix, e.g., `C:` or `\\server\share`.
504    ///
505    /// There is a large variety of prefix types, see [`Prefix`]'s documentation
506    /// for more.
507    ///
508    /// Does not occur on Unix.
509    #[stable(feature = "rust1", since = "1.0.0")]
510    Prefix(#[stable(feature = "rust1", since = "1.0.0")] PrefixComponent<'a>),
511
512    /// The root directory component, appears after any prefix and before anything else.
513    ///
514    /// It represents a separator that designates that a path starts from root.
515    #[stable(feature = "rust1", since = "1.0.0")]
516    RootDir,
517
518    /// A reference to the current directory, i.e., `.`.
519    #[stable(feature = "rust1", since = "1.0.0")]
520    CurDir,
521
522    /// A reference to the parent directory, i.e., `..`.
523    #[stable(feature = "rust1", since = "1.0.0")]
524    ParentDir,
525
526    /// A normal component, e.g., `a` and `b` in `a/b`.
527    ///
528    /// This variant is the most common one, it represents references to files
529    /// or directories.
530    #[stable(feature = "rust1", since = "1.0.0")]
531    Normal(#[stable(feature = "rust1", since = "1.0.0")] &'a OsStr),
532}
533
534impl<'a> Component<'a> {
535    /// Extracts the underlying [`OsStr`] slice.
536    ///
537    /// # Examples
538    ///
539    /// ```
540    /// use std::path::Path;
541    ///
542    /// let path = Path::new("./tmp/foo/bar.txt");
543    /// let components: Vec<_> = path.components().map(|comp| comp.as_os_str()).collect();
544    /// assert_eq!(&components, &[".", "tmp", "foo", "bar.txt"]);
545    /// ```
546    #[must_use = "`self` will be dropped if the result is not used"]
547    #[stable(feature = "rust1", since = "1.0.0")]
548    pub fn as_os_str(self) -> &'a OsStr {
549        match self {
550            Component::Prefix(p) => p.as_os_str(),
551            Component::RootDir => OsStr::new(MAIN_SEP_STR),
552            Component::CurDir => OsStr::new("."),
553            Component::ParentDir => OsStr::new(".."),
554            Component::Normal(path) => path,
555        }
556    }
557}
558
559#[stable(feature = "rust1", since = "1.0.0")]
560impl AsRef<OsStr> for Component<'_> {
561    #[inline]
562    fn as_ref(&self) -> &OsStr {
563        self.as_os_str()
564    }
565}
566
567#[stable(feature = "path_component_asref", since = "1.25.0")]
568impl AsRef<Path> for Component<'_> {
569    #[inline]
570    fn as_ref(&self) -> &Path {
571        self.as_os_str().as_ref()
572    }
573}
574
575/// An iterator over the [`Component`]s of a [`Path`].
576///
577/// This `struct` is created by the [`components`] method on [`Path`].
578/// See its documentation for more.
579///
580/// # Examples
581///
582/// ```
583/// use std::path::Path;
584///
585/// let path = Path::new("/tmp/foo/bar.txt");
586///
587/// for component in path.components() {
588///     println!("{component:?}");
589/// }
590/// ```
591///
592/// [`components`]: Path::components
593#[derive(Clone)]
594#[must_use = "iterators are lazy and do nothing unless consumed"]
595#[stable(feature = "rust1", since = "1.0.0")]
596pub struct Components<'a> {
597    // The path left to parse components from
598    path: &'a [u8],
599
600    // The prefix as it was originally parsed, if any
601    prefix: Option<Prefix<'a>>,
602
603    // true if path *physically* has a root separator; for most Windows
604    // prefixes, it may have a "logical" root separator for the purposes of
605    // normalization, e.g., \\server\share == \\server\share\.
606    has_physical_root: bool,
607
608    // The iterator is double-ended, and these two states keep track of what has
609    // been produced from either end
610    front: State,
611    back: State,
612}
613
614/// An iterator over the [`Component`]s of a [`Path`], as [`OsStr`] slices.
615///
616/// This `struct` is created by the [`iter`] method on [`Path`].
617/// See its documentation for more.
618///
619/// [`iter`]: Path::iter
620#[derive(Clone)]
621#[must_use = "iterators are lazy and do nothing unless consumed"]
622#[stable(feature = "rust1", since = "1.0.0")]
623pub struct Iter<'a> {
624    inner: Components<'a>,
625}
626
627#[stable(feature = "path_components_debug", since = "1.13.0")]
628impl fmt::Debug for Components<'_> {
629    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
630        struct DebugHelper<'a>(&'a Path);
631
632        impl fmt::Debug for DebugHelper<'_> {
633            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
634                f.debug_list().entries(self.0.components()).finish()
635            }
636        }
637
638        f.debug_tuple("Components").field(&DebugHelper(self.as_path())).finish()
639    }
640}
641
642impl<'a> Components<'a> {
643    // how long is the prefix, if any?
644    #[inline]
645    fn prefix_len(&self) -> usize {
646        self.prefix.as_ref().map(Prefix::len).unwrap_or(0)
647    }
648
649    #[inline]
650    fn prefix_verbatim(&self) -> bool {
651        self.prefix.as_ref().map(Prefix::is_verbatim).unwrap_or(false)
652    }
653
654    /// how much of the prefix is left from the point of view of iteration?
655    #[inline]
656    fn prefix_remaining(&self) -> usize {
657        if self.front == State::Prefix { self.prefix_len() } else { 0 }
658    }
659
660    // Given the iteration so far, how much of the pre-State::Body path is left?
661    #[inline]
662    fn len_before_body(&self) -> usize {
663        let root = if self.front <= State::StartDir && self.has_physical_root { 1 } else { 0 };
664        let cur_dir = if self.front <= State::StartDir && self.include_cur_dir() { 1 } else { 0 };
665        self.prefix_remaining() + root + cur_dir
666    }
667
668    // is the iteration complete?
669    #[inline]
670    fn finished(&self) -> bool {
671        self.front == State::Done || self.back == State::Done || self.front > self.back
672    }
673
674    #[inline]
675    fn is_sep_byte(&self, b: u8) -> bool {
676        if self.prefix_verbatim() { is_verbatim_sep(b) } else { is_sep_byte(b) }
677    }
678
679    /// Extracts a slice corresponding to the portion of the path remaining for iteration.
680    ///
681    /// # Examples
682    ///
683    /// ```
684    /// use std::path::Path;
685    ///
686    /// let mut components = Path::new("/tmp/foo/bar.txt").components();
687    /// components.next();
688    /// components.next();
689    ///
690    /// assert_eq!(Path::new("foo/bar.txt"), components.as_path());
691    /// ```
692    #[must_use]
693    #[stable(feature = "rust1", since = "1.0.0")]
694    pub fn as_path(&self) -> &'a Path {
695        let mut comps = self.clone();
696        if comps.front == State::Body {
697            comps.trim_left();
698        }
699        if comps.back == State::Body {
700            comps.trim_right();
701        }
702        unsafe { Path::from_u8_slice(comps.path) }
703    }
704
705    /// Is the *original* path rooted?
706    fn has_root(&self) -> bool {
707        if self.has_physical_root {
708            return true;
709        }
710        if let Some(p) = self.prefix {
711            if p.has_implicit_root() {
712                return true;
713            }
714        }
715        false
716    }
717
718    /// Should the normalized path include a leading . ?
719    fn include_cur_dir(&self) -> bool {
720        if self.has_root() {
721            return false;
722        }
723        let mut iter = self.path[self.prefix_remaining()..].iter();
724        match (iter.next(), iter.next()) {
725            (Some(&b'.'), None) => true,
726            (Some(&b'.'), Some(&b)) => self.is_sep_byte(b),
727            _ => false,
728        }
729    }
730
731    // parse a given byte sequence following the OsStr encoding into the
732    // corresponding path component
733    unsafe fn parse_single_component<'b>(&self, comp: &'b [u8]) -> Option<Component<'b>> {
734        match comp {
735            b"." if self.prefix_verbatim() => Some(Component::CurDir),
736            b"." => None, // . components are normalized away, except at
737            // the beginning of a path, which is treated
738            // separately via `include_cur_dir`
739            b".." => Some(Component::ParentDir),
740            b"" => None,
741            _ => Some(Component::Normal(unsafe { OsStr::from_encoded_bytes_unchecked(comp) })),
742        }
743    }
744
745    // parse a component from the left, saying how many bytes to consume to
746    // remove the component
747    fn parse_next_component(&self) -> (usize, Option<Component<'a>>) {
748        debug_assert!(self.front == State::Body);
749        let (extra, comp) = match self.path.iter().position(|b| self.is_sep_byte(*b)) {
750            None => (0, self.path),
751            Some(i) => (1, &self.path[..i]),
752        };
753        // SAFETY: `comp` is a valid substring, since it is split on a separator.
754        (comp.len() + extra, unsafe { self.parse_single_component(comp) })
755    }
756
757    // parse a component from the right, saying how many bytes to consume to
758    // remove the component
759    fn parse_next_component_back(&self) -> (usize, Option<Component<'a>>) {
760        debug_assert!(self.back == State::Body);
761        let start = self.len_before_body();
762        let (extra, comp) = match self.path[start..].iter().rposition(|b| self.is_sep_byte(*b)) {
763            None => (0, &self.path[start..]),
764            Some(i) => (1, &self.path[start + i + 1..]),
765        };
766        // SAFETY: `comp` is a valid substring, since it is split on a separator.
767        (comp.len() + extra, unsafe { self.parse_single_component(comp) })
768    }
769
770    // trim away repeated separators (i.e., empty components) on the left
771    fn trim_left(&mut self) {
772        while !self.path.is_empty() {
773            let (size, comp) = self.parse_next_component();
774            if comp.is_some() {
775                return;
776            } else {
777                self.path = &self.path[size..];
778            }
779        }
780    }
781
782    // trim away repeated separators (i.e., empty components) on the right
783    fn trim_right(&mut self) {
784        while self.path.len() > self.len_before_body() {
785            let (size, comp) = self.parse_next_component_back();
786            if comp.is_some() {
787                return;
788            } else {
789                self.path = &self.path[..self.path.len() - size];
790            }
791        }
792    }
793}
794
795#[stable(feature = "rust1", since = "1.0.0")]
796impl AsRef<Path> for Components<'_> {
797    #[inline]
798    fn as_ref(&self) -> &Path {
799        self.as_path()
800    }
801}
802
803#[stable(feature = "rust1", since = "1.0.0")]
804impl AsRef<OsStr> for Components<'_> {
805    #[inline]
806    fn as_ref(&self) -> &OsStr {
807        self.as_path().as_os_str()
808    }
809}
810
811#[stable(feature = "path_iter_debug", since = "1.13.0")]
812impl fmt::Debug for Iter<'_> {
813    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
814        struct DebugHelper<'a>(&'a Path);
815
816        impl fmt::Debug for DebugHelper<'_> {
817            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
818                f.debug_list().entries(self.0.iter()).finish()
819            }
820        }
821
822        f.debug_tuple("Iter").field(&DebugHelper(self.as_path())).finish()
823    }
824}
825
826impl<'a> Iter<'a> {
827    /// Extracts a slice corresponding to the portion of the path remaining for iteration.
828    ///
829    /// # Examples
830    ///
831    /// ```
832    /// use std::path::Path;
833    ///
834    /// let mut iter = Path::new("/tmp/foo/bar.txt").iter();
835    /// iter.next();
836    /// iter.next();
837    ///
838    /// assert_eq!(Path::new("foo/bar.txt"), iter.as_path());
839    /// ```
840    #[stable(feature = "rust1", since = "1.0.0")]
841    #[must_use]
842    #[inline]
843    pub fn as_path(&self) -> &'a Path {
844        self.inner.as_path()
845    }
846}
847
848#[stable(feature = "rust1", since = "1.0.0")]
849impl AsRef<Path> for Iter<'_> {
850    #[inline]
851    fn as_ref(&self) -> &Path {
852        self.as_path()
853    }
854}
855
856#[stable(feature = "rust1", since = "1.0.0")]
857impl AsRef<OsStr> for Iter<'_> {
858    #[inline]
859    fn as_ref(&self) -> &OsStr {
860        self.as_path().as_os_str()
861    }
862}
863
864#[stable(feature = "rust1", since = "1.0.0")]
865impl<'a> Iterator for Iter<'a> {
866    type Item = &'a OsStr;
867
868    #[inline]
869    fn next(&mut self) -> Option<&'a OsStr> {
870        self.inner.next().map(Component::as_os_str)
871    }
872}
873
874#[stable(feature = "rust1", since = "1.0.0")]
875impl<'a> DoubleEndedIterator for Iter<'a> {
876    #[inline]
877    fn next_back(&mut self) -> Option<&'a OsStr> {
878        self.inner.next_back().map(Component::as_os_str)
879    }
880}
881
882#[stable(feature = "fused", since = "1.26.0")]
883impl FusedIterator for Iter<'_> {}
884
885#[stable(feature = "rust1", since = "1.0.0")]
886impl<'a> Iterator for Components<'a> {
887    type Item = Component<'a>;
888
889    fn next(&mut self) -> Option<Component<'a>> {
890        while !self.finished() {
891            match self.front {
892                State::Prefix if self.prefix_len() > 0 => {
893                    self.front = State::StartDir;
894                    debug_assert!(self.prefix_len() <= self.path.len());
895                    let raw = &self.path[..self.prefix_len()];
896                    self.path = &self.path[self.prefix_len()..];
897                    return Some(Component::Prefix(PrefixComponent {
898                        raw: unsafe { OsStr::from_encoded_bytes_unchecked(raw) },
899                        parsed: self.prefix.unwrap(),
900                    }));
901                }
902                State::Prefix => {
903                    self.front = State::StartDir;
904                }
905                State::StartDir => {
906                    self.front = State::Body;
907                    if self.has_physical_root {
908                        debug_assert!(!self.path.is_empty());
909                        self.path = &self.path[1..];
910                        return Some(Component::RootDir);
911                    } else if let Some(p) = self.prefix {
912                        if p.has_implicit_root() && !p.is_verbatim() {
913                            return Some(Component::RootDir);
914                        }
915                    } else if self.include_cur_dir() {
916                        debug_assert!(!self.path.is_empty());
917                        self.path = &self.path[1..];
918                        return Some(Component::CurDir);
919                    }
920                }
921                State::Body if !self.path.is_empty() => {
922                    let (size, comp) = self.parse_next_component();
923                    self.path = &self.path[size..];
924                    if comp.is_some() {
925                        return comp;
926                    }
927                }
928                State::Body => {
929                    self.front = State::Done;
930                }
931                State::Done => unreachable!(),
932            }
933        }
934        None
935    }
936}
937
938#[stable(feature = "rust1", since = "1.0.0")]
939impl<'a> DoubleEndedIterator for Components<'a> {
940    fn next_back(&mut self) -> Option<Component<'a>> {
941        while !self.finished() {
942            match self.back {
943                State::Body if self.path.len() > self.len_before_body() => {
944                    let (size, comp) = self.parse_next_component_back();
945                    self.path = &self.path[..self.path.len() - size];
946                    if comp.is_some() {
947                        return comp;
948                    }
949                }
950                State::Body => {
951                    self.back = State::StartDir;
952                }
953                State::StartDir => {
954                    self.back = State::Prefix;
955                    if self.has_physical_root {
956                        self.path = &self.path[..self.path.len() - 1];
957                        return Some(Component::RootDir);
958                    } else if let Some(p) = self.prefix {
959                        if p.has_implicit_root() && !p.is_verbatim() {
960                            return Some(Component::RootDir);
961                        }
962                    } else if self.include_cur_dir() {
963                        self.path = &self.path[..self.path.len() - 1];
964                        return Some(Component::CurDir);
965                    }
966                }
967                State::Prefix if self.prefix_len() > 0 => {
968                    self.back = State::Done;
969                    return Some(Component::Prefix(PrefixComponent {
970                        raw: unsafe { OsStr::from_encoded_bytes_unchecked(self.path) },
971                        parsed: self.prefix.unwrap(),
972                    }));
973                }
974                State::Prefix => {
975                    self.back = State::Done;
976                    return None;
977                }
978                State::Done => unreachable!(),
979            }
980        }
981        None
982    }
983}
984
985#[stable(feature = "fused", since = "1.26.0")]
986impl FusedIterator for Components<'_> {}
987
988#[stable(feature = "rust1", since = "1.0.0")]
989impl<'a> PartialEq for Components<'a> {
990    #[inline]
991    fn eq(&self, other: &Components<'a>) -> bool {
992        let Components { path: _, front: _, back: _, has_physical_root: _, prefix: _ } = self;
993
994        // Fast path for exact matches, e.g. for hashmap lookups.
995        // Don't explicitly compare the prefix or has_physical_root fields since they'll
996        // either be covered by the `path` buffer or are only relevant for `prefix_verbatim()`.
997        if self.path.len() == other.path.len()
998            && self.front == other.front
999            && self.back == State::Body
1000            && other.back == State::Body
1001            && self.prefix_verbatim() == other.prefix_verbatim()
1002        {
1003            // possible future improvement: this could bail out earlier if there were a
1004            // reverse memcmp/bcmp comparing back to front
1005            if self.path == other.path {
1006                return true;
1007            }
1008        }
1009
1010        // compare back to front since absolute paths often share long prefixes
1011        Iterator::eq(self.clone().rev(), other.clone().rev())
1012    }
1013}
1014
1015#[stable(feature = "rust1", since = "1.0.0")]
1016impl Eq for Components<'_> {}
1017
1018#[stable(feature = "rust1", since = "1.0.0")]
1019impl<'a> PartialOrd for Components<'a> {
1020    #[inline]
1021    fn partial_cmp(&self, other: &Components<'a>) -> Option<cmp::Ordering> {
1022        Some(compare_components(self.clone(), other.clone()))
1023    }
1024}
1025
1026#[stable(feature = "rust1", since = "1.0.0")]
1027impl Ord for Components<'_> {
1028    #[inline]
1029    fn cmp(&self, other: &Self) -> cmp::Ordering {
1030        compare_components(self.clone(), other.clone())
1031    }
1032}
1033
1034fn compare_components(mut left: Components<'_>, mut right: Components<'_>) -> cmp::Ordering {
1035    // Fast path for long shared prefixes
1036    //
1037    // - compare raw bytes to find first mismatch
1038    // - backtrack to find separator before mismatch to avoid ambiguous parsings of '.' or '..' characters
1039    // - if found update state to only do a component-wise comparison on the remainder,
1040    //   otherwise do it on the full path
1041    //
1042    // The fast path isn't taken for paths with a PrefixComponent to avoid backtracking into
1043    // the middle of one
1044    if left.prefix.is_none() && right.prefix.is_none() && left.front == right.front {
1045        // possible future improvement: a [u8]::first_mismatch simd implementation
1046        let first_difference = match left.path.iter().zip(right.path).position(|(&a, &b)| a != b) {
1047            None if left.path.len() == right.path.len() => return cmp::Ordering::Equal,
1048            None => left.path.len().min(right.path.len()),
1049            Some(diff) => diff,
1050        };
1051
1052        if let Some(previous_sep) =
1053            left.path[..first_difference].iter().rposition(|&b| left.is_sep_byte(b))
1054        {
1055            let mismatched_component_start = previous_sep + 1;
1056            left.path = &left.path[mismatched_component_start..];
1057            left.front = State::Body;
1058            right.path = &right.path[mismatched_component_start..];
1059            right.front = State::Body;
1060        }
1061    }
1062
1063    Iterator::cmp(left, right)
1064}
1065
1066/// An iterator over [`Path`] and its ancestors.
1067///
1068/// This `struct` is created by the [`ancestors`] method on [`Path`].
1069/// See its documentation for more.
1070///
1071/// # Examples
1072///
1073/// ```
1074/// use std::path::Path;
1075///
1076/// let path = Path::new("/foo/bar");
1077///
1078/// for ancestor in path.ancestors() {
1079///     println!("{}", ancestor.display());
1080/// }
1081/// ```
1082///
1083/// [`ancestors`]: Path::ancestors
1084#[derive(Copy, Clone, Debug)]
1085#[must_use = "iterators are lazy and do nothing unless consumed"]
1086#[stable(feature = "path_ancestors", since = "1.28.0")]
1087pub struct Ancestors<'a> {
1088    next: Option<&'a Path>,
1089}
1090
1091#[stable(feature = "path_ancestors", since = "1.28.0")]
1092impl<'a> Iterator for Ancestors<'a> {
1093    type Item = &'a Path;
1094
1095    #[inline]
1096    fn next(&mut self) -> Option<Self::Item> {
1097        let next = self.next;
1098        self.next = next.and_then(Path::parent);
1099        next
1100    }
1101}
1102
1103#[stable(feature = "path_ancestors", since = "1.28.0")]
1104impl FusedIterator for Ancestors<'_> {}
1105
1106////////////////////////////////////////////////////////////////////////////////
1107// Basic types and traits
1108////////////////////////////////////////////////////////////////////////////////
1109
1110/// An owned, mutable path (akin to [`String`]).
1111///
1112/// This type provides methods like [`push`] and [`set_extension`] that mutate
1113/// the path in place. It also implements [`Deref`] to [`Path`], meaning that
1114/// all methods on [`Path`] slices are available on `PathBuf` values as well.
1115///
1116/// [`push`]: PathBuf::push
1117/// [`set_extension`]: PathBuf::set_extension
1118///
1119/// More details about the overall approach can be found in
1120/// the [module documentation](self).
1121///
1122/// # Examples
1123///
1124/// You can use [`push`] to build up a `PathBuf` from
1125/// components:
1126///
1127/// ```
1128/// use std::path::PathBuf;
1129///
1130/// let mut path = PathBuf::new();
1131///
1132/// path.push(r"C:\");
1133/// path.push("windows");
1134/// path.push("system32");
1135///
1136/// path.set_extension("dll");
1137/// ```
1138///
1139/// However, [`push`] is best used for dynamic situations. This is a better way
1140/// to do this when you know all of the components ahead of time:
1141///
1142/// ```
1143/// use std::path::PathBuf;
1144///
1145/// let path: PathBuf = [r"C:\", "windows", "system32.dll"].iter().collect();
1146/// ```
1147///
1148/// We can still do better than this! Since these are all strings, we can use
1149/// `From::from`:
1150///
1151/// ```
1152/// use std::path::PathBuf;
1153///
1154/// let path = PathBuf::from(r"C:\windows\system32.dll");
1155/// ```
1156///
1157/// Which method works best depends on what kind of situation you're in.
1158///
1159/// Note that `PathBuf` does not always sanitize arguments, for example
1160/// [`push`] allows paths built from strings which include separators:
1161///
1162/// ```
1163/// use std::path::PathBuf;
1164///
1165/// let mut path = PathBuf::new();
1166///
1167/// path.push(r"C:\");
1168/// path.push("windows");
1169/// path.push(r"..\otherdir");
1170/// path.push("system32");
1171/// ```
1172///
1173/// The behavior of `PathBuf` may be changed to a panic on such inputs
1174/// in the future. [`Extend::extend`] should be used to add multi-part paths.
1175#[cfg_attr(not(test), rustc_diagnostic_item = "PathBuf")]
1176#[stable(feature = "rust1", since = "1.0.0")]
1177pub struct PathBuf {
1178    inner: OsString,
1179}
1180
1181impl PathBuf {
1182    /// Allocates an empty `PathBuf`.
1183    ///
1184    /// # Examples
1185    ///
1186    /// ```
1187    /// use std::path::PathBuf;
1188    ///
1189    /// let path = PathBuf::new();
1190    /// ```
1191    #[stable(feature = "rust1", since = "1.0.0")]
1192    #[must_use]
1193    #[inline]
1194    #[rustc_const_unstable(feature = "const_pathbuf_osstring_new", issue = "141520")]
1195    pub const fn new() -> PathBuf {
1196        PathBuf { inner: OsString::new() }
1197    }
1198
1199    /// Creates a new `PathBuf` with a given capacity used to create the
1200    /// internal [`OsString`]. See [`with_capacity`] defined on [`OsString`].
1201    ///
1202    /// # Examples
1203    ///
1204    /// ```
1205    /// use std::path::PathBuf;
1206    ///
1207    /// let mut path = PathBuf::with_capacity(10);
1208    /// let capacity = path.capacity();
1209    ///
1210    /// // This push is done without reallocating
1211    /// path.push(r"C:\");
1212    ///
1213    /// assert_eq!(capacity, path.capacity());
1214    /// ```
1215    ///
1216    /// [`with_capacity`]: OsString::with_capacity
1217    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1218    #[must_use]
1219    #[inline]
1220    pub fn with_capacity(capacity: usize) -> PathBuf {
1221        PathBuf { inner: OsString::with_capacity(capacity) }
1222    }
1223
1224    /// Coerces to a [`Path`] slice.
1225    ///
1226    /// # Examples
1227    ///
1228    /// ```
1229    /// use std::path::{Path, PathBuf};
1230    ///
1231    /// let p = PathBuf::from("/test");
1232    /// assert_eq!(Path::new("/test"), p.as_path());
1233    /// ```
1234    #[cfg_attr(not(test), rustc_diagnostic_item = "pathbuf_as_path")]
1235    #[stable(feature = "rust1", since = "1.0.0")]
1236    #[must_use]
1237    #[inline]
1238    pub fn as_path(&self) -> &Path {
1239        self
1240    }
1241
1242    /// Consumes and leaks the `PathBuf`, returning a mutable reference to the contents,
1243    /// `&'a mut Path`.
1244    ///
1245    /// The caller has free choice over the returned lifetime, including 'static.
1246    /// Indeed, this function is ideally used for data that lives for the remainder of
1247    /// the program’s life, as dropping the returned reference will cause a memory leak.
1248    ///
1249    /// It does not reallocate or shrink the `PathBuf`, so the leaked allocation may include
1250    /// unused capacity that is not part of the returned slice. If you want to discard excess
1251    /// capacity, call [`into_boxed_path`], and then [`Box::leak`] instead.
1252    /// However, keep in mind that trimming the capacity may result in a reallocation and copy.
1253    ///
1254    /// [`into_boxed_path`]: Self::into_boxed_path
1255    #[unstable(feature = "os_string_pathbuf_leak", issue = "125965")]
1256    #[inline]
1257    pub fn leak<'a>(self) -> &'a mut Path {
1258        Path::from_inner_mut(self.inner.leak())
1259    }
1260
1261    /// Extends `self` with `path`.
1262    ///
1263    /// If `path` is absolute, it replaces the current path.
1264    ///
1265    /// On Windows:
1266    ///
1267    /// * if `path` has a root but no prefix (e.g., `\windows`), it
1268    ///   replaces everything except for the prefix (if any) of `self`.
1269    /// * if `path` has a prefix but no root, it replaces `self`.
1270    /// * if `self` has a verbatim prefix (e.g. `\\?\C:\windows`)
1271    ///   and `path` is not empty, the new path is normalized: all references
1272    ///   to `.` and `..` are removed.
1273    ///
1274    /// Consider using [`Path::join`] if you need a new `PathBuf` instead of
1275    /// using this function on a cloned `PathBuf`.
1276    ///
1277    /// # Examples
1278    ///
1279    /// Pushing a relative path extends the existing path:
1280    ///
1281    /// ```
1282    /// use std::path::PathBuf;
1283    ///
1284    /// let mut path = PathBuf::from("/tmp");
1285    /// path.push("file.bk");
1286    /// assert_eq!(path, PathBuf::from("/tmp/file.bk"));
1287    /// ```
1288    ///
1289    /// Pushing an absolute path replaces the existing path:
1290    ///
1291    /// ```
1292    /// use std::path::PathBuf;
1293    ///
1294    /// let mut path = PathBuf::from("/tmp");
1295    /// path.push("/etc");
1296    /// assert_eq!(path, PathBuf::from("/etc"));
1297    /// ```
1298    #[stable(feature = "rust1", since = "1.0.0")]
1299    #[rustc_confusables("append", "put")]
1300    pub fn push<P: AsRef<Path>>(&mut self, path: P) {
1301        self._push(path.as_ref())
1302    }
1303
1304    fn _push(&mut self, path: &Path) {
1305        // in general, a separator is needed if the rightmost byte is not a separator
1306        let buf = self.inner.as_encoded_bytes();
1307        let mut need_sep = buf.last().map(|c| !is_sep_byte(*c)).unwrap_or(false);
1308
1309        // in the special case of `C:` on Windows, do *not* add a separator
1310        let comps = self.components();
1311
1312        if comps.prefix_len() > 0
1313            && comps.prefix_len() == comps.path.len()
1314            && comps.prefix.unwrap().is_drive()
1315        {
1316            need_sep = false
1317        }
1318
1319        // absolute `path` replaces `self`
1320        if path.is_absolute() || path.prefix().is_some() {
1321            self.inner.truncate(0);
1322
1323        // verbatim paths need . and .. removed
1324        } else if comps.prefix_verbatim() && !path.inner.is_empty() {
1325            let mut buf: Vec<_> = comps.collect();
1326            for c in path.components() {
1327                match c {
1328                    Component::RootDir => {
1329                        buf.truncate(1);
1330                        buf.push(c);
1331                    }
1332                    Component::CurDir => (),
1333                    Component::ParentDir => {
1334                        if let Some(Component::Normal(_)) = buf.last() {
1335                            buf.pop();
1336                        }
1337                    }
1338                    _ => buf.push(c),
1339                }
1340            }
1341
1342            let mut res = OsString::new();
1343            let mut need_sep = false;
1344
1345            for c in buf {
1346                if need_sep && c != Component::RootDir {
1347                    res.push(MAIN_SEP_STR);
1348                }
1349                res.push(c.as_os_str());
1350
1351                need_sep = match c {
1352                    Component::RootDir => false,
1353                    Component::Prefix(prefix) => {
1354                        !prefix.parsed.is_drive() && prefix.parsed.len() > 0
1355                    }
1356                    _ => true,
1357                }
1358            }
1359
1360            self.inner = res;
1361            return;
1362
1363        // `path` has a root but no prefix, e.g., `\windows` (Windows only)
1364        } else if path.has_root() {
1365            let prefix_len = self.components().prefix_remaining();
1366            self.inner.truncate(prefix_len);
1367
1368        // `path` is a pure relative path
1369        } else if need_sep {
1370            self.inner.push(MAIN_SEP_STR);
1371        }
1372
1373        self.inner.push(path);
1374    }
1375
1376    /// Truncates `self` to [`self.parent`].
1377    ///
1378    /// Returns `false` and does nothing if [`self.parent`] is [`None`].
1379    /// Otherwise, returns `true`.
1380    ///
1381    /// [`self.parent`]: Path::parent
1382    ///
1383    /// # Examples
1384    ///
1385    /// ```
1386    /// use std::path::{Path, PathBuf};
1387    ///
1388    /// let mut p = PathBuf::from("/spirited/away.rs");
1389    ///
1390    /// p.pop();
1391    /// assert_eq!(Path::new("/spirited"), p);
1392    /// p.pop();
1393    /// assert_eq!(Path::new("/"), p);
1394    /// ```
1395    #[stable(feature = "rust1", since = "1.0.0")]
1396    pub fn pop(&mut self) -> bool {
1397        match self.parent().map(|p| p.as_u8_slice().len()) {
1398            Some(len) => {
1399                self.inner.truncate(len);
1400                true
1401            }
1402            None => false,
1403        }
1404    }
1405
1406    /// Updates [`self.file_name`] to `file_name`.
1407    ///
1408    /// If [`self.file_name`] was [`None`], this is equivalent to pushing
1409    /// `file_name`.
1410    ///
1411    /// Otherwise it is equivalent to calling [`pop`] and then pushing
1412    /// `file_name`. The new path will be a sibling of the original path.
1413    /// (That is, it will have the same parent.)
1414    ///
1415    /// The argument is not sanitized, so can include separators. This
1416    /// behavior may be changed to a panic in the future.
1417    ///
1418    /// [`self.file_name`]: Path::file_name
1419    /// [`pop`]: PathBuf::pop
1420    ///
1421    /// # Examples
1422    ///
1423    /// ```
1424    /// use std::path::PathBuf;
1425    ///
1426    /// let mut buf = PathBuf::from("/");
1427    /// assert!(buf.file_name() == None);
1428    ///
1429    /// buf.set_file_name("foo.txt");
1430    /// assert!(buf == PathBuf::from("/foo.txt"));
1431    /// assert!(buf.file_name().is_some());
1432    ///
1433    /// buf.set_file_name("bar.txt");
1434    /// assert!(buf == PathBuf::from("/bar.txt"));
1435    ///
1436    /// buf.set_file_name("baz");
1437    /// assert!(buf == PathBuf::from("/baz"));
1438    ///
1439    /// buf.set_file_name("../b/c.txt");
1440    /// assert!(buf == PathBuf::from("/../b/c.txt"));
1441    ///
1442    /// buf.set_file_name("baz");
1443    /// assert!(buf == PathBuf::from("/../b/baz"));
1444    /// ```
1445    #[stable(feature = "rust1", since = "1.0.0")]
1446    pub fn set_file_name<S: AsRef<OsStr>>(&mut self, file_name: S) {
1447        self._set_file_name(file_name.as_ref())
1448    }
1449
1450    fn _set_file_name(&mut self, file_name: &OsStr) {
1451        if self.file_name().is_some() {
1452            let popped = self.pop();
1453            debug_assert!(popped);
1454        }
1455        self.push(file_name);
1456    }
1457
1458    /// Updates [`self.extension`] to `Some(extension)` or to `None` if
1459    /// `extension` is empty.
1460    ///
1461    /// Returns `false` and does nothing if [`self.file_name`] is [`None`],
1462    /// returns `true` and updates the extension otherwise.
1463    ///
1464    /// If [`self.extension`] is [`None`], the extension is added; otherwise
1465    /// it is replaced.
1466    ///
1467    /// If `extension` is the empty string, [`self.extension`] will be [`None`]
1468    /// afterwards, not `Some("")`.
1469    ///
1470    /// # Panics
1471    ///
1472    /// Panics if the passed extension contains a path separator (see
1473    /// [`is_separator`]).
1474    ///
1475    /// # Caveats
1476    ///
1477    /// The new `extension` may contain dots and will be used in its entirety,
1478    /// but only the part after the final dot will be reflected in
1479    /// [`self.extension`].
1480    ///
1481    /// If the file stem contains internal dots and `extension` is empty, part
1482    /// of the old file stem will be considered the new [`self.extension`].
1483    ///
1484    /// See the examples below.
1485    ///
1486    /// [`self.file_name`]: Path::file_name
1487    /// [`self.extension`]: Path::extension
1488    ///
1489    /// # Examples
1490    ///
1491    /// ```
1492    /// use std::path::{Path, PathBuf};
1493    ///
1494    /// let mut p = PathBuf::from("/feel/the");
1495    ///
1496    /// p.set_extension("force");
1497    /// assert_eq!(Path::new("/feel/the.force"), p.as_path());
1498    ///
1499    /// p.set_extension("dark.side");
1500    /// assert_eq!(Path::new("/feel/the.dark.side"), p.as_path());
1501    ///
1502    /// p.set_extension("cookie");
1503    /// assert_eq!(Path::new("/feel/the.dark.cookie"), p.as_path());
1504    ///
1505    /// p.set_extension("");
1506    /// assert_eq!(Path::new("/feel/the.dark"), p.as_path());
1507    ///
1508    /// p.set_extension("");
1509    /// assert_eq!(Path::new("/feel/the"), p.as_path());
1510    ///
1511    /// p.set_extension("");
1512    /// assert_eq!(Path::new("/feel/the"), p.as_path());
1513    /// ```
1514    #[stable(feature = "rust1", since = "1.0.0")]
1515    pub fn set_extension<S: AsRef<OsStr>>(&mut self, extension: S) -> bool {
1516        self._set_extension(extension.as_ref())
1517    }
1518
1519    fn _set_extension(&mut self, extension: &OsStr) -> bool {
1520        validate_extension(extension);
1521
1522        let file_stem = match self.file_stem() {
1523            None => return false,
1524            Some(f) => f.as_encoded_bytes(),
1525        };
1526
1527        // truncate until right after the file stem
1528        let end_file_stem = file_stem[file_stem.len()..].as_ptr().addr();
1529        let start = self.inner.as_encoded_bytes().as_ptr().addr();
1530        self.inner.truncate(end_file_stem.wrapping_sub(start));
1531
1532        // add the new extension, if any
1533        let new = extension.as_encoded_bytes();
1534        if !new.is_empty() {
1535            self.inner.reserve_exact(new.len() + 1);
1536            self.inner.push(".");
1537            // SAFETY: Since a UTF-8 string was just pushed, it is not possible
1538            // for the buffer to end with a surrogate half.
1539            unsafe { self.inner.extend_from_slice_unchecked(new) };
1540        }
1541
1542        true
1543    }
1544
1545    /// Append [`self.extension`] with `extension`.
1546    ///
1547    /// Returns `false` and does nothing if [`self.file_name`] is [`None`],
1548    /// returns `true` and updates the extension otherwise.
1549    ///
1550    /// # Panics
1551    ///
1552    /// Panics if the passed extension contains a path separator (see
1553    /// [`is_separator`]).
1554    ///
1555    /// # Caveats
1556    ///
1557    /// The appended `extension` may contain dots and will be used in its entirety,
1558    /// but only the part after the final dot will be reflected in
1559    /// [`self.extension`].
1560    ///
1561    /// See the examples below.
1562    ///
1563    /// [`self.file_name`]: Path::file_name
1564    /// [`self.extension`]: Path::extension
1565    ///
1566    /// # Examples
1567    ///
1568    /// ```
1569    /// #![feature(path_add_extension)]
1570    ///
1571    /// use std::path::{Path, PathBuf};
1572    ///
1573    /// let mut p = PathBuf::from("/feel/the");
1574    ///
1575    /// p.add_extension("formatted");
1576    /// assert_eq!(Path::new("/feel/the.formatted"), p.as_path());
1577    ///
1578    /// p.add_extension("dark.side");
1579    /// assert_eq!(Path::new("/feel/the.formatted.dark.side"), p.as_path());
1580    ///
1581    /// p.set_extension("cookie");
1582    /// assert_eq!(Path::new("/feel/the.formatted.dark.cookie"), p.as_path());
1583    ///
1584    /// p.set_extension("");
1585    /// assert_eq!(Path::new("/feel/the.formatted.dark"), p.as_path());
1586    ///
1587    /// p.add_extension("");
1588    /// assert_eq!(Path::new("/feel/the.formatted.dark"), p.as_path());
1589    /// ```
1590    #[unstable(feature = "path_add_extension", issue = "127292")]
1591    pub fn add_extension<S: AsRef<OsStr>>(&mut self, extension: S) -> bool {
1592        self._add_extension(extension.as_ref())
1593    }
1594
1595    fn _add_extension(&mut self, extension: &OsStr) -> bool {
1596        validate_extension(extension);
1597
1598        let file_name = match self.file_name() {
1599            None => return false,
1600            Some(f) => f.as_encoded_bytes(),
1601        };
1602
1603        let new = extension.as_encoded_bytes();
1604        if !new.is_empty() {
1605            // truncate until right after the file name
1606            // this is necessary for trimming the trailing slash
1607            let end_file_name = file_name[file_name.len()..].as_ptr().addr();
1608            let start = self.inner.as_encoded_bytes().as_ptr().addr();
1609            self.inner.truncate(end_file_name.wrapping_sub(start));
1610
1611            // append the new extension
1612            self.inner.reserve_exact(new.len() + 1);
1613            self.inner.push(".");
1614            // SAFETY: Since a UTF-8 string was just pushed, it is not possible
1615            // for the buffer to end with a surrogate half.
1616            unsafe { self.inner.extend_from_slice_unchecked(new) };
1617        }
1618
1619        true
1620    }
1621
1622    /// Yields a mutable reference to the underlying [`OsString`] instance.
1623    ///
1624    /// # Examples
1625    ///
1626    /// ```
1627    /// use std::path::{Path, PathBuf};
1628    ///
1629    /// let mut path = PathBuf::from("/foo");
1630    ///
1631    /// path.push("bar");
1632    /// assert_eq!(path, Path::new("/foo/bar"));
1633    ///
1634    /// // OsString's `push` does not add a separator.
1635    /// path.as_mut_os_string().push("baz");
1636    /// assert_eq!(path, Path::new("/foo/barbaz"));
1637    /// ```
1638    #[stable(feature = "path_as_mut_os_str", since = "1.70.0")]
1639    #[must_use]
1640    #[inline]
1641    pub fn as_mut_os_string(&mut self) -> &mut OsString {
1642        &mut self.inner
1643    }
1644
1645    /// Consumes the `PathBuf`, yielding its internal [`OsString`] storage.
1646    ///
1647    /// # Examples
1648    ///
1649    /// ```
1650    /// use std::path::PathBuf;
1651    ///
1652    /// let p = PathBuf::from("/the/head");
1653    /// let os_str = p.into_os_string();
1654    /// ```
1655    #[stable(feature = "rust1", since = "1.0.0")]
1656    #[must_use = "`self` will be dropped if the result is not used"]
1657    #[inline]
1658    pub fn into_os_string(self) -> OsString {
1659        self.inner
1660    }
1661
1662    /// Converts this `PathBuf` into a [boxed](Box) [`Path`].
1663    #[stable(feature = "into_boxed_path", since = "1.20.0")]
1664    #[must_use = "`self` will be dropped if the result is not used"]
1665    #[inline]
1666    pub fn into_boxed_path(self) -> Box<Path> {
1667        let rw = Box::into_raw(self.inner.into_boxed_os_str()) as *mut Path;
1668        unsafe { Box::from_raw(rw) }
1669    }
1670
1671    /// Invokes [`capacity`] on the underlying instance of [`OsString`].
1672    ///
1673    /// [`capacity`]: OsString::capacity
1674    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1675    #[must_use]
1676    #[inline]
1677    pub fn capacity(&self) -> usize {
1678        self.inner.capacity()
1679    }
1680
1681    /// Invokes [`clear`] on the underlying instance of [`OsString`].
1682    ///
1683    /// [`clear`]: OsString::clear
1684    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1685    #[inline]
1686    pub fn clear(&mut self) {
1687        self.inner.clear()
1688    }
1689
1690    /// Invokes [`reserve`] on the underlying instance of [`OsString`].
1691    ///
1692    /// [`reserve`]: OsString::reserve
1693    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1694    #[inline]
1695    pub fn reserve(&mut self, additional: usize) {
1696        self.inner.reserve(additional)
1697    }
1698
1699    /// Invokes [`try_reserve`] on the underlying instance of [`OsString`].
1700    ///
1701    /// [`try_reserve`]: OsString::try_reserve
1702    #[stable(feature = "try_reserve_2", since = "1.63.0")]
1703    #[inline]
1704    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1705        self.inner.try_reserve(additional)
1706    }
1707
1708    /// Invokes [`reserve_exact`] on the underlying instance of [`OsString`].
1709    ///
1710    /// [`reserve_exact`]: OsString::reserve_exact
1711    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1712    #[inline]
1713    pub fn reserve_exact(&mut self, additional: usize) {
1714        self.inner.reserve_exact(additional)
1715    }
1716
1717    /// Invokes [`try_reserve_exact`] on the underlying instance of [`OsString`].
1718    ///
1719    /// [`try_reserve_exact`]: OsString::try_reserve_exact
1720    #[stable(feature = "try_reserve_2", since = "1.63.0")]
1721    #[inline]
1722    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1723        self.inner.try_reserve_exact(additional)
1724    }
1725
1726    /// Invokes [`shrink_to_fit`] on the underlying instance of [`OsString`].
1727    ///
1728    /// [`shrink_to_fit`]: OsString::shrink_to_fit
1729    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1730    #[inline]
1731    pub fn shrink_to_fit(&mut self) {
1732        self.inner.shrink_to_fit()
1733    }
1734
1735    /// Invokes [`shrink_to`] on the underlying instance of [`OsString`].
1736    ///
1737    /// [`shrink_to`]: OsString::shrink_to
1738    #[stable(feature = "shrink_to", since = "1.56.0")]
1739    #[inline]
1740    pub fn shrink_to(&mut self, min_capacity: usize) {
1741        self.inner.shrink_to(min_capacity)
1742    }
1743}
1744
1745#[stable(feature = "rust1", since = "1.0.0")]
1746impl Clone for PathBuf {
1747    #[inline]
1748    fn clone(&self) -> Self {
1749        PathBuf { inner: self.inner.clone() }
1750    }
1751
1752    /// Clones the contents of `source` into `self`.
1753    ///
1754    /// This method is preferred over simply assigning `source.clone()` to `self`,
1755    /// as it avoids reallocation if possible.
1756    #[inline]
1757    fn clone_from(&mut self, source: &Self) {
1758        self.inner.clone_from(&source.inner)
1759    }
1760}
1761
1762#[stable(feature = "box_from_path", since = "1.17.0")]
1763impl From<&Path> for Box<Path> {
1764    /// Creates a boxed [`Path`] from a reference.
1765    ///
1766    /// This will allocate and clone `path` to it.
1767    fn from(path: &Path) -> Box<Path> {
1768        let boxed: Box<OsStr> = path.inner.into();
1769        let rw = Box::into_raw(boxed) as *mut Path;
1770        unsafe { Box::from_raw(rw) }
1771    }
1772}
1773
1774#[stable(feature = "box_from_mut_slice", since = "1.84.0")]
1775impl From<&mut Path> for Box<Path> {
1776    /// Creates a boxed [`Path`] from a reference.
1777    ///
1778    /// This will allocate and clone `path` to it.
1779    fn from(path: &mut Path) -> Box<Path> {
1780        Self::from(&*path)
1781    }
1782}
1783
1784#[stable(feature = "box_from_cow", since = "1.45.0")]
1785impl From<Cow<'_, Path>> for Box<Path> {
1786    /// Creates a boxed [`Path`] from a clone-on-write pointer.
1787    ///
1788    /// Converting from a `Cow::Owned` does not clone or allocate.
1789    #[inline]
1790    fn from(cow: Cow<'_, Path>) -> Box<Path> {
1791        match cow {
1792            Cow::Borrowed(path) => Box::from(path),
1793            Cow::Owned(path) => Box::from(path),
1794        }
1795    }
1796}
1797
1798#[stable(feature = "path_buf_from_box", since = "1.18.0")]
1799impl From<Box<Path>> for PathBuf {
1800    /// Converts a <code>[Box]&lt;[Path]&gt;</code> into a [`PathBuf`].
1801    ///
1802    /// This conversion does not allocate or copy memory.
1803    #[inline]
1804    fn from(boxed: Box<Path>) -> PathBuf {
1805        boxed.into_path_buf()
1806    }
1807}
1808
1809#[stable(feature = "box_from_path_buf", since = "1.20.0")]
1810impl From<PathBuf> for Box<Path> {
1811    /// Converts a [`PathBuf`] into a <code>[Box]&lt;[Path]&gt;</code>.
1812    ///
1813    /// This conversion currently should not allocate memory,
1814    /// but this behavior is not guaranteed on all platforms or in all future versions.
1815    #[inline]
1816    fn from(p: PathBuf) -> Box<Path> {
1817        p.into_boxed_path()
1818    }
1819}
1820
1821#[stable(feature = "more_box_slice_clone", since = "1.29.0")]
1822impl Clone for Box<Path> {
1823    #[inline]
1824    fn clone(&self) -> Self {
1825        self.to_path_buf().into_boxed_path()
1826    }
1827}
1828
1829#[stable(feature = "rust1", since = "1.0.0")]
1830impl<T: ?Sized + AsRef<OsStr>> From<&T> for PathBuf {
1831    /// Converts a borrowed [`OsStr`] to a [`PathBuf`].
1832    ///
1833    /// Allocates a [`PathBuf`] and copies the data into it.
1834    #[inline]
1835    fn from(s: &T) -> PathBuf {
1836        PathBuf::from(s.as_ref().to_os_string())
1837    }
1838}
1839
1840#[stable(feature = "rust1", since = "1.0.0")]
1841impl From<OsString> for PathBuf {
1842    /// Converts an [`OsString`] into a [`PathBuf`].
1843    ///
1844    /// This conversion does not allocate or copy memory.
1845    #[inline]
1846    fn from(s: OsString) -> PathBuf {
1847        PathBuf { inner: s }
1848    }
1849}
1850
1851#[stable(feature = "from_path_buf_for_os_string", since = "1.14.0")]
1852impl From<PathBuf> for OsString {
1853    /// Converts a [`PathBuf`] into an [`OsString`]
1854    ///
1855    /// This conversion does not allocate or copy memory.
1856    #[inline]
1857    fn from(path_buf: PathBuf) -> OsString {
1858        path_buf.inner
1859    }
1860}
1861
1862#[stable(feature = "rust1", since = "1.0.0")]
1863impl From<String> for PathBuf {
1864    /// Converts a [`String`] into a [`PathBuf`]
1865    ///
1866    /// This conversion does not allocate or copy memory.
1867    #[inline]
1868    fn from(s: String) -> PathBuf {
1869        PathBuf::from(OsString::from(s))
1870    }
1871}
1872
1873#[stable(feature = "path_from_str", since = "1.32.0")]
1874impl FromStr for PathBuf {
1875    type Err = core::convert::Infallible;
1876
1877    #[inline]
1878    fn from_str(s: &str) -> Result<Self, Self::Err> {
1879        Ok(PathBuf::from(s))
1880    }
1881}
1882
1883#[stable(feature = "rust1", since = "1.0.0")]
1884impl<P: AsRef<Path>> FromIterator<P> for PathBuf {
1885    fn from_iter<I: IntoIterator<Item = P>>(iter: I) -> PathBuf {
1886        let mut buf = PathBuf::new();
1887        buf.extend(iter);
1888        buf
1889    }
1890}
1891
1892#[stable(feature = "rust1", since = "1.0.0")]
1893impl<P: AsRef<Path>> Extend<P> for PathBuf {
1894    fn extend<I: IntoIterator<Item = P>>(&mut self, iter: I) {
1895        iter.into_iter().for_each(move |p| self.push(p.as_ref()));
1896    }
1897
1898    #[inline]
1899    fn extend_one(&mut self, p: P) {
1900        self.push(p.as_ref());
1901    }
1902}
1903
1904#[stable(feature = "rust1", since = "1.0.0")]
1905impl fmt::Debug for PathBuf {
1906    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1907        fmt::Debug::fmt(&**self, formatter)
1908    }
1909}
1910
1911#[stable(feature = "rust1", since = "1.0.0")]
1912impl ops::Deref for PathBuf {
1913    type Target = Path;
1914    #[inline]
1915    fn deref(&self) -> &Path {
1916        Path::new(&self.inner)
1917    }
1918}
1919
1920#[stable(feature = "path_buf_deref_mut", since = "1.68.0")]
1921impl ops::DerefMut for PathBuf {
1922    #[inline]
1923    fn deref_mut(&mut self) -> &mut Path {
1924        Path::from_inner_mut(&mut self.inner)
1925    }
1926}
1927
1928#[stable(feature = "rust1", since = "1.0.0")]
1929impl Borrow<Path> for PathBuf {
1930    #[inline]
1931    fn borrow(&self) -> &Path {
1932        self.deref()
1933    }
1934}
1935
1936#[stable(feature = "default_for_pathbuf", since = "1.17.0")]
1937impl Default for PathBuf {
1938    #[inline]
1939    fn default() -> Self {
1940        PathBuf::new()
1941    }
1942}
1943
1944#[stable(feature = "cow_from_path", since = "1.6.0")]
1945impl<'a> From<&'a Path> for Cow<'a, Path> {
1946    /// Creates a clone-on-write pointer from a reference to
1947    /// [`Path`].
1948    ///
1949    /// This conversion does not clone or allocate.
1950    #[inline]
1951    fn from(s: &'a Path) -> Cow<'a, Path> {
1952        Cow::Borrowed(s)
1953    }
1954}
1955
1956#[stable(feature = "cow_from_path", since = "1.6.0")]
1957impl<'a> From<PathBuf> for Cow<'a, Path> {
1958    /// Creates a clone-on-write pointer from an owned
1959    /// instance of [`PathBuf`].
1960    ///
1961    /// This conversion does not clone or allocate.
1962    #[inline]
1963    fn from(s: PathBuf) -> Cow<'a, Path> {
1964        Cow::Owned(s)
1965    }
1966}
1967
1968#[stable(feature = "cow_from_pathbuf_ref", since = "1.28.0")]
1969impl<'a> From<&'a PathBuf> for Cow<'a, Path> {
1970    /// Creates a clone-on-write pointer from a reference to
1971    /// [`PathBuf`].
1972    ///
1973    /// This conversion does not clone or allocate.
1974    #[inline]
1975    fn from(p: &'a PathBuf) -> Cow<'a, Path> {
1976        Cow::Borrowed(p.as_path())
1977    }
1978}
1979
1980#[stable(feature = "pathbuf_from_cow_path", since = "1.28.0")]
1981impl<'a> From<Cow<'a, Path>> for PathBuf {
1982    /// Converts a clone-on-write pointer to an owned path.
1983    ///
1984    /// Converting from a `Cow::Owned` does not clone or allocate.
1985    #[inline]
1986    fn from(p: Cow<'a, Path>) -> Self {
1987        p.into_owned()
1988    }
1989}
1990
1991#[stable(feature = "shared_from_slice2", since = "1.24.0")]
1992impl From<PathBuf> for Arc<Path> {
1993    /// Converts a [`PathBuf`] into an <code>[Arc]<[Path]></code> by moving the [`PathBuf`] data
1994    /// into a new [`Arc`] buffer.
1995    #[inline]
1996    fn from(s: PathBuf) -> Arc<Path> {
1997        let arc: Arc<OsStr> = Arc::from(s.into_os_string());
1998        unsafe { Arc::from_raw(Arc::into_raw(arc) as *const Path) }
1999    }
2000}
2001
2002#[stable(feature = "shared_from_slice2", since = "1.24.0")]
2003impl From<&Path> for Arc<Path> {
2004    /// Converts a [`Path`] into an [`Arc`] by copying the [`Path`] data into a new [`Arc`] buffer.
2005    #[inline]
2006    fn from(s: &Path) -> Arc<Path> {
2007        let arc: Arc<OsStr> = Arc::from(s.as_os_str());
2008        unsafe { Arc::from_raw(Arc::into_raw(arc) as *const Path) }
2009    }
2010}
2011
2012#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
2013impl From<&mut Path> for Arc<Path> {
2014    /// Converts a [`Path`] into an [`Arc`] by copying the [`Path`] data into a new [`Arc`] buffer.
2015    #[inline]
2016    fn from(s: &mut Path) -> Arc<Path> {
2017        Arc::from(&*s)
2018    }
2019}
2020
2021#[stable(feature = "shared_from_slice2", since = "1.24.0")]
2022impl From<PathBuf> for Rc<Path> {
2023    /// Converts a [`PathBuf`] into an <code>[Rc]<[Path]></code> by moving the [`PathBuf`] data into
2024    /// a new [`Rc`] buffer.
2025    #[inline]
2026    fn from(s: PathBuf) -> Rc<Path> {
2027        let rc: Rc<OsStr> = Rc::from(s.into_os_string());
2028        unsafe { Rc::from_raw(Rc::into_raw(rc) as *const Path) }
2029    }
2030}
2031
2032#[stable(feature = "shared_from_slice2", since = "1.24.0")]
2033impl From<&Path> for Rc<Path> {
2034    /// Converts a [`Path`] into an [`Rc`] by copying the [`Path`] data into a new [`Rc`] buffer.
2035    #[inline]
2036    fn from(s: &Path) -> Rc<Path> {
2037        let rc: Rc<OsStr> = Rc::from(s.as_os_str());
2038        unsafe { Rc::from_raw(Rc::into_raw(rc) as *const Path) }
2039    }
2040}
2041
2042#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
2043impl From<&mut Path> for Rc<Path> {
2044    /// Converts a [`Path`] into an [`Rc`] by copying the [`Path`] data into a new [`Rc`] buffer.
2045    #[inline]
2046    fn from(s: &mut Path) -> Rc<Path> {
2047        Rc::from(&*s)
2048    }
2049}
2050
2051#[stable(feature = "rust1", since = "1.0.0")]
2052impl ToOwned for Path {
2053    type Owned = PathBuf;
2054    #[inline]
2055    fn to_owned(&self) -> PathBuf {
2056        self.to_path_buf()
2057    }
2058    #[inline]
2059    fn clone_into(&self, target: &mut PathBuf) {
2060        self.inner.clone_into(&mut target.inner);
2061    }
2062}
2063
2064#[stable(feature = "rust1", since = "1.0.0")]
2065impl PartialEq for PathBuf {
2066    #[inline]
2067    fn eq(&self, other: &PathBuf) -> bool {
2068        self.components() == other.components()
2069    }
2070}
2071
2072#[stable(feature = "rust1", since = "1.0.0")]
2073impl Hash for PathBuf {
2074    fn hash<H: Hasher>(&self, h: &mut H) {
2075        self.as_path().hash(h)
2076    }
2077}
2078
2079#[stable(feature = "rust1", since = "1.0.0")]
2080impl Eq for PathBuf {}
2081
2082#[stable(feature = "rust1", since = "1.0.0")]
2083impl PartialOrd for PathBuf {
2084    #[inline]
2085    fn partial_cmp(&self, other: &PathBuf) -> Option<cmp::Ordering> {
2086        Some(compare_components(self.components(), other.components()))
2087    }
2088}
2089
2090#[stable(feature = "rust1", since = "1.0.0")]
2091impl Ord for PathBuf {
2092    #[inline]
2093    fn cmp(&self, other: &PathBuf) -> cmp::Ordering {
2094        compare_components(self.components(), other.components())
2095    }
2096}
2097
2098#[stable(feature = "rust1", since = "1.0.0")]
2099impl AsRef<OsStr> for PathBuf {
2100    #[inline]
2101    fn as_ref(&self) -> &OsStr {
2102        &self.inner[..]
2103    }
2104}
2105
2106/// A slice of a path (akin to [`str`]).
2107///
2108/// This type supports a number of operations for inspecting a path, including
2109/// breaking the path into its components (separated by `/` on Unix and by either
2110/// `/` or `\` on Windows), extracting the file name, determining whether the path
2111/// is absolute, and so on.
2112///
2113/// This is an *unsized* type, meaning that it must always be used behind a
2114/// pointer like `&` or [`Box`]. For an owned version of this type,
2115/// see [`PathBuf`].
2116///
2117/// More details about the overall approach can be found in
2118/// the [module documentation](self).
2119///
2120/// # Examples
2121///
2122/// ```
2123/// use std::path::Path;
2124/// use std::ffi::OsStr;
2125///
2126/// // Note: this example does work on Windows
2127/// let path = Path::new("./foo/bar.txt");
2128///
2129/// let parent = path.parent();
2130/// assert_eq!(parent, Some(Path::new("./foo")));
2131///
2132/// let file_stem = path.file_stem();
2133/// assert_eq!(file_stem, Some(OsStr::new("bar")));
2134///
2135/// let extension = path.extension();
2136/// assert_eq!(extension, Some(OsStr::new("txt")));
2137/// ```
2138#[cfg_attr(not(test), rustc_diagnostic_item = "Path")]
2139#[stable(feature = "rust1", since = "1.0.0")]
2140// `Path::new` and `impl CloneToUninit for Path` current implementation relies
2141// on `Path` being layout-compatible with `OsStr`.
2142// However, `Path` layout is considered an implementation detail and must not be relied upon.
2143#[repr(transparent)]
2144pub struct Path {
2145    inner: OsStr,
2146}
2147
2148/// An error returned from [`Path::strip_prefix`] if the prefix was not found.
2149///
2150/// This `struct` is created by the [`strip_prefix`] method on [`Path`].
2151/// See its documentation for more.
2152///
2153/// [`strip_prefix`]: Path::strip_prefix
2154#[derive(Debug, Clone, PartialEq, Eq)]
2155#[stable(since = "1.7.0", feature = "strip_prefix")]
2156pub struct StripPrefixError(());
2157
2158/// An error returned from [`Path::normalize_lexically`] if a `..` parent reference
2159/// would escape the path.
2160#[unstable(feature = "normalize_lexically", issue = "134694")]
2161#[derive(Debug, PartialEq)]
2162#[non_exhaustive]
2163pub struct NormalizeError;
2164
2165impl Path {
2166    // The following (private!) function allows construction of a path from a u8
2167    // slice, which is only safe when it is known to follow the OsStr encoding.
2168    unsafe fn from_u8_slice(s: &[u8]) -> &Path {
2169        unsafe { Path::new(OsStr::from_encoded_bytes_unchecked(s)) }
2170    }
2171    // The following (private!) function reveals the byte encoding used for OsStr.
2172    pub(crate) fn as_u8_slice(&self) -> &[u8] {
2173        self.inner.as_encoded_bytes()
2174    }
2175
2176    /// Directly wraps a string slice as a `Path` slice.
2177    ///
2178    /// This is a cost-free conversion.
2179    ///
2180    /// # Examples
2181    ///
2182    /// ```
2183    /// use std::path::Path;
2184    ///
2185    /// Path::new("foo.txt");
2186    /// ```
2187    ///
2188    /// You can create `Path`s from `String`s, or even other `Path`s:
2189    ///
2190    /// ```
2191    /// use std::path::Path;
2192    ///
2193    /// let string = String::from("foo.txt");
2194    /// let from_string = Path::new(&string);
2195    /// let from_path = Path::new(&from_string);
2196    /// assert_eq!(from_string, from_path);
2197    /// ```
2198    #[stable(feature = "rust1", since = "1.0.0")]
2199    pub fn new<S: AsRef<OsStr> + ?Sized>(s: &S) -> &Path {
2200        unsafe { &*(s.as_ref() as *const OsStr as *const Path) }
2201    }
2202
2203    fn from_inner_mut(inner: &mut OsStr) -> &mut Path {
2204        // SAFETY: Path is just a wrapper around OsStr,
2205        // therefore converting &mut OsStr to &mut Path is safe.
2206        unsafe { &mut *(inner as *mut OsStr as *mut Path) }
2207    }
2208
2209    /// Yields the underlying [`OsStr`] slice.
2210    ///
2211    /// # Examples
2212    ///
2213    /// ```
2214    /// use std::path::Path;
2215    ///
2216    /// let os_str = Path::new("foo.txt").as_os_str();
2217    /// assert_eq!(os_str, std::ffi::OsStr::new("foo.txt"));
2218    /// ```
2219    #[stable(feature = "rust1", since = "1.0.0")]
2220    #[must_use]
2221    #[inline]
2222    pub fn as_os_str(&self) -> &OsStr {
2223        &self.inner
2224    }
2225
2226    /// Yields a mutable reference to the underlying [`OsStr`] slice.
2227    ///
2228    /// # Examples
2229    ///
2230    /// ```
2231    /// use std::path::{Path, PathBuf};
2232    ///
2233    /// let mut path = PathBuf::from("Foo.TXT");
2234    ///
2235    /// assert_ne!(path, Path::new("foo.txt"));
2236    ///
2237    /// path.as_mut_os_str().make_ascii_lowercase();
2238    /// assert_eq!(path, Path::new("foo.txt"));
2239    /// ```
2240    #[stable(feature = "path_as_mut_os_str", since = "1.70.0")]
2241    #[must_use]
2242    #[inline]
2243    pub fn as_mut_os_str(&mut self) -> &mut OsStr {
2244        &mut self.inner
2245    }
2246
2247    /// Yields a [`&str`] slice if the `Path` is valid unicode.
2248    ///
2249    /// This conversion may entail doing a check for UTF-8 validity.
2250    /// Note that validation is performed because non-UTF-8 strings are
2251    /// perfectly valid for some OS.
2252    ///
2253    /// [`&str`]: str
2254    ///
2255    /// # Examples
2256    ///
2257    /// ```
2258    /// use std::path::Path;
2259    ///
2260    /// let path = Path::new("foo.txt");
2261    /// assert_eq!(path.to_str(), Some("foo.txt"));
2262    /// ```
2263    #[stable(feature = "rust1", since = "1.0.0")]
2264    #[must_use = "this returns the result of the operation, \
2265                  without modifying the original"]
2266    #[inline]
2267    pub fn to_str(&self) -> Option<&str> {
2268        self.inner.to_str()
2269    }
2270
2271    /// Converts a `Path` to a [`Cow<str>`].
2272    ///
2273    /// Any non-UTF-8 sequences are replaced with
2274    /// [`U+FFFD REPLACEMENT CHARACTER`][U+FFFD].
2275    ///
2276    /// [U+FFFD]: super::char::REPLACEMENT_CHARACTER
2277    ///
2278    /// # Examples
2279    ///
2280    /// Calling `to_string_lossy` on a `Path` with valid unicode:
2281    ///
2282    /// ```
2283    /// use std::path::Path;
2284    ///
2285    /// let path = Path::new("foo.txt");
2286    /// assert_eq!(path.to_string_lossy(), "foo.txt");
2287    /// ```
2288    ///
2289    /// Had `path` contained invalid unicode, the `to_string_lossy` call might
2290    /// have returned `"fo�.txt"`.
2291    #[stable(feature = "rust1", since = "1.0.0")]
2292    #[must_use = "this returns the result of the operation, \
2293                  without modifying the original"]
2294    #[inline]
2295    pub fn to_string_lossy(&self) -> Cow<'_, str> {
2296        self.inner.to_string_lossy()
2297    }
2298
2299    /// Converts a `Path` to an owned [`PathBuf`].
2300    ///
2301    /// # Examples
2302    ///
2303    /// ```
2304    /// use std::path::{Path, PathBuf};
2305    ///
2306    /// let path_buf = Path::new("foo.txt").to_path_buf();
2307    /// assert_eq!(path_buf, PathBuf::from("foo.txt"));
2308    /// ```
2309    #[rustc_conversion_suggestion]
2310    #[must_use = "this returns the result of the operation, \
2311                  without modifying the original"]
2312    #[stable(feature = "rust1", since = "1.0.0")]
2313    #[cfg_attr(not(test), rustc_diagnostic_item = "path_to_pathbuf")]
2314    pub fn to_path_buf(&self) -> PathBuf {
2315        PathBuf::from(self.inner.to_os_string())
2316    }
2317
2318    /// Returns `true` if the `Path` is absolute, i.e., if it is independent of
2319    /// the current directory.
2320    ///
2321    /// * On Unix, a path is absolute if it starts with the root, so
2322    /// `is_absolute` and [`has_root`] are equivalent.
2323    ///
2324    /// * On Windows, a path is absolute if it has a prefix and starts with the
2325    /// root: `c:\windows` is absolute, while `c:temp` and `\temp` are not.
2326    ///
2327    /// # Examples
2328    ///
2329    /// ```
2330    /// use std::path::Path;
2331    ///
2332    /// assert!(!Path::new("foo.txt").is_absolute());
2333    /// ```
2334    ///
2335    /// [`has_root`]: Path::has_root
2336    #[stable(feature = "rust1", since = "1.0.0")]
2337    #[must_use]
2338    #[allow(deprecated)]
2339    pub fn is_absolute(&self) -> bool {
2340        sys::path::is_absolute(self)
2341    }
2342
2343    /// Returns `true` if the `Path` is relative, i.e., not absolute.
2344    ///
2345    /// See [`is_absolute`]'s documentation for more details.
2346    ///
2347    /// # Examples
2348    ///
2349    /// ```
2350    /// use std::path::Path;
2351    ///
2352    /// assert!(Path::new("foo.txt").is_relative());
2353    /// ```
2354    ///
2355    /// [`is_absolute`]: Path::is_absolute
2356    #[stable(feature = "rust1", since = "1.0.0")]
2357    #[must_use]
2358    #[inline]
2359    pub fn is_relative(&self) -> bool {
2360        !self.is_absolute()
2361    }
2362
2363    pub(crate) fn prefix(&self) -> Option<Prefix<'_>> {
2364        self.components().prefix
2365    }
2366
2367    /// Returns `true` if the `Path` has a root.
2368    ///
2369    /// * On Unix, a path has a root if it begins with `/`.
2370    ///
2371    /// * On Windows, a path has a root if it:
2372    ///     * has no prefix and begins with a separator, e.g., `\windows`
2373    ///     * has a prefix followed by a separator, e.g., `c:\windows` but not `c:windows`
2374    ///     * has any non-disk prefix, e.g., `\\server\share`
2375    ///
2376    /// # Examples
2377    ///
2378    /// ```
2379    /// use std::path::Path;
2380    ///
2381    /// assert!(Path::new("/etc/passwd").has_root());
2382    /// ```
2383    #[stable(feature = "rust1", since = "1.0.0")]
2384    #[must_use]
2385    #[inline]
2386    pub fn has_root(&self) -> bool {
2387        self.components().has_root()
2388    }
2389
2390    /// Returns the `Path` without its final component, if there is one.
2391    ///
2392    /// This means it returns `Some("")` for relative paths with one component.
2393    ///
2394    /// Returns [`None`] if the path terminates in a root or prefix, or if it's
2395    /// the empty string.
2396    ///
2397    /// # Examples
2398    ///
2399    /// ```
2400    /// use std::path::Path;
2401    ///
2402    /// let path = Path::new("/foo/bar");
2403    /// let parent = path.parent().unwrap();
2404    /// assert_eq!(parent, Path::new("/foo"));
2405    ///
2406    /// let grand_parent = parent.parent().unwrap();
2407    /// assert_eq!(grand_parent, Path::new("/"));
2408    /// assert_eq!(grand_parent.parent(), None);
2409    ///
2410    /// let relative_path = Path::new("foo/bar");
2411    /// let parent = relative_path.parent();
2412    /// assert_eq!(parent, Some(Path::new("foo")));
2413    /// let grand_parent = parent.and_then(Path::parent);
2414    /// assert_eq!(grand_parent, Some(Path::new("")));
2415    /// let great_grand_parent = grand_parent.and_then(Path::parent);
2416    /// assert_eq!(great_grand_parent, None);
2417    /// ```
2418    #[stable(feature = "rust1", since = "1.0.0")]
2419    #[doc(alias = "dirname")]
2420    #[must_use]
2421    pub fn parent(&self) -> Option<&Path> {
2422        let mut comps = self.components();
2423        let comp = comps.next_back();
2424        comp.and_then(|p| match p {
2425            Component::Normal(_) | Component::CurDir | Component::ParentDir => {
2426                Some(comps.as_path())
2427            }
2428            _ => None,
2429        })
2430    }
2431
2432    /// Produces an iterator over `Path` and its ancestors.
2433    ///
2434    /// The iterator will yield the `Path` that is returned if the [`parent`] method is used zero
2435    /// or more times. If the [`parent`] method returns [`None`], the iterator will do likewise.
2436    /// The iterator will always yield at least one value, namely `Some(&self)`. Next it will yield
2437    /// `&self.parent()`, `&self.parent().and_then(Path::parent)` and so on.
2438    ///
2439    /// # Examples
2440    ///
2441    /// ```
2442    /// use std::path::Path;
2443    ///
2444    /// let mut ancestors = Path::new("/foo/bar").ancestors();
2445    /// assert_eq!(ancestors.next(), Some(Path::new("/foo/bar")));
2446    /// assert_eq!(ancestors.next(), Some(Path::new("/foo")));
2447    /// assert_eq!(ancestors.next(), Some(Path::new("/")));
2448    /// assert_eq!(ancestors.next(), None);
2449    ///
2450    /// let mut ancestors = Path::new("../foo/bar").ancestors();
2451    /// assert_eq!(ancestors.next(), Some(Path::new("../foo/bar")));
2452    /// assert_eq!(ancestors.next(), Some(Path::new("../foo")));
2453    /// assert_eq!(ancestors.next(), Some(Path::new("..")));
2454    /// assert_eq!(ancestors.next(), Some(Path::new("")));
2455    /// assert_eq!(ancestors.next(), None);
2456    /// ```
2457    ///
2458    /// [`parent`]: Path::parent
2459    #[stable(feature = "path_ancestors", since = "1.28.0")]
2460    #[inline]
2461    pub fn ancestors(&self) -> Ancestors<'_> {
2462        Ancestors { next: Some(&self) }
2463    }
2464
2465    /// Returns the final component of the `Path`, if there is one.
2466    ///
2467    /// If the path is a normal file, this is the file name. If it's the path of a directory, this
2468    /// is the directory name.
2469    ///
2470    /// Returns [`None`] if the path terminates in `..`.
2471    ///
2472    /// # Examples
2473    ///
2474    /// ```
2475    /// use std::path::Path;
2476    /// use std::ffi::OsStr;
2477    ///
2478    /// assert_eq!(Some(OsStr::new("bin")), Path::new("/usr/bin/").file_name());
2479    /// assert_eq!(Some(OsStr::new("foo.txt")), Path::new("tmp/foo.txt").file_name());
2480    /// assert_eq!(Some(OsStr::new("foo.txt")), Path::new("foo.txt/.").file_name());
2481    /// assert_eq!(Some(OsStr::new("foo.txt")), Path::new("foo.txt/.//").file_name());
2482    /// assert_eq!(None, Path::new("foo.txt/..").file_name());
2483    /// assert_eq!(None, Path::new("/").file_name());
2484    /// ```
2485    #[stable(feature = "rust1", since = "1.0.0")]
2486    #[doc(alias = "basename")]
2487    #[must_use]
2488    pub fn file_name(&self) -> Option<&OsStr> {
2489        self.components().next_back().and_then(|p| match p {
2490            Component::Normal(p) => Some(p),
2491            _ => None,
2492        })
2493    }
2494
2495    /// Returns a path that, when joined onto `base`, yields `self`.
2496    ///
2497    /// # Errors
2498    ///
2499    /// If `base` is not a prefix of `self` (i.e., [`starts_with`]
2500    /// returns `false`), returns [`Err`].
2501    ///
2502    /// [`starts_with`]: Path::starts_with
2503    ///
2504    /// # Examples
2505    ///
2506    /// ```
2507    /// use std::path::{Path, PathBuf};
2508    ///
2509    /// let path = Path::new("/test/haha/foo.txt");
2510    ///
2511    /// assert_eq!(path.strip_prefix("/"), Ok(Path::new("test/haha/foo.txt")));
2512    /// assert_eq!(path.strip_prefix("/test"), Ok(Path::new("haha/foo.txt")));
2513    /// assert_eq!(path.strip_prefix("/test/"), Ok(Path::new("haha/foo.txt")));
2514    /// assert_eq!(path.strip_prefix("/test/haha/foo.txt"), Ok(Path::new("")));
2515    /// assert_eq!(path.strip_prefix("/test/haha/foo.txt/"), Ok(Path::new("")));
2516    ///
2517    /// assert!(path.strip_prefix("test").is_err());
2518    /// assert!(path.strip_prefix("/te").is_err());
2519    /// assert!(path.strip_prefix("/haha").is_err());
2520    ///
2521    /// let prefix = PathBuf::from("/test/");
2522    /// assert_eq!(path.strip_prefix(prefix), Ok(Path::new("haha/foo.txt")));
2523    /// ```
2524    #[stable(since = "1.7.0", feature = "path_strip_prefix")]
2525    pub fn strip_prefix<P>(&self, base: P) -> Result<&Path, StripPrefixError>
2526    where
2527        P: AsRef<Path>,
2528    {
2529        self._strip_prefix(base.as_ref())
2530    }
2531
2532    fn _strip_prefix(&self, base: &Path) -> Result<&Path, StripPrefixError> {
2533        iter_after(self.components(), base.components())
2534            .map(|c| c.as_path())
2535            .ok_or(StripPrefixError(()))
2536    }
2537
2538    /// Determines whether `base` is a prefix of `self`.
2539    ///
2540    /// Only considers whole path components to match.
2541    ///
2542    /// # Examples
2543    ///
2544    /// ```
2545    /// use std::path::Path;
2546    ///
2547    /// let path = Path::new("/etc/passwd");
2548    ///
2549    /// assert!(path.starts_with("/etc"));
2550    /// assert!(path.starts_with("/etc/"));
2551    /// assert!(path.starts_with("/etc/passwd"));
2552    /// assert!(path.starts_with("/etc/passwd/")); // extra slash is okay
2553    /// assert!(path.starts_with("/etc/passwd///")); // multiple extra slashes are okay
2554    ///
2555    /// assert!(!path.starts_with("/e"));
2556    /// assert!(!path.starts_with("/etc/passwd.txt"));
2557    ///
2558    /// assert!(!Path::new("/etc/foo.rs").starts_with("/etc/foo"));
2559    /// ```
2560    #[stable(feature = "rust1", since = "1.0.0")]
2561    #[must_use]
2562    pub fn starts_with<P: AsRef<Path>>(&self, base: P) -> bool {
2563        self._starts_with(base.as_ref())
2564    }
2565
2566    fn _starts_with(&self, base: &Path) -> bool {
2567        iter_after(self.components(), base.components()).is_some()
2568    }
2569
2570    /// Determines whether `child` is a suffix of `self`.
2571    ///
2572    /// Only considers whole path components to match.
2573    ///
2574    /// # Examples
2575    ///
2576    /// ```
2577    /// use std::path::Path;
2578    ///
2579    /// let path = Path::new("/etc/resolv.conf");
2580    ///
2581    /// assert!(path.ends_with("resolv.conf"));
2582    /// assert!(path.ends_with("etc/resolv.conf"));
2583    /// assert!(path.ends_with("/etc/resolv.conf"));
2584    ///
2585    /// assert!(!path.ends_with("/resolv.conf"));
2586    /// assert!(!path.ends_with("conf")); // use .extension() instead
2587    /// ```
2588    #[stable(feature = "rust1", since = "1.0.0")]
2589    #[must_use]
2590    pub fn ends_with<P: AsRef<Path>>(&self, child: P) -> bool {
2591        self._ends_with(child.as_ref())
2592    }
2593
2594    fn _ends_with(&self, child: &Path) -> bool {
2595        iter_after(self.components().rev(), child.components().rev()).is_some()
2596    }
2597
2598    /// Extracts the stem (non-extension) portion of [`self.file_name`].
2599    ///
2600    /// [`self.file_name`]: Path::file_name
2601    ///
2602    /// The stem is:
2603    ///
2604    /// * [`None`], if there is no file name;
2605    /// * The entire file name if there is no embedded `.`;
2606    /// * The entire file name if the file name begins with `.` and has no other `.`s within;
2607    /// * Otherwise, the portion of the file name before the final `.`
2608    ///
2609    /// # Examples
2610    ///
2611    /// ```
2612    /// use std::path::Path;
2613    ///
2614    /// assert_eq!("foo", Path::new("foo.rs").file_stem().unwrap());
2615    /// assert_eq!("foo.tar", Path::new("foo.tar.gz").file_stem().unwrap());
2616    /// ```
2617    ///
2618    /// # See Also
2619    /// This method is similar to [`Path::file_prefix`], which extracts the portion of the file name
2620    /// before the *first* `.`
2621    ///
2622    /// [`Path::file_prefix`]: Path::file_prefix
2623    ///
2624    #[stable(feature = "rust1", since = "1.0.0")]
2625    #[must_use]
2626    pub fn file_stem(&self) -> Option<&OsStr> {
2627        self.file_name().map(rsplit_file_at_dot).and_then(|(before, after)| before.or(after))
2628    }
2629
2630    /// Extracts the prefix of [`self.file_name`].
2631    ///
2632    /// The prefix is:
2633    ///
2634    /// * [`None`], if there is no file name;
2635    /// * The entire file name if there is no embedded `.`;
2636    /// * The portion of the file name before the first non-beginning `.`;
2637    /// * The entire file name if the file name begins with `.` and has no other `.`s within;
2638    /// * The portion of the file name before the second `.` if the file name begins with `.`
2639    ///
2640    /// [`self.file_name`]: Path::file_name
2641    ///
2642    /// # Examples
2643    ///
2644    /// ```
2645    /// # #![feature(path_file_prefix)]
2646    /// use std::path::Path;
2647    ///
2648    /// assert_eq!("foo", Path::new("foo.rs").file_prefix().unwrap());
2649    /// assert_eq!("foo", Path::new("foo.tar.gz").file_prefix().unwrap());
2650    /// ```
2651    ///
2652    /// # See Also
2653    /// This method is similar to [`Path::file_stem`], which extracts the portion of the file name
2654    /// before the *last* `.`
2655    ///
2656    /// [`Path::file_stem`]: Path::file_stem
2657    ///
2658    #[unstable(feature = "path_file_prefix", issue = "86319")]
2659    #[must_use]
2660    pub fn file_prefix(&self) -> Option<&OsStr> {
2661        self.file_name().map(split_file_at_dot).and_then(|(before, _after)| Some(before))
2662    }
2663
2664    /// Extracts the extension (without the leading dot) of [`self.file_name`], if possible.
2665    ///
2666    /// The extension is:
2667    ///
2668    /// * [`None`], if there is no file name;
2669    /// * [`None`], if there is no embedded `.`;
2670    /// * [`None`], if the file name begins with `.` and has no other `.`s within;
2671    /// * Otherwise, the portion of the file name after the final `.`
2672    ///
2673    /// [`self.file_name`]: Path::file_name
2674    ///
2675    /// # Examples
2676    ///
2677    /// ```
2678    /// use std::path::Path;
2679    ///
2680    /// assert_eq!("rs", Path::new("foo.rs").extension().unwrap());
2681    /// assert_eq!("gz", Path::new("foo.tar.gz").extension().unwrap());
2682    /// ```
2683    #[stable(feature = "rust1", since = "1.0.0")]
2684    #[must_use]
2685    pub fn extension(&self) -> Option<&OsStr> {
2686        self.file_name().map(rsplit_file_at_dot).and_then(|(before, after)| before.and(after))
2687    }
2688
2689    /// Creates an owned [`PathBuf`] with `path` adjoined to `self`.
2690    ///
2691    /// If `path` is absolute, it replaces the current path.
2692    ///
2693    /// See [`PathBuf::push`] for more details on what it means to adjoin a path.
2694    ///
2695    /// # Examples
2696    ///
2697    /// ```
2698    /// use std::path::{Path, PathBuf};
2699    ///
2700    /// assert_eq!(Path::new("/etc").join("passwd"), PathBuf::from("/etc/passwd"));
2701    /// assert_eq!(Path::new("/etc").join("/bin/sh"), PathBuf::from("/bin/sh"));
2702    /// ```
2703    #[stable(feature = "rust1", since = "1.0.0")]
2704    #[must_use]
2705    pub fn join<P: AsRef<Path>>(&self, path: P) -> PathBuf {
2706        self._join(path.as_ref())
2707    }
2708
2709    fn _join(&self, path: &Path) -> PathBuf {
2710        let mut buf = self.to_path_buf();
2711        buf.push(path);
2712        buf
2713    }
2714
2715    /// Creates an owned [`PathBuf`] like `self` but with the given file name.
2716    ///
2717    /// See [`PathBuf::set_file_name`] for more details.
2718    ///
2719    /// # Examples
2720    ///
2721    /// ```
2722    /// use std::path::{Path, PathBuf};
2723    ///
2724    /// let path = Path::new("/tmp/foo.png");
2725    /// assert_eq!(path.with_file_name("bar"), PathBuf::from("/tmp/bar"));
2726    /// assert_eq!(path.with_file_name("bar.txt"), PathBuf::from("/tmp/bar.txt"));
2727    ///
2728    /// let path = Path::new("/tmp");
2729    /// assert_eq!(path.with_file_name("var"), PathBuf::from("/var"));
2730    /// ```
2731    #[stable(feature = "rust1", since = "1.0.0")]
2732    #[must_use]
2733    pub fn with_file_name<S: AsRef<OsStr>>(&self, file_name: S) -> PathBuf {
2734        self._with_file_name(file_name.as_ref())
2735    }
2736
2737    fn _with_file_name(&self, file_name: &OsStr) -> PathBuf {
2738        let mut buf = self.to_path_buf();
2739        buf.set_file_name(file_name);
2740        buf
2741    }
2742
2743    /// Creates an owned [`PathBuf`] like `self` but with the given extension.
2744    ///
2745    /// See [`PathBuf::set_extension`] for more details.
2746    ///
2747    /// # Examples
2748    ///
2749    /// ```
2750    /// use std::path::Path;
2751    ///
2752    /// let path = Path::new("foo.rs");
2753    /// assert_eq!(path.with_extension("txt"), Path::new("foo.txt"));
2754    /// assert_eq!(path.with_extension(""), Path::new("foo"));
2755    /// ```
2756    ///
2757    /// Handling multiple extensions:
2758    ///
2759    /// ```
2760    /// use std::path::Path;
2761    ///
2762    /// let path = Path::new("foo.tar.gz");
2763    /// assert_eq!(path.with_extension("xz"), Path::new("foo.tar.xz"));
2764    /// assert_eq!(path.with_extension("").with_extension("txt"), Path::new("foo.txt"));
2765    /// ```
2766    ///
2767    /// Adding an extension where one did not exist:
2768    ///
2769    /// ```
2770    /// use std::path::Path;
2771    ///
2772    /// let path = Path::new("foo");
2773    /// assert_eq!(path.with_extension("rs"), Path::new("foo.rs"));
2774    /// ```
2775    #[stable(feature = "rust1", since = "1.0.0")]
2776    pub fn with_extension<S: AsRef<OsStr>>(&self, extension: S) -> PathBuf {
2777        self._with_extension(extension.as_ref())
2778    }
2779
2780    fn _with_extension(&self, extension: &OsStr) -> PathBuf {
2781        let self_len = self.as_os_str().len();
2782        let self_bytes = self.as_os_str().as_encoded_bytes();
2783
2784        let (new_capacity, slice_to_copy) = match self.extension() {
2785            None => {
2786                // Enough capacity for the extension and the dot
2787                let capacity = self_len + extension.len() + 1;
2788                let whole_path = self_bytes;
2789                (capacity, whole_path)
2790            }
2791            Some(previous_extension) => {
2792                let capacity = self_len + extension.len() - previous_extension.len();
2793                let path_till_dot = &self_bytes[..self_len - previous_extension.len()];
2794                (capacity, path_till_dot)
2795            }
2796        };
2797
2798        let mut new_path = PathBuf::with_capacity(new_capacity);
2799        // SAFETY: The path is empty, so cannot have surrogate halves.
2800        unsafe { new_path.inner.extend_from_slice_unchecked(slice_to_copy) };
2801        new_path.set_extension(extension);
2802        new_path
2803    }
2804
2805    /// Creates an owned [`PathBuf`] like `self` but with the extension added.
2806    ///
2807    /// See [`PathBuf::add_extension`] for more details.
2808    ///
2809    /// # Examples
2810    ///
2811    /// ```
2812    /// #![feature(path_add_extension)]
2813    ///
2814    /// use std::path::{Path, PathBuf};
2815    ///
2816    /// let path = Path::new("foo.rs");
2817    /// assert_eq!(path.with_added_extension("txt"), PathBuf::from("foo.rs.txt"));
2818    ///
2819    /// let path = Path::new("foo.tar.gz");
2820    /// assert_eq!(path.with_added_extension(""), PathBuf::from("foo.tar.gz"));
2821    /// assert_eq!(path.with_added_extension("xz"), PathBuf::from("foo.tar.gz.xz"));
2822    /// assert_eq!(path.with_added_extension("").with_added_extension("txt"), PathBuf::from("foo.tar.gz.txt"));
2823    /// ```
2824    #[unstable(feature = "path_add_extension", issue = "127292")]
2825    pub fn with_added_extension<S: AsRef<OsStr>>(&self, extension: S) -> PathBuf {
2826        let mut new_path = self.to_path_buf();
2827        new_path.add_extension(extension);
2828        new_path
2829    }
2830
2831    /// Produces an iterator over the [`Component`]s of the path.
2832    ///
2833    /// When parsing the path, there is a small amount of normalization:
2834    ///
2835    /// * Repeated separators are ignored, so `a/b` and `a//b` both have
2836    ///   `a` and `b` as components.
2837    ///
2838    /// * Occurrences of `.` are normalized away, except if they are at the
2839    ///   beginning of the path. For example, `a/./b`, `a/b/`, `a/b/.` and
2840    ///   `a/b` all have `a` and `b` as components, but `./a/b` starts with
2841    ///   an additional [`CurDir`] component.
2842    ///
2843    /// * A trailing slash is normalized away, `/a/b` and `/a/b/` are equivalent.
2844    ///
2845    /// Note that no other normalization takes place; in particular, `a/c`
2846    /// and `a/b/../c` are distinct, to account for the possibility that `b`
2847    /// is a symbolic link (so its parent isn't `a`).
2848    ///
2849    /// # Examples
2850    ///
2851    /// ```
2852    /// use std::path::{Path, Component};
2853    /// use std::ffi::OsStr;
2854    ///
2855    /// let mut components = Path::new("/tmp/foo.txt").components();
2856    ///
2857    /// assert_eq!(components.next(), Some(Component::RootDir));
2858    /// assert_eq!(components.next(), Some(Component::Normal(OsStr::new("tmp"))));
2859    /// assert_eq!(components.next(), Some(Component::Normal(OsStr::new("foo.txt"))));
2860    /// assert_eq!(components.next(), None)
2861    /// ```
2862    ///
2863    /// [`CurDir`]: Component::CurDir
2864    #[stable(feature = "rust1", since = "1.0.0")]
2865    pub fn components(&self) -> Components<'_> {
2866        let prefix = parse_prefix(self.as_os_str());
2867        Components {
2868            path: self.as_u8_slice(),
2869            prefix,
2870            has_physical_root: has_physical_root(self.as_u8_slice(), prefix),
2871            front: State::Prefix,
2872            back: State::Body,
2873        }
2874    }
2875
2876    /// Produces an iterator over the path's components viewed as [`OsStr`]
2877    /// slices.
2878    ///
2879    /// For more information about the particulars of how the path is separated
2880    /// into components, see [`components`].
2881    ///
2882    /// [`components`]: Path::components
2883    ///
2884    /// # Examples
2885    ///
2886    /// ```
2887    /// use std::path::{self, Path};
2888    /// use std::ffi::OsStr;
2889    ///
2890    /// let mut it = Path::new("/tmp/foo.txt").iter();
2891    /// assert_eq!(it.next(), Some(OsStr::new(&path::MAIN_SEPARATOR.to_string())));
2892    /// assert_eq!(it.next(), Some(OsStr::new("tmp")));
2893    /// assert_eq!(it.next(), Some(OsStr::new("foo.txt")));
2894    /// assert_eq!(it.next(), None)
2895    /// ```
2896    #[stable(feature = "rust1", since = "1.0.0")]
2897    #[inline]
2898    pub fn iter(&self) -> Iter<'_> {
2899        Iter { inner: self.components() }
2900    }
2901
2902    /// Returns an object that implements [`Display`] for safely printing paths
2903    /// that may contain non-Unicode data. This may perform lossy conversion,
2904    /// depending on the platform.  If you would like an implementation which
2905    /// escapes the path please use [`Debug`] instead.
2906    ///
2907    /// [`Display`]: fmt::Display
2908    /// [`Debug`]: fmt::Debug
2909    ///
2910    /// # Examples
2911    ///
2912    /// ```
2913    /// use std::path::Path;
2914    ///
2915    /// let path = Path::new("/tmp/foo.rs");
2916    ///
2917    /// println!("{}", path.display());
2918    /// ```
2919    #[stable(feature = "rust1", since = "1.0.0")]
2920    #[must_use = "this does not display the path, \
2921                  it returns an object that can be displayed"]
2922    #[inline]
2923    pub fn display(&self) -> Display<'_> {
2924        Display { inner: self.inner.display() }
2925    }
2926
2927    /// Queries the file system to get information about a file, directory, etc.
2928    ///
2929    /// This function will traverse symbolic links to query information about the
2930    /// destination file.
2931    ///
2932    /// This is an alias to [`fs::metadata`].
2933    ///
2934    /// # Examples
2935    ///
2936    /// ```no_run
2937    /// use std::path::Path;
2938    ///
2939    /// let path = Path::new("/Minas/tirith");
2940    /// let metadata = path.metadata().expect("metadata call failed");
2941    /// println!("{:?}", metadata.file_type());
2942    /// ```
2943    #[stable(feature = "path_ext", since = "1.5.0")]
2944    #[inline]
2945    pub fn metadata(&self) -> io::Result<fs::Metadata> {
2946        fs::metadata(self)
2947    }
2948
2949    /// Queries the metadata about a file without following symlinks.
2950    ///
2951    /// This is an alias to [`fs::symlink_metadata`].
2952    ///
2953    /// # Examples
2954    ///
2955    /// ```no_run
2956    /// use std::path::Path;
2957    ///
2958    /// let path = Path::new("/Minas/tirith");
2959    /// let metadata = path.symlink_metadata().expect("symlink_metadata call failed");
2960    /// println!("{:?}", metadata.file_type());
2961    /// ```
2962    #[stable(feature = "path_ext", since = "1.5.0")]
2963    #[inline]
2964    pub fn symlink_metadata(&self) -> io::Result<fs::Metadata> {
2965        fs::symlink_metadata(self)
2966    }
2967
2968    /// Returns the canonical, absolute form of the path with all intermediate
2969    /// components normalized and symbolic links resolved.
2970    ///
2971    /// This is an alias to [`fs::canonicalize`].
2972    ///
2973    /// # Examples
2974    ///
2975    /// ```no_run
2976    /// use std::path::{Path, PathBuf};
2977    ///
2978    /// let path = Path::new("/foo/test/../test/bar.rs");
2979    /// assert_eq!(path.canonicalize().unwrap(), PathBuf::from("/foo/test/bar.rs"));
2980    /// ```
2981    #[stable(feature = "path_ext", since = "1.5.0")]
2982    #[inline]
2983    pub fn canonicalize(&self) -> io::Result<PathBuf> {
2984        fs::canonicalize(self)
2985    }
2986
2987    /// Normalize a path, including `..` without traversing the filesystem.
2988    ///
2989    /// Returns an error if normalization would leave leading `..` components.
2990    ///
2991    /// <div class="warning">
2992    ///
2993    /// This function always resolves `..` to the "lexical" parent.
2994    /// That is "a/b/../c" will always resolve to `a/c` which can change the meaning of the path.
2995    /// In particular, `a/c` and `a/b/../c` are distinct on many systems because `b` may be a symbolic link, so its parent isn’t `a`.
2996    ///
2997    /// </div>
2998    ///
2999    /// [`path::absolute`](absolute) is an alternative that preserves `..`.
3000    /// Or [`Path::canonicalize`] can be used to resolve any `..` by querying the filesystem.
3001    #[unstable(feature = "normalize_lexically", issue = "134694")]
3002    pub fn normalize_lexically(&self) -> Result<PathBuf, NormalizeError> {
3003        let mut lexical = PathBuf::new();
3004        let mut iter = self.components().peekable();
3005
3006        // Find the root, if any, and add it to the lexical path.
3007        // Here we treat the Windows path "C:\" as a single "root" even though
3008        // `components` splits it into two: (Prefix, RootDir).
3009        let root = match iter.peek() {
3010            Some(Component::ParentDir) => return Err(NormalizeError),
3011            Some(p @ Component::RootDir) | Some(p @ Component::CurDir) => {
3012                lexical.push(p);
3013                iter.next();
3014                lexical.as_os_str().len()
3015            }
3016            Some(Component::Prefix(prefix)) => {
3017                lexical.push(prefix.as_os_str());
3018                iter.next();
3019                if let Some(p @ Component::RootDir) = iter.peek() {
3020                    lexical.push(p);
3021                    iter.next();
3022                }
3023                lexical.as_os_str().len()
3024            }
3025            None => return Ok(PathBuf::new()),
3026            Some(Component::Normal(_)) => 0,
3027        };
3028
3029        for component in iter {
3030            match component {
3031                Component::RootDir => unreachable!(),
3032                Component::Prefix(_) => return Err(NormalizeError),
3033                Component::CurDir => continue,
3034                Component::ParentDir => {
3035                    // It's an error if ParentDir causes us to go above the "root".
3036                    if lexical.as_os_str().len() == root {
3037                        return Err(NormalizeError);
3038                    } else {
3039                        lexical.pop();
3040                    }
3041                }
3042                Component::Normal(path) => lexical.push(path),
3043            }
3044        }
3045        Ok(lexical)
3046    }
3047
3048    /// Reads a symbolic link, returning the file that the link points to.
3049    ///
3050    /// This is an alias to [`fs::read_link`].
3051    ///
3052    /// # Examples
3053    ///
3054    /// ```no_run
3055    /// use std::path::Path;
3056    ///
3057    /// let path = Path::new("/laputa/sky_castle.rs");
3058    /// let path_link = path.read_link().expect("read_link call failed");
3059    /// ```
3060    #[stable(feature = "path_ext", since = "1.5.0")]
3061    #[inline]
3062    pub fn read_link(&self) -> io::Result<PathBuf> {
3063        fs::read_link(self)
3064    }
3065
3066    /// Returns an iterator over the entries within a directory.
3067    ///
3068    /// The iterator will yield instances of <code>[io::Result]<[fs::DirEntry]></code>. New
3069    /// errors may be encountered after an iterator is initially constructed.
3070    ///
3071    /// This is an alias to [`fs::read_dir`].
3072    ///
3073    /// # Examples
3074    ///
3075    /// ```no_run
3076    /// use std::path::Path;
3077    ///
3078    /// let path = Path::new("/laputa");
3079    /// for entry in path.read_dir().expect("read_dir call failed") {
3080    ///     if let Ok(entry) = entry {
3081    ///         println!("{:?}", entry.path());
3082    ///     }
3083    /// }
3084    /// ```
3085    #[stable(feature = "path_ext", since = "1.5.0")]
3086    #[inline]
3087    pub fn read_dir(&self) -> io::Result<fs::ReadDir> {
3088        fs::read_dir(self)
3089    }
3090
3091    /// Returns `true` if the path points at an existing entity.
3092    ///
3093    /// Warning: this method may be error-prone, consider using [`try_exists()`] instead!
3094    /// It also has a risk of introducing time-of-check to time-of-use (TOCTOU) bugs.
3095    ///
3096    /// This function will traverse symbolic links to query information about the
3097    /// destination file.
3098    ///
3099    /// If you cannot access the metadata of the file, e.g. because of a
3100    /// permission error or broken symbolic links, this will return `false`.
3101    ///
3102    /// # Examples
3103    ///
3104    /// ```no_run
3105    /// use std::path::Path;
3106    /// assert!(!Path::new("does_not_exist.txt").exists());
3107    /// ```
3108    ///
3109    /// # See Also
3110    ///
3111    /// This is a convenience function that coerces errors to false. If you want to
3112    /// check errors, call [`Path::try_exists`].
3113    ///
3114    /// [`try_exists()`]: Self::try_exists
3115    #[stable(feature = "path_ext", since = "1.5.0")]
3116    #[must_use]
3117    #[inline]
3118    pub fn exists(&self) -> bool {
3119        fs::metadata(self).is_ok()
3120    }
3121
3122    /// Returns `Ok(true)` if the path points at an existing entity.
3123    ///
3124    /// This function will traverse symbolic links to query information about the
3125    /// destination file. In case of broken symbolic links this will return `Ok(false)`.
3126    ///
3127    /// [`Path::exists()`] only checks whether or not a path was both found and readable. By
3128    /// contrast, `try_exists` will return `Ok(true)` or `Ok(false)`, respectively, if the path
3129    /// was _verified_ to exist or not exist. If its existence can neither be confirmed nor
3130    /// denied, it will propagate an `Err(_)` instead. This can be the case if e.g. listing
3131    /// permission is denied on one of the parent directories.
3132    ///
3133    /// Note that while this avoids some pitfalls of the `exists()` method, it still can not
3134    /// prevent time-of-check to time-of-use (TOCTOU) bugs. You should only use it in scenarios
3135    /// where those bugs are not an issue.
3136    ///
3137    /// This is an alias for [`std::fs::exists`](crate::fs::exists).
3138    ///
3139    /// # Examples
3140    ///
3141    /// ```no_run
3142    /// use std::path::Path;
3143    /// assert!(!Path::new("does_not_exist.txt").try_exists().expect("Can't check existence of file does_not_exist.txt"));
3144    /// assert!(Path::new("/root/secret_file.txt").try_exists().is_err());
3145    /// ```
3146    ///
3147    /// [`exists()`]: Self::exists
3148    #[stable(feature = "path_try_exists", since = "1.63.0")]
3149    #[inline]
3150    pub fn try_exists(&self) -> io::Result<bool> {
3151        fs::exists(self)
3152    }
3153
3154    /// Returns `true` if the path exists on disk and is pointing at a regular file.
3155    ///
3156    /// This function will traverse symbolic links to query information about the
3157    /// destination file.
3158    ///
3159    /// If you cannot access the metadata of the file, e.g. because of a
3160    /// permission error or broken symbolic links, this will return `false`.
3161    ///
3162    /// # Examples
3163    ///
3164    /// ```no_run
3165    /// use std::path::Path;
3166    /// assert_eq!(Path::new("./is_a_directory/").is_file(), false);
3167    /// assert_eq!(Path::new("a_file.txt").is_file(), true);
3168    /// ```
3169    ///
3170    /// # See Also
3171    ///
3172    /// This is a convenience function that coerces errors to false. If you want to
3173    /// check errors, call [`fs::metadata`] and handle its [`Result`]. Then call
3174    /// [`fs::Metadata::is_file`] if it was [`Ok`].
3175    ///
3176    /// When the goal is simply to read from (or write to) the source, the most
3177    /// reliable way to test the source can be read (or written to) is to open
3178    /// it. Only using `is_file` can break workflows like `diff <( prog_a )` on
3179    /// a Unix-like system for example. See [`fs::File::open`] or
3180    /// [`fs::OpenOptions::open`] for more information.
3181    #[stable(feature = "path_ext", since = "1.5.0")]
3182    #[must_use]
3183    pub fn is_file(&self) -> bool {
3184        fs::metadata(self).map(|m| m.is_file()).unwrap_or(false)
3185    }
3186
3187    /// Returns `true` if the path exists on disk and is pointing at a directory.
3188    ///
3189    /// This function will traverse symbolic links to query information about the
3190    /// destination file.
3191    ///
3192    /// If you cannot access the metadata of the file, e.g. because of a
3193    /// permission error or broken symbolic links, this will return `false`.
3194    ///
3195    /// # Examples
3196    ///
3197    /// ```no_run
3198    /// use std::path::Path;
3199    /// assert_eq!(Path::new("./is_a_directory/").is_dir(), true);
3200    /// assert_eq!(Path::new("a_file.txt").is_dir(), false);
3201    /// ```
3202    ///
3203    /// # See Also
3204    ///
3205    /// This is a convenience function that coerces errors to false. If you want to
3206    /// check errors, call [`fs::metadata`] and handle its [`Result`]. Then call
3207    /// [`fs::Metadata::is_dir`] if it was [`Ok`].
3208    #[stable(feature = "path_ext", since = "1.5.0")]
3209    #[must_use]
3210    pub fn is_dir(&self) -> bool {
3211        fs::metadata(self).map(|m| m.is_dir()).unwrap_or(false)
3212    }
3213
3214    /// Returns `true` if the path exists on disk and is pointing at a symbolic link.
3215    ///
3216    /// This function will not traverse symbolic links.
3217    /// In case of a broken symbolic link this will also return true.
3218    ///
3219    /// If you cannot access the directory containing the file, e.g., because of a
3220    /// permission error, this will return false.
3221    ///
3222    /// # Examples
3223    ///
3224    #[cfg_attr(unix, doc = "```no_run")]
3225    #[cfg_attr(not(unix), doc = "```ignore")]
3226    /// use std::path::Path;
3227    /// use std::os::unix::fs::symlink;
3228    ///
3229    /// let link_path = Path::new("link");
3230    /// symlink("/origin_does_not_exist/", link_path).unwrap();
3231    /// assert_eq!(link_path.is_symlink(), true);
3232    /// assert_eq!(link_path.exists(), false);
3233    /// ```
3234    ///
3235    /// # See Also
3236    ///
3237    /// This is a convenience function that coerces errors to false. If you want to
3238    /// check errors, call [`fs::symlink_metadata`] and handle its [`Result`]. Then call
3239    /// [`fs::Metadata::is_symlink`] if it was [`Ok`].
3240    #[must_use]
3241    #[stable(feature = "is_symlink", since = "1.58.0")]
3242    pub fn is_symlink(&self) -> bool {
3243        fs::symlink_metadata(self).map(|m| m.is_symlink()).unwrap_or(false)
3244    }
3245
3246    /// Converts a [`Box<Path>`](Box) into a [`PathBuf`] without copying or
3247    /// allocating.
3248    #[stable(feature = "into_boxed_path", since = "1.20.0")]
3249    #[must_use = "`self` will be dropped if the result is not used"]
3250    pub fn into_path_buf(self: Box<Self>) -> PathBuf {
3251        let rw = Box::into_raw(self) as *mut OsStr;
3252        let inner = unsafe { Box::from_raw(rw) };
3253        PathBuf { inner: OsString::from(inner) }
3254    }
3255}
3256
3257#[unstable(feature = "clone_to_uninit", issue = "126799")]
3258unsafe impl CloneToUninit for Path {
3259    #[inline]
3260    #[cfg_attr(debug_assertions, track_caller)]
3261    unsafe fn clone_to_uninit(&self, dst: *mut u8) {
3262        // SAFETY: Path is just a transparent wrapper around OsStr
3263        unsafe { self.inner.clone_to_uninit(dst) }
3264    }
3265}
3266
3267#[stable(feature = "rust1", since = "1.0.0")]
3268impl AsRef<OsStr> for Path {
3269    #[inline]
3270    fn as_ref(&self) -> &OsStr {
3271        &self.inner
3272    }
3273}
3274
3275#[stable(feature = "rust1", since = "1.0.0")]
3276impl fmt::Debug for Path {
3277    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
3278        fmt::Debug::fmt(&self.inner, formatter)
3279    }
3280}
3281
3282/// Helper struct for safely printing paths with [`format!`] and `{}`.
3283///
3284/// A [`Path`] might contain non-Unicode data. This `struct` implements the
3285/// [`Display`] trait in a way that mitigates that. It is created by the
3286/// [`display`](Path::display) method on [`Path`]. This may perform lossy
3287/// conversion, depending on the platform. If you would like an implementation
3288/// which escapes the path please use [`Debug`] instead.
3289///
3290/// # Examples
3291///
3292/// ```
3293/// use std::path::Path;
3294///
3295/// let path = Path::new("/tmp/foo.rs");
3296///
3297/// println!("{}", path.display());
3298/// ```
3299///
3300/// [`Display`]: fmt::Display
3301/// [`format!`]: crate::format
3302#[stable(feature = "rust1", since = "1.0.0")]
3303pub struct Display<'a> {
3304    inner: os_str::Display<'a>,
3305}
3306
3307#[stable(feature = "rust1", since = "1.0.0")]
3308impl fmt::Debug for Display<'_> {
3309    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3310        fmt::Debug::fmt(&self.inner, f)
3311    }
3312}
3313
3314#[stable(feature = "rust1", since = "1.0.0")]
3315impl fmt::Display for Display<'_> {
3316    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3317        fmt::Display::fmt(&self.inner, f)
3318    }
3319}
3320
3321#[stable(feature = "rust1", since = "1.0.0")]
3322impl PartialEq for Path {
3323    #[inline]
3324    fn eq(&self, other: &Path) -> bool {
3325        self.components() == other.components()
3326    }
3327}
3328
3329#[stable(feature = "rust1", since = "1.0.0")]
3330impl Hash for Path {
3331    fn hash<H: Hasher>(&self, h: &mut H) {
3332        let bytes = self.as_u8_slice();
3333        let (prefix_len, verbatim) = match parse_prefix(&self.inner) {
3334            Some(prefix) => {
3335                prefix.hash(h);
3336                (prefix.len(), prefix.is_verbatim())
3337            }
3338            None => (0, false),
3339        };
3340        let bytes = &bytes[prefix_len..];
3341
3342        let mut component_start = 0;
3343        // track some extra state to avoid prefix collisions.
3344        // ["foo", "bar"] and ["foobar"], will have the same payload bytes
3345        // but result in different chunk_bits
3346        let mut chunk_bits: usize = 0;
3347
3348        for i in 0..bytes.len() {
3349            let is_sep = if verbatim { is_verbatim_sep(bytes[i]) } else { is_sep_byte(bytes[i]) };
3350            if is_sep {
3351                if i > component_start {
3352                    let to_hash = &bytes[component_start..i];
3353                    chunk_bits = chunk_bits.wrapping_add(to_hash.len());
3354                    chunk_bits = chunk_bits.rotate_right(2);
3355                    h.write(to_hash);
3356                }
3357
3358                // skip over separator and optionally a following CurDir item
3359                // since components() would normalize these away.
3360                component_start = i + 1;
3361
3362                let tail = &bytes[component_start..];
3363
3364                if !verbatim {
3365                    component_start += match tail {
3366                        [b'.'] => 1,
3367                        [b'.', sep, ..] if is_sep_byte(*sep) => 1,
3368                        _ => 0,
3369                    };
3370                }
3371            }
3372        }
3373
3374        if component_start < bytes.len() {
3375            let to_hash = &bytes[component_start..];
3376            chunk_bits = chunk_bits.wrapping_add(to_hash.len());
3377            chunk_bits = chunk_bits.rotate_right(2);
3378            h.write(to_hash);
3379        }
3380
3381        h.write_usize(chunk_bits);
3382    }
3383}
3384
3385#[stable(feature = "rust1", since = "1.0.0")]
3386impl Eq for Path {}
3387
3388#[stable(feature = "rust1", since = "1.0.0")]
3389impl PartialOrd for Path {
3390    #[inline]
3391    fn partial_cmp(&self, other: &Path) -> Option<cmp::Ordering> {
3392        Some(compare_components(self.components(), other.components()))
3393    }
3394}
3395
3396#[stable(feature = "rust1", since = "1.0.0")]
3397impl Ord for Path {
3398    #[inline]
3399    fn cmp(&self, other: &Path) -> cmp::Ordering {
3400        compare_components(self.components(), other.components())
3401    }
3402}
3403
3404#[stable(feature = "rust1", since = "1.0.0")]
3405impl AsRef<Path> for Path {
3406    #[inline]
3407    fn as_ref(&self) -> &Path {
3408        self
3409    }
3410}
3411
3412#[stable(feature = "rust1", since = "1.0.0")]
3413impl AsRef<Path> for OsStr {
3414    #[inline]
3415    fn as_ref(&self) -> &Path {
3416        Path::new(self)
3417    }
3418}
3419
3420#[stable(feature = "cow_os_str_as_ref_path", since = "1.8.0")]
3421impl AsRef<Path> for Cow<'_, OsStr> {
3422    #[inline]
3423    fn as_ref(&self) -> &Path {
3424        Path::new(self)
3425    }
3426}
3427
3428#[stable(feature = "rust1", since = "1.0.0")]
3429impl AsRef<Path> for OsString {
3430    #[inline]
3431    fn as_ref(&self) -> &Path {
3432        Path::new(self)
3433    }
3434}
3435
3436#[stable(feature = "rust1", since = "1.0.0")]
3437impl AsRef<Path> for str {
3438    #[inline]
3439    fn as_ref(&self) -> &Path {
3440        Path::new(self)
3441    }
3442}
3443
3444#[stable(feature = "rust1", since = "1.0.0")]
3445impl AsRef<Path> for String {
3446    #[inline]
3447    fn as_ref(&self) -> &Path {
3448        Path::new(self)
3449    }
3450}
3451
3452#[stable(feature = "rust1", since = "1.0.0")]
3453impl AsRef<Path> for PathBuf {
3454    #[inline]
3455    fn as_ref(&self) -> &Path {
3456        self
3457    }
3458}
3459
3460#[stable(feature = "path_into_iter", since = "1.6.0")]
3461impl<'a> IntoIterator for &'a PathBuf {
3462    type Item = &'a OsStr;
3463    type IntoIter = Iter<'a>;
3464    #[inline]
3465    fn into_iter(self) -> Iter<'a> {
3466        self.iter()
3467    }
3468}
3469
3470#[stable(feature = "path_into_iter", since = "1.6.0")]
3471impl<'a> IntoIterator for &'a Path {
3472    type Item = &'a OsStr;
3473    type IntoIter = Iter<'a>;
3474    #[inline]
3475    fn into_iter(self) -> Iter<'a> {
3476        self.iter()
3477    }
3478}
3479
3480macro_rules! impl_cmp {
3481    (<$($life:lifetime),*> $lhs:ty, $rhs: ty) => {
3482        #[stable(feature = "partialeq_path", since = "1.6.0")]
3483        impl<$($life),*> PartialEq<$rhs> for $lhs {
3484            #[inline]
3485            fn eq(&self, other: &$rhs) -> bool {
3486                <Path as PartialEq>::eq(self, other)
3487            }
3488        }
3489
3490        #[stable(feature = "partialeq_path", since = "1.6.0")]
3491        impl<$($life),*> PartialEq<$lhs> for $rhs {
3492            #[inline]
3493            fn eq(&self, other: &$lhs) -> bool {
3494                <Path as PartialEq>::eq(self, other)
3495            }
3496        }
3497
3498        #[stable(feature = "cmp_path", since = "1.8.0")]
3499        impl<$($life),*> PartialOrd<$rhs> for $lhs {
3500            #[inline]
3501            fn partial_cmp(&self, other: &$rhs) -> Option<cmp::Ordering> {
3502                <Path as PartialOrd>::partial_cmp(self, other)
3503            }
3504        }
3505
3506        #[stable(feature = "cmp_path", since = "1.8.0")]
3507        impl<$($life),*> PartialOrd<$lhs> for $rhs {
3508            #[inline]
3509            fn partial_cmp(&self, other: &$lhs) -> Option<cmp::Ordering> {
3510                <Path as PartialOrd>::partial_cmp(self, other)
3511            }
3512        }
3513    };
3514}
3515
3516impl_cmp!(<> PathBuf, Path);
3517impl_cmp!(<'a> PathBuf, &'a Path);
3518impl_cmp!(<'a> Cow<'a, Path>, Path);
3519impl_cmp!(<'a, 'b> Cow<'a, Path>, &'b Path);
3520impl_cmp!(<'a> Cow<'a, Path>, PathBuf);
3521
3522macro_rules! impl_cmp_os_str {
3523    (<$($life:lifetime),*> $lhs:ty, $rhs: ty) => {
3524        #[stable(feature = "cmp_path", since = "1.8.0")]
3525        impl<$($life),*> PartialEq<$rhs> for $lhs {
3526            #[inline]
3527            fn eq(&self, other: &$rhs) -> bool {
3528                <Path as PartialEq>::eq(self, other.as_ref())
3529            }
3530        }
3531
3532        #[stable(feature = "cmp_path", since = "1.8.0")]
3533        impl<$($life),*> PartialEq<$lhs> for $rhs {
3534            #[inline]
3535            fn eq(&self, other: &$lhs) -> bool {
3536                <Path as PartialEq>::eq(self.as_ref(), other)
3537            }
3538        }
3539
3540        #[stable(feature = "cmp_path", since = "1.8.0")]
3541        impl<$($life),*> PartialOrd<$rhs> for $lhs {
3542            #[inline]
3543            fn partial_cmp(&self, other: &$rhs) -> Option<cmp::Ordering> {
3544                <Path as PartialOrd>::partial_cmp(self, other.as_ref())
3545            }
3546        }
3547
3548        #[stable(feature = "cmp_path", since = "1.8.0")]
3549        impl<$($life),*> PartialOrd<$lhs> for $rhs {
3550            #[inline]
3551            fn partial_cmp(&self, other: &$lhs) -> Option<cmp::Ordering> {
3552                <Path as PartialOrd>::partial_cmp(self.as_ref(), other)
3553            }
3554        }
3555    };
3556}
3557
3558impl_cmp_os_str!(<> PathBuf, OsStr);
3559impl_cmp_os_str!(<'a> PathBuf, &'a OsStr);
3560impl_cmp_os_str!(<'a> PathBuf, Cow<'a, OsStr>);
3561impl_cmp_os_str!(<> PathBuf, OsString);
3562impl_cmp_os_str!(<> Path, OsStr);
3563impl_cmp_os_str!(<'a> Path, &'a OsStr);
3564impl_cmp_os_str!(<'a> Path, Cow<'a, OsStr>);
3565impl_cmp_os_str!(<> Path, OsString);
3566impl_cmp_os_str!(<'a> &'a Path, OsStr);
3567impl_cmp_os_str!(<'a, 'b> &'a Path, Cow<'b, OsStr>);
3568impl_cmp_os_str!(<'a> &'a Path, OsString);
3569impl_cmp_os_str!(<'a> Cow<'a, Path>, OsStr);
3570impl_cmp_os_str!(<'a, 'b> Cow<'a, Path>, &'b OsStr);
3571impl_cmp_os_str!(<'a> Cow<'a, Path>, OsString);
3572
3573#[stable(since = "1.7.0", feature = "strip_prefix")]
3574impl fmt::Display for StripPrefixError {
3575    #[allow(deprecated, deprecated_in_future)]
3576    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3577        self.description().fmt(f)
3578    }
3579}
3580
3581#[stable(since = "1.7.0", feature = "strip_prefix")]
3582impl Error for StripPrefixError {
3583    #[allow(deprecated)]
3584    fn description(&self) -> &str {
3585        "prefix not found"
3586    }
3587}
3588
3589#[unstable(feature = "normalize_lexically", issue = "134694")]
3590impl fmt::Display for NormalizeError {
3591    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3592        f.write_str("parent reference `..` points outside of base directory")
3593    }
3594}
3595#[unstable(feature = "normalize_lexically", issue = "134694")]
3596impl Error for NormalizeError {}
3597
3598/// Makes the path absolute without accessing the filesystem.
3599///
3600/// If the path is relative, the current directory is used as the base directory.
3601/// All intermediate components will be resolved according to platform-specific
3602/// rules, but unlike [`canonicalize`][crate::fs::canonicalize], this does not
3603/// resolve symlinks and may succeed even if the path does not exist.
3604///
3605/// If the `path` is empty or getting the
3606/// [current directory][crate::env::current_dir] fails, then an error will be
3607/// returned.
3608///
3609/// # Platform-specific behavior
3610///
3611/// On POSIX platforms, the path is resolved using [POSIX semantics][posix-semantics],
3612/// except that it stops short of resolving symlinks. This means it will keep `..`
3613/// components and trailing slashes.
3614///
3615/// On Windows, for verbatim paths, this will simply return the path as given. For other
3616/// paths, this is currently equivalent to calling
3617/// [`GetFullPathNameW`][windows-path].
3618///
3619/// Note that these [may change in the future][changes].
3620///
3621/// # Errors
3622///
3623/// This function may return an error in the following situations:
3624///
3625/// * If `path` is syntactically invalid; in particular, if it is empty.
3626/// * If getting the [current directory][crate::env::current_dir] fails.
3627///
3628/// # Examples
3629///
3630/// ## POSIX paths
3631///
3632/// ```
3633/// # #[cfg(unix)]
3634/// fn main() -> std::io::Result<()> {
3635///     use std::path::{self, Path};
3636///
3637///     // Relative to absolute
3638///     let absolute = path::absolute("foo/./bar")?;
3639///     assert!(absolute.ends_with("foo/bar"));
3640///
3641///     // Absolute to absolute
3642///     let absolute = path::absolute("/foo//test/.././bar.rs")?;
3643///     assert_eq!(absolute, Path::new("/foo/test/../bar.rs"));
3644///     Ok(())
3645/// }
3646/// # #[cfg(not(unix))]
3647/// # fn main() {}
3648/// ```
3649///
3650/// ## Windows paths
3651///
3652/// ```
3653/// # #[cfg(windows)]
3654/// fn main() -> std::io::Result<()> {
3655///     use std::path::{self, Path};
3656///
3657///     // Relative to absolute
3658///     let absolute = path::absolute("foo/./bar")?;
3659///     assert!(absolute.ends_with(r"foo\bar"));
3660///
3661///     // Absolute to absolute
3662///     let absolute = path::absolute(r"C:\foo//test\..\./bar.rs")?;
3663///
3664///     assert_eq!(absolute, Path::new(r"C:\foo\bar.rs"));
3665///     Ok(())
3666/// }
3667/// # #[cfg(not(windows))]
3668/// # fn main() {}
3669/// ```
3670///
3671/// Note that this [may change in the future][changes].
3672///
3673/// [changes]: io#platform-specific-behavior
3674/// [posix-semantics]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_13
3675/// [windows-path]: https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-getfullpathnamew
3676#[stable(feature = "absolute_path", since = "1.79.0")]
3677pub fn absolute<P: AsRef<Path>>(path: P) -> io::Result<PathBuf> {
3678    let path = path.as_ref();
3679    if path.as_os_str().is_empty() {
3680        Err(io::const_error!(io::ErrorKind::InvalidInput, "cannot make an empty path absolute"))
3681    } else {
3682        sys::path::absolute(path)
3683    }
3684}