Class TransformerEncoderLayerImpl#
Defined in File transformerlayer.h
Page Contents
Inheritance Relationships#
Base Type#
public torch::nn::Cloneable< TransformerEncoderLayerImpl >
(Template Class Cloneable)
Class Documentation#
-
class TransformerEncoderLayerImpl : public torch::nn::Cloneable<TransformerEncoderLayerImpl>#
TransformerEncoderLayer module.
See https://pytorch.org/docs/main/generated/torch.nn.TransformerEncoderLayer.html to learn abouut the exact behavior of this encoder layer model
See the documentation for
torch::nn::TransformerEncoderLayer
class to learn what constructor arguments are supported for this encoder layer modelExample:
TransformerEncoderLayer encoderLayer(TransformerEncoderLayerOptions(512, 8).dropout(0.1));
Public Functions
-
inline TransformerEncoderLayerImpl(int64_t d_model, int64_t nhead)#
-
explicit TransformerEncoderLayerImpl(TransformerEncoderLayerOptions options_)#
-
Tensor forward(const Tensor &src, const Tensor &src_mask = {}, const Tensor &src_key_padding_mask = {})#
-
virtual void reset() override#
reset()
must perform initialization of all members with reference semantics, most importantly parameters, buffers and submodules.
-
void reset_parameters()#
Public Members
-
TransformerEncoderLayerOptions options#
options with which this
TransformerEncoderLayer
was constructed
-
MultiheadAttention self_attn = nullptr#
self attention
Protected Functions
-
inline virtual bool _forward_has_default_args() override#
The following three functions allow a module with default arguments in its forward method to be used in a Sequential module.
You should NEVER override these functions manually. Instead, you should use the
FORWARD_HAS_DEFAULT_ARGS
macro.
-
inline virtual unsigned int _forward_num_required_args() override#
Friends
- friend struct torch::nn::AnyModuleHolder
-
inline TransformerEncoderLayerImpl(int64_t d_model, int64_t nhead)#