
VSI OpenVMS

VSI DECforms
IFDL Reference Manual

Operating System and Version: VSI OpenVMS IA-64 Version 8.4-1H1 or higher
VSI OpenVMS Alpha Version 8.4-2L1 or higher

Software Version: DECforms Version 4.0

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

VSI DECforms IFDL Reference Manual

Copyright © 2025 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium and IA-64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Motif is a registered trademark of The Open Group.

Oracle is a registered trademark of Oracle and/or its affiliates.

PostScript is a registered trademark of Adobe Systems, Incorporated

ii

VSI DECforms IFDL Reference Manual

Table of Contents
Preface ... v

1. About VSI .. v
2. Intended Audience ... v
3. Document Structure ... v
4. Related Documents ... vi
5. OpenVMS Documentation .. vi
6. VSI Encourages Your Comments ... vi
7. Conventions .. vii

Chapter 1. Independent Form Description Language ... 1
1.1. IFDL Concepts ... 1

1.1.1. IFDL Syntax Conventions ... 5
1.1.2. Name Sharing .. 7

1.2. IFDL Syntax Descriptions ... 8
Appendix A. Using Arrays with DECforms Software ... 259

A.1. Qualified Names .. 259
A.2. Specifying Subscripts .. 259

A.2.1. Numeric Subscripts .. 260
A.2.2. Slice Subscripts ... 260
A.2.3. Range Subscripts ... 260
A.2.4. Corresponding Subscripts ... 261

A.3. Singular, Array, and Corresponding References ... 263
A.3.1. Singular References: Data, Field, Icon, and Button References 264
A.3.2. Data, Field, Icon, and Button Array References .. 264
A.3.3. Singular Group References: Data Group and Panel Group References 265
A.3.4. Data Group and Panel Group Array References .. 265
A.3.5. Corresponding Data References ... 266

A.4. Scalar Numeric Expressions .. 266
A.5. Corresponding Numeric Expressions .. 267

Appendix B. DECforms Data Types ... 269
Appendix C. IFDL Reserved Words ... 277
Appendix D. DECforms Function Key Names ... 279

D.1. Function Key Names for the DEC Multinational Character Set 279
D.2. Key Names for the Keypads and Top Row Function Keys .. 286

Appendix E. DECforms Hebrew User's Guide .. 291
E.1. Hebrew Terminals ... 291

E.1.1. Information for DECforms/Hebrew Version 1.0 Users 291
E.2. Hebrew Fields and Literals .. 291

E.2.1. Text Path ... 292
E.2.2. Character Set ... 293
E.2.3. Logical/Physical Order .. 293

E.3. Hebrew Icons ... 294
E.4. Hebrew Values in Fields .. 295
E.5. Hebrew Fields and Literals Column Clause ... 296
E.6. Hebrew Pictures and Justification ... 296
E.7. Hebrew Messages ... 297
E.8. Bidirectional Editing in a Panel Field ... 297
E.9. Activation Order in a Hebrew Form ... 298

iii

VSI DECforms IFDL Reference Manual

E.10. LSE Support ... 299
E.11. DEC FMS to DECforms Forms Conversion .. 299
E.12. Hebrew Installation Notes .. 300

Appendix F. Built-In Functions ... 301
F.1. Default Key Bindings for Built-in Functions .. 301
F.2. Response Syntax for Built-In Functions ... 302

F.2.1. Navigation Functions .. 302
F.2.2. Intrafield Editing Functions ... 306

F.3. Contextual Built-in Functions ... 306
F.3.1. Character-Cell Functions ... 306
F.3.2. Window Functions .. 308

F.4. Character-Cell Considerations for Function Key Bindings ... 308
F.5. Window Considerations for Function Key Bindings .. 310

F.5.1. System-Reserved Keys .. 313
F.5.2. OpenVMS System Function Keys .. 314

Appendix G. Intrafield Editing Functions .. 315
G.1. Intrafield Editing Functions for Character-Cell Devices .. 315

G.1.1. Data Entry and Editing Details ... 316
G.2. IntraField Editing Functions for Window Devices ... 317

G.2.1. Data Entry and Editing Details ... 319
G.2.2. Reserved Intrafield Editing Keys ... 320

iv

Preface
VSI DECforms is a software product for applications, services, and tools that require a structured, forms-
based, or menu-based user interface. DECforms is the first commercial implementation of an ANSI/ISO
standard for forms-based interfaces, the CODASYL Form Interface Management System (FIMS).

1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience
This manual is intended for application programmers and form designers. The information in this
manual is not introductory. For an introduction to DECforms software, see the VSI DECforms Guide to
Commands and Utilities.

3. Document Structure
This manual is divided into one chapter and seven appendixes.

Chapter 1,
"Independent
Form
Description
Language"

Describes each syntax element of the Independent Form Description Language (IFDL)
in detail.

Appendix
A, "Using
Arrays with
DECforms
Software"

Describes how to use arrays and numeric expressions with DECforms.

Appendix B,
" DECforms
Data Types"

Describes the data type equivalencies between DECforms data types and OpenVMS
data types.

Appendix
C, "IFDL
Reserved
Words"

Lists the DECforms IFDL reserved words.

Appendix D,
" DECforms
Function Key
Names"

Lists the DECforms function key names.

Appendix E,
"DECforms
Hebrew User's
Guide"

Describes how to use DECforms software to display Hebrew forms.

Appendix
F, "Built-In
Functions"

Describes how to use DECforms built-in functions.

v

Preface

Appendix G,
"Intrafield
Editing
Functions"

Describes how to use DECforms intrafield editing functions, which are built-in
functions that you use to enter and edit data in an elementary display object such as a
field or push-button label.

4. Related Documents
See the online help, the online release notes, and the following documents for more information about
DECforms:

● VSI DECforms Installation Guide for OpenVMS Systems—Describes how to install DECforms
software on processors that are running the OpenVMS operating system.

● VSI DECforms Guide to Commands and Utilities—Introduces DECforms software and describes how
to create forms.

● VSI DECforms Style Guide for Character-Cell Devices—Describes how to develop user interfaces for
DECforms applications for character-cell terminals.

● VSI DECforms Programmer's Reference Manual—Describes how DECforms software operates at run
time and how to call the DECforms requests from an application program.

● VSI DECforms Guide to Developing an Application—Explains how to create a DECforms
application, including both the form and the program, and contains additional guidelines and
examples for more experienced DECforms programmers.

● VSI DECforms Guide to Demonstration Forms and Applications—Describes how to use
various demonstration forms and applications. This guide is contained in online files named
forms$demo_guide.txt and forms$demo_guide.ps in the FORMS$EXAMPLES
directory on OpenVMS systems. If you cannot find this document, ask your system manager to
install it in the appropriate directory.

For information about displaying these forms, see the VSI DECforms Guide to Developing an
Application.

● VSI DECforms Guide to Converting FMS Applications—Describes how to convert a VAX FMS or
DEC FMS application to a DECforms application.

For further information on other topics covered in this guide, see the following:

● DEC LSE documentation for information on how to use DEC LSE

● Oracle CDD/Repository documentation set for information on Oracle CDD/Repository definitions

● ISO IS 11730:1994 for information on the standard of which DECforms is an implementation.

5. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

6. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have

vi

https://docs.vmssoftware.com

Preface

VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

7. Conventions
Table 1, "Conventions Used in the Guide" lists the conventions used in this guide:

Table 1. Conventions Used in the Guide

Symbol or Term Meaning

Ctrl/X In procedures, a sequence such as Ctrl/X indicates that you must hold down
the key labeled Ctrl while you press another key.

KPn Key names that begin with KP indicate keys on the numeric keypad on the
right side of the terminal keyboard. For example, KP4 and KPperiod are keys
on the numeric keypad.

PF1-X A sequence such as PF1-X indicates that you must first press and release the
key labeled PF1, and then press and release another key.

... In examples, a horizontal ellipsis indicates one of the following possibilities:

● Additional optional arguments in a statement have been omitted.

● The preceding item or items can be repeated one or more times.

● Additional parameters, values, or other information can be entered.
.
.
.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

Alt The Alt key is labeled as the Compose Character key on some keyboards.
bold type DECforms terms are shown in bold where introduced or explained.
italic type Italic type indicates important information, complete titles of manuals, or

variables. Variables include information that varies in system output (Internal
error number), in command lines (/PRODUCER=name), and in command
parameters in text (where dd represents the predefined code for the device
type).

$ The default user prompt is your system name followed by a right angle
bracket (>).The dollar sign is used to indicate the DCL prompt on OpenVMS
systems.

The following terms are used in the DECforms documentation to refer to layouts:

character-cell Refers to layouts that display forms on character-cell devices or on terminal
emulators such as DECterm.

PRINTER Refers to layouts that output forms for quality printing.
pixel Refers to PRINTER layouts.
DECforms References to DECforms throughout this manual refer to DECforms software.

vii

Preface

viii

Chapter 1. Independent Form
Description Language
DECforms software uses the Independent Form Description Language (IFDL) to create forms. Forms
consist of IFDL statements, clauses, and phrases.

You use the IFDL to define different aspects of forms. For example, you use IFDL statements to define
the appearance of a form and how the form is processed by the Form Manager. The IFDL also describes
the application data and record messages exchanged between the application program and the form.

The IFDL is primarily a declarational language, and is not intended to be used as a sequential
programming language. Section 1.1, "IFDL Concepts" gives an overview of the IFDL and its structure.
Section 1.2, "IFDL Syntax Descriptions" contains detailed descriptions of each individual language
element.

1.1. IFDL Concepts
The IFDL consists of keywords, reserved words, user-defined names, implementor names, literals,
separators, punctuation, picture strings, and comments. These elements are arranged into statements,
clauses, and phrases following the format rules of the IFDL.

Statements, Clauses, and Phrases
IFDL syntax diagrams show permissible arrangements of IFDL elements. These diagrams show high-
level arrangements (usually called declarations or statements) or lower-level arrangements (usually
called phrases) that are contained in declarations or other clauses.

Additional requirements on arrangements are specified as Syntax Rules.

IFDL Words
An IFDL word is a character string of 31 characters or fewer that forms one of the following: a
keyword, a reserved word, a user-defined name, or an implementor name.

Keywords and Reserved Words
Keywords are words that have a special meaning within the IFDL. Keywords always appear in
uppercase in syntax diagrams. The subset, reserved words, are keywords that cannot be used as names;
they can be used only as shown in the syntax diagrams. For example, you must not use COPY as a name
within a source file, because COPY is an IFDL reserved word. Appendix C, "IFDL Reserved Words" lists
IFDL reserved words.

IFDL keywords can appear in uppercase or lowercase in your IFDL source file. The Back Translator
capitalizes the first letters of keywords.

User-Defined Names
A user-defined name is a name that you must supply for a form entity, such as a layout or panel, to
complete an IFDL clause or statement. User-defined names must consist of letters, digits (0 to 9), dollar

1

Chapter 1. Independent Form Description Language

signs ($), or underscores (_). The first character of the user-defined name must be alphabetic, and a user-
defined name cannot be more than 31 characters long. The underscore must not be used as the first or
last character.

DECforms user-defined names are:

attribute-name
button-name
data-group-name
data-name
field-default-name
field-name
form-name
function-name
function-response-name
group-name
icon-name
internal-response-name
layout-name
list-name
literal-default-name
panel-name
pushbutton-name
record-field-name
record-group-name
record-list-name
record-name
terminal-name
viewport-name

Implementor Names
An implementor name is an IFDL word that is used to specify an implementor-defined feature. It is
called an implementor name because the rules for defining it are specific to each implementation of the
Form Interface Management System (FIMS). DECforms implementor names must consist of letters,
digits (0 to 9), dollar signs ($), or underscores (_). The first character of the implementor name must
be a percent sign (%). Implementor names cannot be more than 31 characters long. Uppercase and
lowercase letters have no special significance in implementor names.

Implementor names can appear in the following clauses and statements only:

attribute-declaration
device-declaration
display-viewport-clause
function-declaration
implementor-attribute
let-response-step
signal-response-step

Note

Do not use FORMS$ as a prefix for any name. DECforms reserves the FORMS$ prefix for its own use.

2

Chapter 1. Independent Form Description Language

Literals
A literal is a character string whose value is implicit in the characters themselves. Literals are either
numeric or string.

A numeric literal is a character string whose characters can consist of the digits 0 to 9, plus (+) or
minus (–) signs, periods, and the character E (for exponential notation). You must use a period (.)
to denote a decimal point in a numeric literal within IFDL source files, even though decimal points
can be displayed as commas in a panel field on a display device. If a numeric literal is enclosed in
quotation marks (" ") or apostrophes (’ ’), the IFDL Translator treats it as a string. 1.2E+89 and –2.34
are examples of numeric literals.

A string is a character string of any length that is delimited by quotation marks (" ") or apostrophes
(’ ’). For example, "check_book" is a string. A string must begin and end with the same delimiter. For
example, you cannot begin a string with an apostrophe and close it with a quotation mark.

Uppercase and lowercase letters are preserved in strings. Strings can contain quotation marks and
apostrophes. You include a delimiter in the string by doubling it. For example, to have "check_book"
appear on your display device in quotation marks, you may type either of the following:

"""check_book"
""

’"check_book"’

To continue strings from one IFDL source line to the next, use the following procedure:

1. Close the quotation marks or apostrophes.

2. Type a hyphen directly following the closing quotation mark or apostrophe at the end of the source
line. (Leave no spaces between the hyphen and the quotation mark or apostrophe.)

3. Begin the next line with an opening quotation mark or an apostrophe.

For example:

"You may cash checks only if you have an account at MegaMoney "-
"Bank. If you do not have an account, you cannot cash checks here."

Note

Strings can extend beyond one source line except in picture strings. For more information on picture
strings, see the picture string syntax description in Section 1.1.1, "IFDL Syntax Conventions".

Separators
A separator is a character or group of characters that divides or organizes pieces of information. Tab
characters, carriage returns, and spaces are valid IFDL separators. Punctuation characters that are not
part of literals or picture strings are also separators.

Punctuation
A punctuation character is a separator that is part of a literal or a picture string. Periods (.), commas (,),
hyphens (-), colons (:), and slashes (/) are valid IFDL punctuation characters.

3

Chapter 1. Independent Form Description Language

Picture Strings
A picture string is a string used to express a form data item visually. The picture string, along with input
and output picture clauses, formats a form data item for display on a display device. (See Section 1.1.1,
"IFDL Syntax Conventions" for more information.)

Comments
Comments are allowed within the IFDL source file and the form file. To store comments within the
form file, you specify the /COMMENTS qualifier to the FORMS TRANSLATE command on the DCL
command line. (By default, /COMMENTS is the qualifier when you specify FORMS TRANSLATE.)
For a complete description of these commands, see the VSI DECforms Guide to Commands and Utilities.

The syntax for a comment within an IFDL source file can be either of the following:

/* comment text */

{ comment text }

The IFDL Translator does not translate text between comment delimiters (/* */, { }). A single comment
can continue for more than one line. A comment is considered to be a separator: it is syntactically
equivalent to a space.

Comment position is not always maintained upon back translation. Back translation converts a form
file back into an IFDL source file, reversing the translation process of the IFDL Translator. To prevent
comments in your form from drifting, place them inside and at the start of syntactic blocks. A syntactic
block is an IFDL statement, declaration, or phrase that is bounded by a beginning and ending statement.

For example:

Field SALARY_FIELD
/* Don't reveal salaries to nonmanagers */
 CONCEALED
End Field

The Field and End Field statements are the beginning and end of a syntactic block.

Form Hierarchy
In DECforms, a form is hierarchical in structure. Example 1.1, "Structure of a Form in IFDL
Declarations" shows this hierarchy with a summary of the structure of a form in IFDL syntax.

Example 1.1. Structure of a Form in IFDL Declarations

FORM
 FORM DATA declarations
 FORM RECORD declarations
 RECORD LIST declarations
 LAYOUT declarations
 DEVICE declarations
 LANGUAGE clause
 UNITS declaration
 SIZE clause

4

Chapter 1. Independent Form Description Language

 LIST declarations
 ATTRIBUTE declarations
 DISPLAY VIEWPORT clause
 VIEWPORT declarations
 FUNCTION declarations
 FUNCTION RESPONSE declarations
 EXTERNAL RESPONSE declarations
 INTERNAL RESPONSE declarations
 CONTROL TEXT RESPONSE declarations
 FIELD DEFAULT declarations
 LITERAL DEFAULT declarations
 Field default application
 Literal default application
 HELP PANEL declaration
 MESSAGE PANEL declaration
 PANEL declarations
 panel properties
 ACCEPT RESPONSE declarations
 HELP PANEL declaration
 Field default applications
 Literal default applications
 PICTURE FIELD declarations
 TEXT FIELD declarations
 SLIDER FIELD declarations
 PUSH BUTTON declarations
 ICON declarations
 field positioning clauses
 item description entries
 Literal declarations
 GROUP declarations
 Fields, icons, buttons, scroll bars, and literals
END FORM

1.1.1. IFDL Syntax Conventions
The IFDL observes the following metalanguage conventions (rules by which the language refers to
itself) in syntax diagrams:

● Clauses must appear in the order in which they appear in the syntax diagrams, unless specifically
stated otherwise.

● Uppercase words are required unless they appear in an optional choice;words beginning with a
percent sign (%) indicate a word that is always required.

● Lowercase words are generic terms indicating entries that you must provide.

● Brackets ([]) enclose an optional part of a general format. When brackets enclose vertically stacked
entries, they indicate that you can select only one of the enclosed entries. For example, if the syntax
diagram is as follows:

You can choose one of the following:

Apple

5

Chapter 1. Independent Form Description Language

Banana
Nothing — neither Apple nor Banana

● Braces ({ }) indicate that you must select only one of the enclosed entries. For example, given the
example that follows:

You must choose one of the following:

Apple
Banana

● Vertical bars enclosed by braces ({| |}) indicate a mandatory choice. You must select one or more of
the entries in any order, but you can use each entry only once. For example, given the example that
follows:

You must choose one of the following:

Apple
Banana
Apple Banana
Banana Apple

● Vertical bars enclosed by brackets ([| |]) indicate an optional choice. You can select zero or more of
the entries, but you may choose each entry only once. For example, given the example that follows:

You can choose one of the following:

Apple
Banana
Apple Banana
Banana Apple
None of the above

● For all vertically stacked entries,the choices are those printed on the same indentation level. A given
choice can extend over more than one line by indenting additional lines.

● An ellipsis (...) indicates that you can repeat the format between the matched pair of delimiters
immediately preceding the ellipsis. For example, given the example that follows:

You can choose an infinite number, including:

Apple
Banana

6

Chapter 1. Independent Form Description Language

Apple Banana
Banana Apple
Banana Banana Apple
Apple Banana Apple Banana Apple Banana

● Lowercase hyphenated phrases indicate clauses that are expanded in an individual syntax section,
implementor names,or user-defined information as specified in the list of user-defined names. If the
phrase is a syntax clause that is expanded, you are directed to the appropriate syntax section.

1.1.2. Name Sharing
IFDL entities (or elements, such as panels and fields)can have the same names, providing that they are
different types of entities. This is called name sharing. Different form entities can share names if they
obey the following rules:

● A form and its layouts can share names with any other kind of form entity; any form entity can have
the same name as its layout and form. A layout is the map of a form to a display. The layout controls
the user's view of the form.

● Record fields can share names with all other form entities;all other form entities can have the same
names as record fields.(If a record field without a data transfer clause has the same qualified name as
a form data item, data transfer occurs by default between those two items.)

● Any entity that is declared inside a layout can share names with any entity declared in another layout.

● In addition to the preceding rules, the entities listed in Table 1.1, "Rules for Name Sharing Among
Dissimilar Entities" can share names.

Table 1.1. Rules for Name Sharing Among Dissimilar Entities

Named Entity Possible Name Shares

Data group Panel group, record group
Data item Panel field
Function name Function response
Function response Functions in the same layout, function responses at different levels in

the layout
Panel field Data item
Panel group Data group, record group
Receive response Record, record list, send and transceive responses
Record Send response, receive response, transceive response
Record group Panel group, data group
Record list Send response, receive response, transceive response
Send response Record, record list, receive and transceive responses
Transceive response Record, record list, send and receive responses

● If two entities are of the same type, they can share names if the entities are declared in different
structures. For example, you can have more than one panel named CHOICE_PANEL, as long as
each CHOICE_PANEL is declared in a different layout. Table 1.2, "Name Sharing Among Similar
Entities" shows the entity and the structure in which its possible name share must be declared.

7

Chapter 1. Independent Form Description Language

Table 1.2. Name Sharing Among Similar Entities

Named Entity Shared Name Structure

Attribute name Layout
Button Panel
Control text response Layout
Field1 Panel
Function name Layout
Function response Button, field, group, icon, layout, panel
Group1 Panel
Icon1 Panel
Internal response Layout
List Layout
Named field default Layout
Named literal default Layout
Panel Layout
Receive response Layout
Record field1 Record
Send response Layout
Terminal type Layout
Transceive response Layout
Viewport Layout

1Must have a qualified name. For information on qualified names, see the FORM DATA declaration.

1.2. IFDL Syntax Descriptions
This section contains descriptions of all IFDL syntax elements in alphabetical order. Each syntax
diagram shows you how the elements of a clause, phrase, or statement are arranged. Each syntax
description contains the following:

● Overview of the syntax element

● Syntax diagram of the language element

● Set of syntax rules

● Examples

ACCEPT RESPONSE Declaration
ACCEPT RESPONSE Declaration — The ACCEPT RESPONSE declaration specifies the action the
Form Manager takes when certain events occur during the accept phase of form processing. During
accept phase, activation items can accept input from an operator. The ACCEPT RESPONSE declaration
allows you to customize processing during run time, primarily during accept phase. The specific events

8

Chapter 1. Independent Form Description Language

include field input validation; function entry; and the beginning and end of panel, icon, panel field,
button, and field group processing during entry and exit response processing.

accept-response-declaration

Format

Where you specify this clause:

Syntax Rules
entry-response-declaration

Performs a response when a panel, group, field, button, or icon becomes the current activation item.
There is no default response for entry response processing. For more information, see the ENTRY
RESPONSE declaration syntax section.

NO ENTRY RESPONSE

Specifies that no entry response is performed when a panel, group, field, button, or icon becomes the
current activation item. Use NO ENTRY RESPONSE to override field defaults to customize form
processing.

exit-response-declaration

Performs a response when the Form Manager exits a panel, group, field,button, or icon. Exit responses
for the group and panel level are called when the Form Manager exits the last active field, button, or icon
of the group or panel, and after the last active item's exit response is executed.

There is no default response for exit response processing. For more information, see the EXIT
RESPONSE declaration syntax section.

NO EXIT RESPONSE

Specifies that no exit response is performed when the Form Manager exits a panel, group, field, button,
or icon. Use NO EXIT RESPONSE to override field defaults to customize form processing.

function-response-declaration

Performs a response when the operator enters a function. For more information, see the FUNCTION
RESPONSE declaration syntax section.

NO FUNCTION RESPONSE

9

Chapter 1. Independent Form Description Language

Specifies that no function response is performed when the operator enters a function. Use NO
FUNCTION RESPONSE to override field defaults to customize form processing.

validation-response-declaration

Performs a response when the operator has completed input into a field, icon, button, or group. There
is no default response for validation response processing. For more information, see the VALIDATION
RESPONSE declaration syntax section.

NO VALIDATION RESPONSE

Specifies that no validation response is performed when the operator has completed input into a field,
icon button, or group. Use NO VALIDATION RESPONSE to override field defaults to customize form
processing.

Example
The following IFDL syntax shows examples of each type of accept response.

 .
 .
 .
Panel P1
 Group G1
 Entry Response
 Message "Abandon hope all ye who enter here"
 End Response
 Field F1
 Exit Response
 If G1.F1 = 5 Then Position to Field F3 On P2 End If
 End Response
 Validation Response
 If G1.F1 >= 6 or G1.F1 <= 0 Then
 Message "Please enter a number from 1 to 5"
 Invalid
 End If
 End Response
 End Field
 Field F2
 Function Response Next Panel
 Message "There is no next panel"
 End Response
 End Field
 End Group
End Panel

When Group G1 is entered, an entry response displays the message “Abandon hope all ye who
enter here ”.

If form data item G1.F1 equals 5, an exit response executes a POSITION response step. Field F3 is
on a previous panel.

This validation response is interpreted after input to Field G1.F1 is completed. If the validation is
within the specified range, the operator moves on to the next field. If the validation is not within
the specified range, the message “Please enter a number from 1 to 5” is displayed.

A function response occurs when the operator enters the NEXT PANEL function. The function
response in this case displays a message stating “There is no next panel”.

10

Chapter 1. Independent Form Description Language

ACTIVATE Response Step
ACTIVATE Response Step — The ACTIVATE response step adds items to the activation list.

activate-response-step

Format

Where you specify this clause:

Syntax Rules

ACTIVATE

Puts the items listed on the activation list. The activation items are one or more panel fields, icons,
buttons, or requests to wait until the operator enters a function. The items are added after the current
activation item and after any other items added during this response. Once the items are on the activation
list they can receive operator input.

BUTTON button ON panel-name-1 (window layouts)

Causes button to be placed on the activation list. Panel-name-1 specifies the panel on which button
occurs. The operator is allowed to enter only function key input, not data input, into button.

BUTTON button-array ON panel-name-2 (window layouts)

Causes all the buttons in the array reference to be added to the activation list. Panel-name-2 specifies the
panel on which button-array occurs. The operator is allowed to enter only function key input, not data
input, into the buttons specified in button-array.

CORRESPONDING RECEIVE ALL

11

Chapter 1. Independent Form Description Language

Activates all panel fields that correspond to a record field in the current receive record. Not all such
panel fields on all panels are activated—only as many as necessary so that each form data item
corresponding to a record field has one of its panel fields on the activation list.

CORRESPONDING SEND PANELS

Activates wait activation items for panels that contain at least one panel field corresponding to a record
field in the current send record. Not all such panels are activated—only a sufficient number so that all
corresponding panel fields are displayed at least once.

If more than one panel contains the same field, the Form Manager activates the first field that it finds
that is not protected or concealed.

FIELD field ON panel-name-3

Causes field to be placed on the activation list. Panel-name-3 specifies the panel on which field occurs.
Field cannot have a PROTECTED attribute unless it is the PROTECTED WHEN attribute.

FIELD field-array ON panel-name-4

Causes all the panel fields in the array reference to be added to the activation list. Panel-name-4 specifies
the panel on which field-array occurs.

GROUP panel-group ON panel-name-5

Causes all fields, icons, and buttons in that declaration of the panel group to be added to the activation
list. The order of addition is the order of declaration within the group. Panel-name-5 specifies the panel
on which panel-group occurs.

GROUP panel-group-array ON panel-name-6

Causes all fields, icons, and buttons in the array reference to be added to the activation list. Panel-name-6
specifies the panel on which panel-group-array occurs.

ICON icon ON panel-name-7 (character-cell layouts)

Causes icon to be placed on the activation list. Icon is the name of the icon;the operator cannot input
data into icon, but function keys can be pressed in icon. Panel-name-7 specifies the panel on which icon
occurs.

ICON icon-array ON panel-name-8 (character-cell layouts)

Causes all the icons in icon-array to be added to the activation list. Icon-array is the name of the array;
the operator cannot input data into the icons specified in icon-array, but function keys can be pressed in
icon-array. Panel-name-8 specifies the panel on which icon-array occurs.

PANEL panel-name-9

Activates all fields, icons, and buttons on panel-name-9 in the order in which they are declared in the
panel.

WAIT [ON panel-name-10] (character-cell layouts)

Enters a wait activation item on the activation list. During accept phase, when the Form Manager
requests input for this activation item and panel-name-10 is specified, the Form Manager ensures that

12

Chapter 1. Independent Form Description Language

panel-name-10 is displayed and associates the wait with the panel (as far as position panel references are
concerned).

If you do not specify panel-name-10, the wait is not associated with any panel. In either case, the Form
Manager then allows the operator to enter a function (but no data). This function can be any built-in
function or a user function defined in a FUNCTION declaration whose function response applies to the
panel.

Note

Use of WAIT is discouraged because it is no longer in the FIMS standard. DECforms will continue to
support wait activation, but you are encouraged to change any forms that use waits. To achieve the same
effect as waits, you should use an icon, for character-cell layouts, or a button, for window layouts.

ALL

Activates all fields, icons, and buttons on all panels in the layout.

TIMEOUT integer

Specifies the number of seconds allowed for operator input. For more information, see the TIMEOUT
clause syntax section.

A TIMEOUT clause in an ACTIVATE response step overrides a TIMEOUT clause in a field, icon,
or button declaration. A TIMEOUT clause in an external request overrides a TIMEOUT clause in an
ACTIVATE response step.

General Rules
If an item is already on the activation list, an ACTIVATE response step for that activation item has no
effect. If an item of the same name is declared on more than one panel, it can appear as an activation
item once for each panel.

The ACTIVATE response step is ignored in PRINTER layouts.

Examples
1. Activate Wait On PANEL_P1

This activates a wait on PANEL_P1 in a character-cell layout.

2. Receive Response GET_CHECK
 Reset CHECK_PAYTO CHECK_AMOUNT CHECK_MEMO
 Activate Field CHECK_PAYTO On CHECK_PANEL
 Field CHECK_AMOUNT On CHECK_PANEL
 Field CHECK_MEMO On CHECK_PANEL
End Response

This example specifies that a RESET response step is performed when the GET_CHECK record
is received. The RESET response step specifies that the form data items CHECK_PAYTO,
CHECK_AMOUNT, and CHECK_MEMO are restored to their initial values. After the reset is
performed, the ACTIVATE response step activates the CHECK_PAYTO, CHECK_AMOUNT, and
CHECK_MEMO fields on CHECK_PANEL.

13

Chapter 1. Independent Form Description Language

ACTIVE HIGHLIGHT Clause
ACTIVE HIGHLIGHT Clause — The ACTIVE HIGHLIGHT clause allows you to specify additional
display attributes to apply to a panel entity when the panel entity becomes the current activation item
during accept phase.

active-highlight-clause
Format

Where you specify this clause:

Syntax Rules
ACTIVE HIGHLIGHT display-attribute-entry

Specifies that display-attribute-entry is to be applied to a field, button, or icon, in addition to its current
display attributes when the field, button, or icon becomes the current activation item during accept phase.
For more information, see the DISPLAY ATTRIBUTE entry syntax section.

NO ACTIVE HIGHLIGHT

Specifies that no active highlight is to be applied to the field, button, or icon.

General Rules
Attributes that change the size of a field or icon in a character-cell layout are not allowed for the
ACTIVE HIGHLIGHT item description entry. These attributes are SINGLE, NORMAL, DOUBLE
HIGH, and DOUBLE WIDE for font size or line width.

In Motif layouts, changing font sizes does change the size of an autosized field or button.

If your field, button, or icon already has specified attributes, and the application of the ACTIVE
HIGHLIGHT clause to the existing attributes would cause a conflict between attributes, the attribute
specified by the display attribute entry takes precedence.

Example
Field CHECK_PAYTO
 Same Line Next Column +1
 Output Picture x(35)
 Active Highlight Reverse
 Use Help Message "Enter the person or organization to whom you"
 " wish to pay the check."
 Minimum Length 1
 Message "You must fill in the payee."
End Field

In this example, when the field CHECK_PAYTO is entered, its current background and foreground
colors are reversed.

14

Chapter 1. Independent Form Description Language

ATOMIC Clause
ATOMIC Clause — The ATOMIC clause describes data items in records or form data. Atomic data
items are declared, interpreted, and stored as VAX atomic data types or the lowest level of system-
specific data types. The ATOMIC clause is used in form record and form data declarations.

atomic-clause

Format

Where you specify this clause:

Syntax Rules
BYTE INTEGER

Interprets the form data item as a signed two's complement integer. The valid range is –128 to 127. This
integer occupies one byte in a form record.

DFLOATING

Specifies a 64-bit floating point number with precision to approximately 16 decimal digits. Valid values
for this number are zero and those numbers whose absolute value is within the range of 0.29E-38 to
1.7E38, approximately. This number occupies eight bytes in a form record.

The DFLOATING data type on OpenVMS Alpha systems has 53 bits of precision; on OpenVMS VAX
systems, DFLOATING has 56 bits of precision.

FFLOATING

Specifies a 32-bit floating point number with precision to approximately seven decimal digits. Valid
values for this number are zero and those numbers whose absolute value is within the range of 0.29E-38
to 1.70E38, approximately. This number occupies four bytes in a form record. See SHORT FLOAT.

15

Chapter 1. Independent Form Description Language

GFLOATING

Specifies that the value in the form data item is an extended range 64-bit floating point number with
precision to approximately 15 decimal digits. Valid values for this number are zero and those numbers
whose absolute value is approximately within the range of 0.56E-308 to 0.9E308. This number occupies
eight bytes in a form record. See LONG FLOAT.

HFLOATING

Specifies that the value in the form data item is an extended range 128-bit floating point number with
precision to approximately 33 decimal digits. Valid values for this number are zero and those numbers
whose absolute value is within the range of 0.84E-4932 to 0.59E4932, approximately. This number
occupies 16 bytes in a form record.

LONG FLOAT

Specifies that the value in the form data item is the same as the GFLOATING data item.

VSI recommends that you use LONG FLOAT instead of GFLOATING for future portability.

LONGWORD INTEGER

Interprets the form data item as a signed two's complement integer. The valid range is –2,147,483,648 to
2,147,483,647. This integer occupies four bytes in a form record.

QUADWORD INTEGER

Specifies a form data item as a signed two's complement integer. The valid range is –
9,223,372,036,854,775,808 to 9,223,372,036,854,775,807. This integer occupies eight bytes in a form
record.

SFLOATING

Specifies that the value in the form data item is a floating point number that conforms to the ANSI/
IEEE754-1985 format for Basic Single.

Data specified as SFLOATING on OpenVMS VAX systems is converted to FFLOATING.

This number occupies four bytes in a form record. See SHORT FLOAT.

SHORT FLOAT

Specifies that the value in the form data item is the same as an FFLOATING data item. VSI
recommends that you use SHORT FLOAT instead of FFLOATING for future portability.

TFLOATING

Specifies that the value in the form data item is a floating point number that conforms to the ANSI/
IEEE754-1985 format for Basic Double.

This number occupies eight bytes in a form record. See LONG FLOAT.

Data specified as TFLOATING on OpenVMS VAX systems is converted to GFLOATING.

UNSIGNED BYTE

Declares an integer in the range of 0 to 255. This integer occupies one byte in a form record.

16

Chapter 1. Independent Form Description Language

UNSIGNED LONGWORD

Declares an integer within the range of 0 to 4,294,967,295. This integer occupies four bytes in a form
record.

UNSIGNED WORD

Declares an integer within the range of 0 to 65,535. This integer occupies two bytes in a form record.

WORD INTEGER

Interprets the form data item as a signed two's complement integer. The valid range is –32,768 to
32,767. This integer occupies two bytes in a form record.

XFLOATING

Specifies that the value in the form data item is an extended range 128-bit floating point number with
precision to approximately 33 decimal digits. Valid values for this number are zero and those numbers
whose absolute value is within the range of 0.84E-4932 to 0.59E4932, approximately.

This number occupies 16 bytes in a form record.

Data specified as XFLOATING on OpenVMS VAX systems is converted to HFLOATING.

General Rules
If you declare a form data item with a VALUE clause for these data types and the value is outside the
item's range, the IFDL Translator displays an error, and no form is created.

DECforms does not support the following VAX data types:

Bit
Bit Unaligned
Bound Label Value
Bound Procedure Value
Descriptor
D_Floating Complex
F_Floating Complex
G_Floating Complex
H_Floating Complex
Instruction Sequence
Octaword Integer
Octaword Unsigned
Procedure Entry Mask
Quadword Unsigned

Example
In this example from the DECforms sample application,a number of form data items are declared to have
different data types.

Form Data
 ACCOUNT_NUMBER unsigned longword
 AMOUNT unsigned longword
 CHECKING_BALANCE unsigned longword
 CHECK_MEMO character (35)

17

Chapter 1. Independent Form Description Language

 CHECK_NUMBER unsigned word
 .
 .
 .
End Data

The ACCOUNT_NUMBER, AMOUNT, and CHECKING_BALANCE form data items are
declared to be unsigned longwords.

The CHECK_NUMBER form data item has an unsigned word data type.

ATTRIBUTE Declaration
ATTRIBUTE Declaration — Use the ATTRIBUTE declaration to group together a set of display
attributes by name and to refer to them as a single entity. You can use the ATTRIBUTE declaration
to differentiate between display attributes for Motif and character-cell devices. If the list of attributes
designated by an attribute name contains in compatible attributes, the incompatible attribute that appears
latest in the list applies.

attribute-declaration
Format

for-clause

is-clause

Where you specify this clause:

Syntax Rules
attribute-name

The name you choose for the set of elementary attributes specified. Whenever you specify attribute-
name, all the attributes in the list are applied. Attribute-name must be unique in a layout.

for-clause

Specifies a terminal or list of terminals for which the attributes are valid within a layout. This clause
must specify only terminal names declared in the DEVICE declaration within the current layout. If for-
clausedoes not appear, the corresponding attributes apply to all terminals declared for the layout.

18

Chapter 1. Independent Form Description Language

There can be only one IS clause without a FOR clause in the ATTRIBUTE declaration, and it must be
the last IS clause in the declaration.

terminal-name

Specifies the terminal to which the attributes are applied, as follows:

● If the terminal is specified in a FOR clause for attribute-name, the attributes associated with the first
such FOR clause are applied.

● If the terminal is not specified in a FOR clause for attribute-name and there is no attribute
declaration for attribute-name without a FOR clause, no attributes are applied.

● If the terminal is not specified in a FOR clause for attribute-name and there is an ATTRIBUTE
declaration for attribute-name without a FOR clause, the attributes for that declaration are applied.

is-clause

Specifies elementary attributes or implementor names as the set of display attributes.

elementary-attribute

An attribute that can appear in a DISPLAY ATTRIBUTE declaration. Elementary attributes are display
characteristics like color and reverse. For more information on elementary attribute clauses,see the
Elementary Attribute declaration syntax.

implementor-attribute

A DECforms implementor-defined attribute that can appear in a DISPLAY ATTRIBUTE declaration.
For more information on implementor attributes, see the IMPLEMENTOR ATTRIBUTE declaration
syntax.

Examples
1. Attribute AS_NORMAL

 For VT100 Is Nobold
 Font Size Single
 Noreverse Nounderlined
End Attribute

The name AS_NORMAL is specified for a set of attributes for the terminal called VT100. The
attributes specified as AS_NORMAL are no bold, single font size, no reverse, and no underlined.

2. Attribute BIG
 For Noavo Is Font Size Double Wide
 Is Font Size Double High
End Attribute

The name BIG is specified for a set of attributes. For the terminal called Noavo, BIG specifies a
double-wide font size. For all other terminals, BIG specifies a double-high font size.

3. Attribute BLACK_PANEL
 Is Background Color Black
End Attribute

The name BLACK_PANEL is given to a set of attributes that specify black background color.

19

Chapter 1. Independent Form Description Language

BUILTIN FUNCTION Clause
BUILTIN FUNCTION Clause — Built-in functions are associated with terminal-related mechanisms
such as pressing keys, or pressing key sequences. You can use FUNCTION declarations to override
these associations. Built-in functions are associated with predefined function responses. You can use
FUNCTION RESPONSE declarations to override these predefined function responses. For information
on default key bindings for built-in functions, see Appendix F, "Built-In Functions".

builtin-function
Format

20

Chapter 1. Independent Form Description Language

Where you specify this clause:

Syntax Rules
BOUNDARY CURSOR DOWN (character-cell layouts)

Specifies a special function response that identifies a contextual situation rather than the entry of a
specific key.

If the cursor is in an icon, a wait,or is at the lowermost boundary of a field when the operator presses
a key bound to the CURSOR DOWN built-in function, the Form Manager invokes the BOUNDARY
CURSOR DOWN function response rather than move the cursor.

You can specify the BOUNDARY CURSOR DOWN function response to do something special;
for example, move the cursor to the next field. This function response allows you to specify special
processing for keys that are usually intrafield editing keys.

The default BOUNDARY CURSOR DOWN function repose is to display an error message.

BOUNDARY CURSOR LEFT (character-cell layouts)

Specifies a special function response that identifies a contextual situation rather than the entry of a
specific key.

If the cursor is in an icon, a wait, or is at the left boundary of a field when the operator enters a key
bound to the CURSOR LEFT built-in function, the Form Manager invokes the BOUNDARY CURSOR
LEFT function response rather than move the cursor.

You can specify the BOUNDARY CURSOR LEFT function response to do something special; for
example, move the cursor to a previous field. This function response allows you to specify special
processing for keys that are usually intrafield editing keys.

The default BOUNDARY CURSOR LEFT function response is to give an error message.

BOUNDARY CURSOR RIGHT (character-cell layouts)

Specifies a special function response that identifies a contextual situation rather than the entry of a
specific key.

If the cursor is in an icon, a wait,or is at the right boundary of a field when the operator enters a
key bound to the CURSOR RIGHT built-in function, the Form Manager invokes the BOUNDARY
CURSOR RIGHT function response rather than move the cursor.

You can specify the BOUNDARY CURSOR RIGHT function response to do something special;
for example, move the cursor to the next field. This function response allows you to specify special
processing for keys that are usually intrafield editing keys.

The default BOUNDARY CURSOR RIGHT function response is to display an error message.

BOUNDARY CURSOR UP (character-cell layouts)

Specifies a special function response that identifies a contextual situation rather than the entry of a
specific key.

If the cursor is in an icon, a wait, or is at the topmost boundary of a field when the operator enters a key
bound to the CURSOR UP built-in function, the Form Manager invokes the BOUNDARY CURSOR
UP function response rather than move the cursor.

21

Chapter 1. Independent Form Description Language

You can specify the BOUNDARY CURSOR UP function response to do something special; for
example, move the cursor to a previous field. This function response allows you to specify special
processing for keys that are usually intrafield editing keys.

The default BOUNDARY CURSOR UP function response is to give an error message.

BOUNDARY DELETE LEFT (character-cell layouts)

Specifies a special function response that identifies a contextual situation rather that the entry of a
specific key.

If the cursor is in an icon, a wait, or is at the left boundary of a field when the operator enters a key
bound to the DELETE CHARACTER built-in function, the Form Manager invokes the BOUNDARY
DELETE LEFT function response rather than move the cursor.

You can specify the BOUNDARY DELETE LEFT function response to do something special; for
example, move the cursor to the previous field. This function response allows you to specify special
processing for keys that are usually intrafield editing keys.

The default BOUNDARY DELETE LEFT function response is to do nothing.

BUILTIN FUNCTION (character-cell layouts)

Specifies that the Form Manager executes the BUILTIN FUNCTION function response when the key or
key sequence pressed is bound to a built-in function, but no function response is declared at this level.

CURSOR DOWN

Predefined function response that moves the cursor one character down.

CURSOR LEFT

Predefined function response that moves the cursor one character to the left.

CURSOR RIGHT

Predefined function response that moves the cursor one character to the right.

CURSOR UP

Predefined function response that moves the cursor one character up.

DELETE CHARACTER (character-cell layouts)

Predefined function response that deletes the character immediately to the left of the cursor.

This function response is ignored by the Form Manager unless it is specified in a character-cell layout.

DOWN ITEM

Predefined function response that moves the cursor down to the item below the current item. You can
use DOWN ITEM to move through the currently active panel.

DOWN OCCURRENCE

Predefined function response that moves the cursor to the next occurrence of the current activation item.
DOWN OCCURRENCE has meaning only when the active field is part of a vertically occurring group.

22

Chapter 1. Independent Form Description Language

DOWN OCCURRENCE specifies an occurrence of an item with a subscript at least one more than the
current subscript. If the item so specified is not currently displayed (in the case of a scrolled group), the
Form Manager scrolls the group to display the item.

ERASE FIELD (character-cell layouts)

Predefined function response that erases the entire field in which the cursor currently appears.

EXIT GROUP NEXT

Predefined function response that moves the cursor to the next itemon the activation list that either does
not belong to a group, or belongs to a group that does not contain the currently active item. To determine
the item specified in EXIT GROUP NEXT, the Form Manager looks forward through the activation list.

EXIT GROUP PREVIOUS

Predefined function response that moves the cursor to the first item on the activation list that either does
not belong to a group or belongs to a group that does not contain the currently active field. To determine
the item specified in EXIT GROUP PREVIOUS,the Form Manager looks back through the activation
list.

FOCUS CHANGE (window layouts)

Specifies a function response when the input focus changes to another field or button due to an external
event, like a mouse movement. FOCUS CHANGE is supported only for window layouts; it is ignored at
run time for all other layouts.

INSERT LINE (character-cell layouts)

Predefined function response that inserts a new-line character into a text field and moves the cursor
down to the new line created. There must be space left in the data item to insert a new line. If there is
not enough space,the predefined function response displays a “Field full” message.

For fields other than text fields, the predefined function response for INSERT LINE displays a message
to the operator stating that a new line cannot be inserted.

INSERT OVERSTRIKE (character-cell layouts)

Predefined function response that toggles between insert and overstrike mode.

Insert mode in a left-justified field causes typed characters to be inserted into the field; the remaining
characters in the field are shifted to the right.

Insert mode in a right-justified field causes typed characters to be inserted; characters to the left are
shifted further to the left.

Overstrike mode causes typed characters to overprint the character at the cursor position.

For character-cell text fields,the initial mode of INSERT OVERSTRIKE is overstrike. For picture fields,
the initial mode of INSERT OVERSTRIKE depends on the input picture. For more information on input
pictures, see the INPUT PICTURE Clause syntax section.

LEFT ITEM

Predefined function response that moves the cursor to the item closest to the current item on the left.

LEFT OCCURRENCE

23

Chapter 1. Independent Form Description Language

Designates another occurrence of the current activation item on the activation list. The predefined
function response moves the cursor to the previously active occurrence in the group of the current
activation item. LEFT OCCURRENCE has meaning only when the active item is part of a horizontally
occurring group.

LEFT OCCURRENCE specifies an occurrence of the item with a subscript at least one less than the
current subscript. If the item so specified is not currently displayed (in the case of a scrolled group), the
Form Manager scrolls the group to display the item.

NEXT HELP

Predefined function response displays the help message associated with the current activation item,if
present. If this message has already been displayed, NEXT HELP uses the ENTER HELP response step
to activate a help panel.

NEXT ITEM

Predefined function response moves the cursor to the next itemon the activation list.

NEXT PANEL

Predefined function response instructs the Form Manager to search forward through the activation list
and move the cursor to the next item on the activation list on a panel different from the panel of the
currently active item.

PREVIOUS ITEM

Predefined function response moves the cursor to the previous item on the activation list.

PREVIOUS PANEL

Predefined function response instructs the Form Manager to search backward through the activation
list and move the cursor to the first item on the activation list on a panel different from the panel of the
currently active item.

REFRESH DISPLAY (character-cell layouts)

Predefined function response erases the screen and repaints it.

RIGHT ITEM

Predefined function response moves the cursor to the item closest to the cursor in a right direction.

RIGHT OCCURRENCE

Designates another occurrence of the current activation item on the activation list. The predefined
function response moves the cursor to the next active occurrence in the group of the current activation
item. RIGHT OCCURRENCE has meaning only when the active item is part of a horizontally occurring
group.

RIGHT OCCURRENCE specifies an occurrence of the item with a subscript at least one more than the
current subscript. If the item so specified is not currently displayed (in the case of a scrolled group), the
Form Manager scrolls the group to display the item.

TERMINATE HELP

Predefined function response executes the EXIT HELP response step, if help is active.

TRANSMIT

24

Chapter 1. Independent Form Description Language

Predefined function response performs the RETURN response step if help processing is inactive, or the
EXIT HELP response step if help is active.

TRIGGER OBJECT (window layouts)

Specifies that the Form Manager execute the TRIGGER OBJECT function response when a button is
pushed (triggered).

UNDEFINED FUNCTION (character-cell layouts)

Specifies that the Form Manager execute the UNDEFINED FUNCTION function response when no
other function response is declared explicitly at this level for the key or key sequence pressed. The key
or key sequence may either be bound to a function in the FUNCTION declaration and have no function
response,or not be bound to any function.

UP ITEM

Predefined function response moves the cursor vertically upward to the item closest to the cursor.

UP OCCURRENCE

Predefined function response moves the cursor vertically upward to the item closest to the cursor. UP
OCCURRENCE has meaning only when the active field is part of a vertically occurring group.

UP OCCURRENCE specifies an occurrence of an item with a subscript at least one less than the current
subscript. If the item so specified is not currently displayed (in the case of a scrolled group), the Form
Manager scrolls the group to display the field.

USER FUNCTION (character-cell layouts)

Specifies that the Form Manager executes the USER FUNCTION function response when the key or key
sequence pressed is bound to a user-defined function, but no function response is declared at this level.

VALUE CHANGED (window layouts)

Specifies that the Form Manager execute the VALUE CHANGED function response when the slider bar
in a slider field in a window layout is moved. This function response is executed when the slider field
value changes even if the slider field value is reset to its current value.

General Rules
There is no default function response for a user-defined function.

The following restrictions apply to built-in functions:

● Two built-in functions cannot be bound to the same key or key sequence.

● A built-in function cannot be bound to a key that begins another built-in function key sequence.

These rules apply to all function key bindings, including explicitly defined built-in function bindings and
default built-in key bindings. For information on default built-in key bindings, see Appendix F, "Built-In
Functions".

Example
Function INSERT LINE
Is %CARRIAGE_RETURN
End Function

25

Chapter 1. Independent Form Description Language

This example specifies that the INSERT LINE built-in function occurs when the carriage return key
is pressed. This definition for the carriage return key takes precedence over a predefined default for
carriage return (NEXT ITEM).

CALL Response Step
CALL Response Step — The CALL response step issues an escape routine—a user-supplied subroutine
call—from the form.

call-response-step
Format

Where you specify this clause:

Syntax Rules
CALL string-1

Issues a subroutine call with the parameters specified. String-1 is forced to uppercase in the object file.

Once a passing mechanism is specified, all subsequent arguments are passed using the specified
mechanism until a different mechanism is specified. The Form Manager calls the escape routine using
string-1 as the identification (the subroutine name) of the escape routine.

USING

Specifies parameters passed to the escape routine.

BY REFERENCE

Directs the Form Manager to pass the argument's address to the escape routine. The escape routine can
change the argument's value.

BY DESCRIPTOR

Directs the Form Manager to pass the address of an OpenVMS descriptor containing the length, data
type, and address of the data to the escape routine for each subsequent argument.

The escape routine should not modify the data type, class, length,or pointer fields in the descriptor itself
—only the data pointed to by the descriptor's pointer field can be modified. Modifying the descriptor
may produce unpredictable results.

26

Chapter 1. Independent Form Description Language

BY VALUE

Directs the Form Manager to pass the argument's 32-bit value to the escape routine in a temporary
location. If the escape routine changes the value of the argument, the form data item is not changed, and
no data collection is performed.

You can pass only byte, word, longword, ffloating, and short float data items by value.

BY DEFAULT

Directs the Form Manager to pass subsequent arguments by the default passing mechanism, depending
on the data item type. See Table 1.3, "Passing Mechanisms by Data Type" for default passing
mechanisms.

string-2

Specifies a character string to pass to the escape routine as a parameter. The default passing mechanism
for string-2 is by descriptor.

data-1

Specifies a form data item to pass to the escape routine as a parameter. By default, the Form Manager
passes the following types by reference:

unsigned byte
byte integer
unsigned word
word integer
unsigned longword
longword integer
quadword integer
ffloating
dfloating
gfloating
hfloating
sfloating
tfloating

By default, the Form Manager passes character, integer, decimal, and float data types by descriptor.

record-name

Specifies a record to pass to the escape routine as a parameter.

Before making the call, the contents of the record are collected as described in the data collection phase
of the Form Manager in its actions to satisfy a RECEIVE request.

After making the call, the contents of the record are distributed as described in the data distribution
phase of the Form Manager in its actions to satisfy a RECEIVE request. By default, the Form Manager
passes record-name by reference.

GIVING data-2

Allows the procedural escape to return a status value to the form. The parameter data-2 is restricted to
the longword integer data type.

27

Chapter 1. Independent Form Description Language

General Rules
The escape routine can make requests of the Form Manager before returning to the Form Manager
to complete the procedural escape. The contents of the SESSION built-in form data item and the
PARENTREQUESTID built-in form data item should be passed as two of the arguments when such
requests are on the same session.

If the escape routine makes a request of the Form Manager that uses a different session,
PARENTREQUESTID should be passed as one of the arguments.

If the escape routine makes a request of the Form Manager, the Form Manager satisfies the request and
returns control to the escape routine as for any other request. However, if the escape routine makes a
request of the Form Manager that uses a different session, the Form Manager rejects any attempt by an
escape routine to disable the session or the form that generated the call on the escape routine.

After the Form Manager receives control back from the escape routine, it resumes interpreting the
response.

When the CALL response step is used with the GIVING clause, the value returned to the GIVING
clause is moved to form data before the arguments are copied back to form data. Moving the value to
form data may cause unexpected results when you specify the same form data item in the USING and
GIVING clauses. For more information, see the Examples section.

Table 1.3, "Passing Mechanisms by Data Type"shows the passing mechanisms for each data type. Every
data type is not supported on every operating system:an asterisk in the column means that the data type
is supported on both OpenVMS Alpha and OpenVMS VAX. The word default, unless modified by a
specific operating system, indicates that this is the default passing mechanism for the data type on both
operating systems.

Table 1.3. Passing Mechanisms by Data Type

Data Type By Value By Reference By Descriptor

ADT Default *
Byte Integer * Default *
Character(x) Default
Character(x)
Null Terminated

Default *

Date Default *
DateTime(x) Default
Decimal(x,y) Default
Dfloating Default *
Ffloating * Default *
Float(x,y) Default
Gfloating Default *
Hfloating Default *
Integer(x) Default
Long Float Default *
Longword Integer * Default *
Quadword Integer Default *

28

Chapter 1. Independent Form Description Language

Data Type By Value By Reference By Descriptor

Record Default *
Sfloating Default *
Short Float * Default *
"string value" Default
Tfloating Default *
Time Default *
Tm Default *
Unsigned Byte * Default *
Unsigned Longword * Default *
Unsigned Word * Default *
Word Integer * Default *

Examples
1. Call "MY_PROG" Using By Default DATA45

This example calls an escape routine named MY_PROG by using the default calling mechanism for
form data item DATA45.

2. Call "INCREMENT_DATA_ITEM"
 Using MY_DATA_ITEM /*not recommended*/
 Giving MY_DATA_ITEM

This example calls an escape routine, INCREMENT_DATA_ITEM,that increments a form data item
by one. However, because the USING clause is processed after the GIVING clause, the original value
of MY_DATA_ITEM passed to the escape routine is written over the value returned by the GIVING
clause.

COLOR Clause
COLOR Clause — The COLOR clause specifies the color for an element in a layout.

color-clause
Format

29

Chapter 1. Independent Form Description Language

Where you specify this clause:

Syntax Rules
COLOR

Specifies the color that you are choosing. COLOR and COLOUR are equivalent.

number-1, number-2, number-3

Specifies a color in the RGB color system. Each number is a floating point number that represents
an intensity of the three primary colors: red, green, and blue. Number-1 represents the red intensity;
number-2 the green intensity; number-3 the blue intensity. Each value must be in the range of 0 to 1,
inclusive.

UNCHANGED

Specifies that the color is not modified from any previous color that is set for the entity being specified:
viewport, panel field,button, icon, or literal. Within window layouts, COLOR UNCHANGED specifies
that no color is assigned to the entity being specified,allowing the resource file for the window
environment to provide a default.

BLACK

Symbolic name for 0, 0, 0 in RGB notation.

BLUE

Symbolic name for 0, 0, 1 in RGB notation.

GREEN

Symbolic name for 0, 1, 0 in RGB notation.

CYAN

Symbolic name for 0, 1, 1 in RGB notation.

RED

Symbolic name for 1, 0, 0 in RGB notation.

MAGENTA

Symbolic name for 1, 0, 1 in RGB notation.

YELLOW

Symbolic name for 1, 1, 0 in RGB notation.

WHITE

Symbolic name for 1, 1, 1 in RGB notation.

string

30

Chapter 1. Independent Form Description Language

Allows you to specify a windows-named color within a window layout. The list of named colors is
specified by a DECwindows server startup file and may vary from system to system.

If a named color cannot be used at run time, the Form Manager defaults to COLOR UNCHANGED.

General Rules
The IFDL Translator does not validate color; the Form Manager determines whether the display devices
declared in the layout can display the specified color at run time.

DECforms supports two types of color on character-cell devices: ReGIS color and ANSI color.

ReGIS™ color is supported only on VT241 and VT320 terminals. You can specify ReGIS color at
either the viewport or panel level using the DISPLAY VIEWPORT clause. You can specify the color of
the screen background, the screen foreground, the bold foreground, and the reverse foreground. You
can specify a maximum of four different colors for the screen. To use ReGIS color, you must type the
following command before calling your DECforms application:

$ SET TERMINAL/REGIS

ANSI color is supported on terminal emulators for color workstations only and on the VT525 terminal.
You can specify ANSI color at the panel object level (fields, buttons, literals, icons, and groups) by using
the DISPLAY BACKGROUNDCOLOR and DISPLAY FOREGROUND COLOR clauses.

With ANSI color, you can specify the panel background and foreground using the DISPLAY
VIEWPORT BACKGROUND and DISPLAY VIEWPORT FOREGROUND clauses. You can specify
the color of the screen background, the screen foreground, the bold foreground, and the reverse
foreground. You can specify a maximum of eight different colors at one time. To display ANSI color,
type the following command before calling your DECforms application:

$ SET TERMINAL/REGIS/BLOCK

Do this before calling your application.

You can specify color in any layout. If a device supports color and the color attribute is present, color is
displayed. In all other cases, the presence of the color attribute is ignored.

Defaults
Character-Cell Layouts

If not specified, color defaults to COLOR UNCHANGED.

Window Layouts

If not specified, color defaults to COLOR UNCHANGED.

Examples
1. COLOR 1, 0, 0

This COLOR clause specifies red.

2. COLOR RED

This COLOR clause specifies red.

31

Chapter 1. Independent Form Description Language

3. COLOUR UNCHANGED

This COLOR clause specifies that the color remain unchanged.

4. COLOUR 1, 0, 1

This COLOR clause specifies magenta.

5. COLOR .7921568, .6666666, .5686274

This COLOR clause specifies a shade of beige.

CONCEALED Clause
CONCEALED Clause — The CONCEALED clause specifies the conditions under which a picture field,
text field, or icon is displayed or hidden on a panel.

concealed-clause

Format

Where you specify this clause:

Syntax Rules
CONCEALED [WHEN conditional-expression]

Specifies the condition under which afield or icon is concealed. If conditional-expression is true, the
panel field or icon is concealed; if it is false, the panel field or icon is displayed.

NOT CONCEALED

Specifies that the field or icon is displayed to the operator.

General Rules
When the CONCEALED clause is applied to a field in a window layout, the contents of that field are no
longer visible. If this concealed field gets input focus and the operator enters characters into that field,
these characters are added to the end of the concealed value.

In a similar fashion, if the operator presses the Delete key to delete characters from a concealed field,
characters are deleted one at a time from the end of the concealed value.

Moving the arrow keys does not change the insert cursor or the delete cursor position when a field is
concealed. The only editing key allowed is the Delete key. All other editing keys have no effect.

If any form data item in conditional-expression changes, the effect of the WHEN clause is immediately
recalculated.

32

Chapter 1. Independent Form Description Language

The CONCEALED clause does not remove any borders or shadows on window layout fields. Those
must be removed with the HIGHLIGHT clause.

CONCEALED without WHEN specifies that the panel field or icon is not displayed to the operator.
The CONCEALED clause is ignored for buttons and slider fields in window layouts. The shadow of
concealed fields in window layouts is visible unless the NOSHADOW attribute is used.

For more information on conditional expressions, see the CONDITIONAL EXPRESSION syntax
section.

Examples
1. Icon CHOICE_CASH_100

 Active Highlight Reverse
 Concealed When CHECKING_BALANCE < 10000
 Protected When CHECKING_BALANCE < 10000
 .
 .
 .
End Icon

This example specifies that the icon CHOICE_CASH_100 is not displayed when the checking
account balance is less than 10 000(which is $100.00 when the 10 000 units are pennies).

2. Field PASSWORD
 Line 5 Column 5
 Concealed
End Field

This example specifies a field that can receive input but whose value is invisible.

CONDITIONAL EXPRESSION
CONDITIONAL EXPRESSION — A conditional expression produces a logical value by combining
relations, numeric and string expressions, relational operators, and conditions.

conditional-expression
Format

conditional-term

relation

33

Chapter 1. Independent Form Description Language

relational-op

Where you specify this clause:

Syntax Rules
conditional-term-1

Specifies the first operand in the expression.

AND

Specifies the logical AND operator. The result of an AND is true when conditional-term-1 and
conditional-term-2 are both true; otherwise, the result is false.

OR

Specifies the logical OR operator—logical inclusive OR. The result of an OR is true when either
conditional-term-1 or conditional-term-2 is true, or both are true; otherwise, the result is false.

XOR

Specifies the logical XOR operator—logical exclusive OR. The result of an XOR is true when
conditional-term-1 is true and conditional-term-2 is false, or when conditional-term-1 is false and
conditional-term-2 is true;otherwise the result is false.

conditional-term-2

Specifies the second operand in the expression.

NOT

Specifies the NOT logical operator. The result of a NOT is true when the operand (elementary condition,
relation,or conditional expression) it is applied to is false. The result of a NOT is false when the operand
(elementary condition, relation, or conditional expression) it is applied to is true.

elementary-condition

A DECforms elementary condition is a predefined condition used during accept phase processing to
indicate the status of the activation list and the status of accept phase. Elementary conditions are either
true or false. The elementary conditions are as follows:

ACCEPT PHASE
CONVERTED
EMPTY FIELD

34

Chapter 1. Independent Form Description Language

FIRST DISPLAYED HORIZONTAL
FIRST DISPLAYED VERTICAL
FIRST ITEM
FIRST OCCURRENCE HORIZONTAL
FIRST OCCURRENCE VERTICAL
FULL FIELD
GROUP FIRST ITEM
GROUP LAST ITEM
GROUP OTHER ITEM
HELP ACTIVE
HELP MESSAGE AVAILABLE
HELP MESSAGE EXISTS
HELP PANEL EXISTS
IMMEDIATE
LAST DISPLAYED HORIZONTAL
LAST DISPLAYED VERTICAL
LAST ITEM
LAST OCCURRENCE HORIZONTAL
LAST OCCURRENCE VERTICAL
LEFTMOST ITEM
LOWERMOST ITEM
OTHER DISPLAYED HORIZONTAL
OTHER DISPLAYED VERTICAL
OTHER ITEM
OTHER OCCURRENCE HORIZONTAL
OTHER OCCURRENCE VERTICAL
PANEL FIRST ITEM
PANEL LAST ITEM
PANEL OTHER ITEM
RIGHTMOST ITEM
UPPERMOST ITEM
VALIDATED
VALIDATION STARTED

The VSI DECforms Programmer's Reference Manual lists the meanings of the DECforms elementary
conditions. Elementary conditions can be used only in IF response steps.

relation

Specifies a comparison of two operands.

conditional-expression

Specifies an expression made up of relations and elementary conditions, yielding a logical value of true
or false.

numeric-expression-1

Specifies a numeric expression as the first operand in a relation. For more information, see the
NUMERIC EXPRESSION syntax section.

string-expression-1

Specifies a string expression as the first operand in a relation. For more information, see the STRING
EXPRESSION syntax section.

35

Chapter 1. Independent Form Description Language

relational-op

A valid relational operator can be one of the following:

< less than
<= less than or equal to
> greater than
>= greater than or equal to
= equal to
<> not equal to

Only the results of relational operators can be used as operands with the AND, OR, and XOR logical
operators.

numeric-expression-2

Specifies a numeric expression as the second operand in a relation. For more information, see the
NUMERIC EXPRESSION syntax section.

string-expression-2

Specifies a string expression as the second operand in a relation. For more information, see the STRING
EXPRESSION syntax section.

General Rules
Elementary conditions and relational operators produce logical values. Only logical values can be
operands of AND, OR, XOR, and NOT.

Only numeric and string values can be operands of the relational operators.

Example
1. IF ((FUNCTIONNAME = 'FIRST ITEM') AND (data_item_1 <> 5))

In this example, a response step is executed if FUNCTIONNAME is set to FIRST ITEM and the
value of data_item_1 is not equal to 5.

2. PROTECTED WHEN ((data_item_1 <> 5) OR (data_item_2 = "1"))

In this example, when data_item_1 is not equal to 5 or data_item_2 equals “1 ”, a WHEN condition
is true, and the field, button, or icon is protected.

3. If SALARY > 8 * MINIMUM_SALARY And COMPANY_NAME = "Ben & Jerrys" Then
 Message "Salary too big"
 Invalid
End If

In this example, when the value in SALARY is greater than eight times that of the lowest paid
employee in the company, MINIMUM_SALARY, and the company is “Ben & Jerrys”, a message
stating "Salary too big" is displayed and the current activation item is marked as invalid.

4. Protected When EMPLOYEES(**).TAX_EXEMPT = 1 Or EMPLOYEES(**).AGE > 65

In this example, a field in a multiply occurring group is protected if an employee has taken 1 as her
exemption, or she is over 65.

36

Chapter 1. Independent Form Description Language

CONTROL TEXT RESPONSE Declaration
CONTROL TEXT RESPONSE Declaration — When an application executes a request and sends
control text with the request, the Form Manager interprets the control text response associated with that
control text.

control-text-response-declaration
Format

Where you specify this clause:

Syntax Rules
CONTROL TEXT RESPONSE

Performed when the application sends control text to the form. Only one control text response for a
given control text literal can appear in each layout. You can use control text to send information to the
form and perform an action without transmitting a form record.

The default control text response is to do nothing.

string

Specifies a string as control text. You must specify string as follows:

● It must consist of printable characters.

● It must be at least one character long, and can be up to five characters long.

● It must contain at least one nonspace character.

The DECforms Form Manager does case-insensitive matching of control text strings at run time.

response-step

Specifies the response steps performed during the control text response. For more information,see the
RESPONSE STEP clause syntax section.

Example
Control Text Response 'WIN'
 Display WINNER_PANEL
 If CURRENT_SCORE > PREV_SCORE
 Signal %bell
 End If
End Response

37

Chapter 1. Independent Form Description Language

In the preceding example, when the Form Manager receives the control text ’WIN’, WINNER_PANEL
is displayed. If the value of CURRENT_SCORE is greater than the value of PREV_SCORE, a bell is
rung to indicate that this score is the big winner.

COPY Statement
COPY Statement — The COPY statement incorporates source text from one IFDL source file, Oracle
CDD/Repository™, or a text library, into another IFDL source file.

copy-statement
Format 1

Where you specify this clause:

Format 2

Where you specify this clause:

Syntax Rules: Format 1
Use Format 1 to copy any IFDL source text into an IFDL source file. You can specify this format in an
IFDL source file anywhere IFDL source text can occur. However, the text that you want to copy cannot
contain a COPY statement.

file_name

38

Chapter 1. Independent Form Description Language

A file specification for a sequential text file with a default file extension of .IFDL. You need not contain
file_name within quotation marks; however, if you are specifying a file name that matches an IFDL
reserved word, or if you use brackets ([]) in your file specification, placing it within single or double
quotation marks assures correct translation.

If a directory location is not specified in your file name, the IFDL Translator searches for your file using
the search path specified in the /INCLUDE qualifier of the forms translate command, or in your working
directory. For more information on these options, see the DCL forms translate command line syntax.

text_name

The name of a module in library_name. Text_name can be enclosed in single (’)or double (") quotes.

library_name

An OpenVMS Librarian text library. The default extension for library_name is .TLB. This file
specification must be contained within a pair of single (’ ’) or double (" ")quotation marks.

Syntax Rules: Format 2
Use a Format 2 COPY statement only for record fields,panel fields, and form data on OpenVMS
systems. Specifically, a Format 2 COPY statement can copy the following:

● Oracle CDD/Repository record descriptions, or an elementary field or group within Oracle CDD/
Repository record descriptions, into a form record definition.

● An elementary field or group in a Oracle CDD/Repository record description into a form data
definition.

● All the elementary fields and groups in a Oracle CDD/Repository record description into form data.

● An elementary field in a Oracle CDD/Repository record description into a panel field definition.

● A record referenced through an RDB$RELATION.

record_name

A node in Oracle CDD/Repository whose protocol is CDD$RECORD. Record_name must conform to
the rules for user-defined Oracle CDD/Repository names and can represent a partial or complete Oracle
CDD/Repository name. If you specify a partial Oracle CDD/Repository name, this name must be unique
with respect to other Oracle CDD/Repository names.

If record_name is a logical name, the resultant path name must conform to all rules for Oracle CDD/
Repository path names.

If there is a structure declaration immediately inside the record declaration, you must give the structure
and the record the same name. The IFDL Translator ignores the CDDL structure immediately within the
RECORD declaration.

The following restrictions apply to the Oracle CDD/Repository representation of the contents of
record_name:

● Period (.) must be used to represent a decimal point.

● Comma (,) must be used to represent a comma.

● Dollar sign ($) must be used as the currency sign.

39

Chapter 1. Independent Form Description Language

To designate any other characters to be used in displaying records, you must use the DECIMAL POINT
IS COMMA or the CURRENCY SIGN editing clauses in either the source form or in the Oracle CDD/
Repository record definition.

If you are specifying a Oracle CDD/Repository record name that matches an IFDL reserved word, or
if you are specifying an anchor and need to use brackets ([]) in your record name, you must place the
record name within quotation marks (" ").

FIELD IS field_name

This clause is optional; if you use field_name, it must be the qualified name of an elementary field
structure in the Oracle CDD/Repository record description. If you specify a qualified Oracle CDD/
Repository field name in the FIELDIS clause of the COPY statement, you can copy appearance-related
information from a Oracle CDD/Repository field that has a different name than the panel field in the
IFDL file.

FROM DICTIONARY

This clause specifies that the record description is from the Oracle CDD/Repository.

In form data and form records, you can use the FIELD IS clause with COPY FROM DICTIONARY to
select a particular field from the Oracle CDD/Repository record definition by specifying the qualified
name of the field. If you specify a Oracle CDD/Repository structure, you get that structure and its
contents.

In panel fields, you can use the COPY FROM DICTIONARY clause to extract appearance-related
information from Oracle CDD/Repository. If you specify the FIELD IS clause, you can get the
appearance-related information from the field you name.

If you do not specify the FIELD IS clause, the qualified name of the field in the Oracle CDD/Repository
that you specify in the COPY statement must match the qualified name of the panel field in the IFDL
file that contains the COPY statement.

The DECforms IFDL and Oracle CDD/Repository use different data types. When the IFDL Translator
copies an Oracle CDD/Repository record description, some data types are converted directly to IFDL
data types, some data types are ignored, and some data types cause the IFDL Translator to display a
compilation error. Table B.1, "DECforms Data Types and Corresponding Oracle CDD/Repository and
VAX Data Types" in Appendix B, " DECforms Data Types" lists Oracle CDD/Repository data types and
the conversion result for each.

You can use the TRANSFER clause to avoid naming conflicts between Oracle CDD/Repository record
descriptions and IFDL reserved words. For more information, see the description of record-field in the
TRANSFER clause.

DECforms supports the following Oracle CDD/Repository attributes only:

● Data type, as described in Appendix B, " DECforms Data Types".

● Scale. However, DECforms does not support scaled binary integers. If Oracle CDD/Repository
specifies a scale value for a binary integer, DECforms considers the value as an appearance attribute
rather than a data attribute.

● Initial value. This applies only to form data; the IFDL Translator ignores initial values for form
record fields and panel fields.

● Array bounds that are mapped into a base and into an occurs value. There are other restrictions on
arrays:

40

Chapter 1. Independent Form Description Language

• Only one-dimensional arrays are supported.

• Arrays must have names.

• Data items may have structures, not array bounds.

● Alignment on form record groups and form record fields. The IFDL Translator ignores form data
and panel field alignment.

● Variants, in Common Dictionary Operator (CDO) libraries only. The IFDL Translator processes only
the first variant; it ignores the others.

● The IFDL Translator also supports the following Oracle CDD/Repository attributes:

• BASED ON

• CURRENCY IS

• DECIMAL POINT

• HELP_TEXT

• INPUT_VALUE REQUIRED

• JUSTIFIED DECIMAL

• JUSTIFIED LEFT

• JUSTIFIED RIGHT

• OCCURS DEPENDING ON

The IFDL Translator ignores these attributes except in panel fields. If the panel field specifies
PROTECTED, NO HELPMESSAGE, or USE HELP MESSAGE before the COPY FROM
DICTIONARY clause, the HELP_TEXT attribute is ignored. OCCURS DEPENDING ON takes the
highest value specified and allocates that much space.

The CURRENCY IS, DECIMAL_POINT, INPUT_VALUE REQUIRED,and JUSTIFIED RIGHT
attributes are used only in panel fields. If a conflicting field description entry is specified in the IFDL file
before the COPYFROM DICTIONARY clause, these attributes are ignored.

DECforms supports the pieces tracking capability of the Oracle CDD/Repository dictionary. Pieces
tracking gives you the ability to check whether anything your application depends on has changed since
the application was last built, or what will need to be rebuilt if any one item within the Oracle CDD/
Repository is changed.

Oracle CDD/Repository pieces tracking involves attaching a node to the dictionary that identifies the
DECforms form. The form itself is not stored in the dictionary. During the compilation of the form,
the IFDL Translator sets a pointer from the form's dictionary node to each record or field node in the
dictionary that it references (a "uses"pointer). The IFDL Translator also sets a pointer to the form's node
in the referenced item's dictionary node (a "used by" pointer) and flags the pointer to indicate that the
form has changed.

Pieces tracking allows you to obtain a list of all other dictionary elements used by a particular dictionary
element, and all dictionary elements that use the current element. Once you have obtained this list, you

41

Chapter 1. Independent Form Description Language

can obtain a list of all elements that have changed since the current element was built, or which elements
have to be rebuilt if the current element is changed.

If you specify /SHOW=COPY when translating from an IFDL source file into a form file, the IFDL
Translator describes the information it is getting from Oracle CDD/Repository in the listing file.

If you specify /SHOW=COPY when translating a form file back into an IFDL source file, the
Back Translator places the IFDL equivalent of the information extracted from Oracle CDD/
Repository in the IFDL file as additional comments. The Back Translator always preserves the COPY
FROMDICTIONARY clause; /SHOW=COPY merely adds comments.

Note

DECforms requires CDD/Plus, Version 4.1, or Oracle CDD/Repository, Version 5.0 or later, to use
COPY FROM DICTIONARY.

%null_terminated

Specifies that fixed strings defined by this COPY statement are interpreted as null-terminated strings.
%Null_terminated has no effect on other data types, including varying text.

BYTES

Specifies that the length of the string as recorded in Oracle CDD/Repository is specified in bytes. If the
length of the string is 25, the field can hold up to 24 characters and occupies 25 bytes in a form record.
If an initial value is specified, that value is shortened if necessary to avoid overflowing the string.

CHARACTERS

Specifies that the length of the string as recorded in Oracle CDD/Repository is specified in characters.
If the length of the string is 25, the field can hold up to 25 characters and occupies 26 bytes in a form
record.

General Rules
The translation of an IFDL source file containing a COPY statement is equivalent to processing all
COPY statements first, and then processing the resultant source form.

The COPY statement neither changes the text file, nor checks the syntax of the copied text. When all
COPY statements have been processed, the IFDL Translator checks the correctness of the source file. In
the resulting source file, the copied source text replaces the entire COPY statement, beginning with the
word COPY and ending with the words END COPY, inclusive.

You can specify the name immediately following the COPY keyword with or without quotation marks
for all forms of COPY. Using quotation marks allows you to specify an alternate Oracle CDD/Repository
root in the COPY statement.

Examples
1. Copy

MYDEFS In "MYLIB.TLB"
End Copy

In this example of the Format 1 COPY statement, the module MYDEFS is copied from the library
MYLIB.TLB.

2. Copy

42

Chapter 1. Independent Form Description Language

'SPAZMOID.IFDL'
End Copy

In this example of the Format 1 COPY statement, SPAZMOID.IFDL is copied.

3. define field name datatype is varying string size is 80 characters.
define field street datatype is varying string size is 80 characters.
define field city datatype is varying string size is 15 characters.
define field state datatype is text size is 2 characters.
define field zip_1 datatype is unsigned numeric size is 5 digits.
define field zip_2 datatype is unsigned numeric size is 4 digits.
define field country datatype is varying string size is 15 characters.
define record address_record.
 name.
 street.
 city.
 state.
 zip_code structure.
 zip_1.
 zip_2.
 end zip_code structure.
 country.end address_record record.
 .
 .
 .
Copy
CDD$TOP.CORPORATE.ADDRESS_RECORD Field Is CITY From Dictionary
End Copy

In this example of the Format 2 COPY statement, the city field is copied from the
CDD$TOP.CORPORATE.ADDRESS_RECORD record in the Oracle CDD/Repository.

4. Copy
CDD$TOP.SMITH.PERSONNEL.RDB$RELATIONS.EMPLOYEES From Dictionary
End Copy

In this example of the Format 2 COPY statement, the DEC Rdb relation EMPLOYEES is copied
from CDD$TOP.SMITH.PERSONNEL.RDB$RELATIONS.EMPLOYEES in the Oracle CDD/
Repository.

5. define field help_field_1
datatype is text
size is 1
help_text is "In help field 1. Enter a character.".
define field help_field_2
datatype is text
size is 1
help_text is "In help field 2. Enter a character.".
define record help_record.
help_field_1.
a_group structure.
help_field_2.
end a_group structure.
end help_record record.
 .
 .
 .
Form TEST_HELP_TEXT

43

Chapter 1. Independent Form Description Language

 Form Data
 Copy HELP_RECORD From Dictionary
 End Copy
 End Data

 Layout VT_LAYOUT
 Device
 Terminal
 Type %VT100
 End Device
 Size 24 Lines by 80 Columns

 Enable Response
 Activate Panel THE_PANEL
 End Response

 Panel THE_PANEL
 Literal Text
 Line 5
 Column 10
 Value "Help Field 1:"
 End Literal

 Literal Text
 Line 7
 Column 10
 Value "Help Field 2:"
 End Literal

 Field help_field_1
 Line 5
 Column 24
 Copy help_field_1 field is help_field_1 From Dictionary
 End Copy
 End Field

 Group A_GROUP
 Field help_field_2
 Line 7
 Column 24
 Copy help_field_2 field is a_group.help_field_2 From
 Dictionary
 End Copy
 End Field
 End Group
 End Panel
 End Layout
End Form

In this example of the Format 2 COPY statement, the help records are copied from the Oracle CDD/
Repository, along with the associated help text.

DATETIME DATA Clause
DATETIME DATA Clause — The DATETIME DATA clause specifies that a form data item is a field
formatted as a standard OpenVMS 64-bit date/time field or a string containing a numeric date and

44

Chapter 1. Independent Form Description Language

time. You can use Format 4 picture strings to express these fields. For a description of Format 4 picture
strings,see the discussion of the PICTURE STRING syntax.

datetime-data-clause
Format

Where you specify this clause:

Syntax Rules
ADT

Specifies a standard 64-bit OpenVMS formatted date/time field. This form data item is expressed as an
absolute time: a specific date and time of day. The value is a binary number in 100-nanosecond units
offset from the system base date and time, which is 00:00 hours, November 17, 1858 (the Smithsonian
base date and time for the astronomical calendar). This value is always positive.

DATE

Specifies a standard 64-bit OpenVMS formatted date/time field. Only the date (high-order) bits are used.
The time (low-order) bits are ignored.

TIME

Specifies a standard 64-bit OpenVMS formatted date/time field. Only the low-order (time) bits are used.
The high-order (date) bits are ignored.

CURRENT

Causes the Form Manager to place the current system absolute time value into this form data item
whenever the data item is reset. The value of the form data item value can be reset in one of two ways:

● Explicitly, using the RESET response step

● Implicitly, during the enabling of the form

The CURRENT clause replaces a default value. If a SEND record field is mapped to this form data item,
the Form Manager does not transfer the data into this data item.

All panel fields mapped to a form data item with data type ADT CURRENT,DATE CURRENT, or
TIME CURRENT must be assigned either the NO DATA INPUT or the PROTECTED attribute. If these
attributes are not explicitly applied, the field defaults to NO DATA INPUT.

DATETIME

Specifies a numeric string of integer-1 length as the form data item. Depending on its length:

1. The first four digits are the year.

45

Chapter 1. Independent Form Description Language

2. The next two digits are the month.

3. The two following are the day of the month.

4. The next two are the digits in the 24 hour clock.

5. The next two digits are the minutes.

6. The next two digits are the seconds.

7. The remaining digits are the fractions of seconds.

The time is assumed to be local time. Precision is relative to the length of the string: if the string is 14
digits long it has a precision of 1 second; if the string is eight digits long it has a precision of 1 day.

When a DATETIME data item is associated with a panel field, the following rules apply to updating of
the data item during field de-editing:

● If the picture field specifies only a date, only the date portion of the form data item is updated. The
time portion of the data item remains unchanged.

● If the picture field specifies only a time, only the time portion of the form data item is updated. The
date portion of the data item remains unchanged.

● If the picture field specifies both a date and a time, both the date and time portion of the form data
item are updated.

integer

Specifies an integer that specifies the length of the DATETIME form data item.

Example
This example from the DECforms sample application shows a number of form data items with different
data types.

Form Data
 ACCOUNT_NUMBER unsigned longword
 AMOUNT unsigned longword
 CHECKING_BALANCE unsigned longword
 CHECK_MEMO character (35)
 CHECK_NUMBER unsigned word
 CITY character (20)
 CURRENT_DATE adt current
 DATE_ESTABLISHED adt
 .
 .
 .
End Data

The CURRENT_DATE form data item has ADT CURRENT specified as the data type. The
current date and time of the transaction is placed into the CURRENT_DATE form data item each
time the Form Manager resets the data item at runtime.

The DATE_ESTABLISHED form data item has ADT specified as the data type. The date and time
that the account is established could be stored in the DATE_EST field.

Form DATE_ADT_TIME

46

Chapter 1. Independent Form Description Language

 Form Data
 TEST_DATE date
 Value "1954 10 02"
 TEST_ADT1 adt
 TEST_ADT2 adt Current
 TEST_TIME integer(4) Value 930
 End Data

 Form Record R1
 TEST_DATE date
 TEST_ADT1 character(27)
 TEST_ADT2 character(27)
 TEST_TIME integer(4)
 End Record

 Layout L1
 Device
 Terminal
 Type %VT100
 End Device
 Size 24 Lines By 80 Columns

 Enable Response
 Activate Panel P1
 End Response

 Panel P1
 Field TEST_DATE
 Line 1
 Column 1
 Output Picture For Date UMLMMMMMMMMQ' 'DDQ', 'YYYY
 End Field
 Field TEST_ADT1
 /* Uses the default input/output picture */
 End Field
 Field TEST_ADT2
 /* Uses the default input/output picture */
 End Field

 Field TEST_TIME
 Input Picture For Date GG:II
 End Field
 End Panel
 End Layout

When this form is enabled, TEST_DATE, TEST_ADT1,TEST_ADT2, and TEST_TIME are displayed
as follows:

October 2, 1954
17-Nov-1858 00:00:00.00
30-Jun-1994 13:32:08.78
09:30

TEST_ADT2 contains the current date and time (time at enable). On input, the user must type the
comma and spaces in the TEST_DATE picture because of the remove blanks(specified by the picture
character Q). The user does not type the insertion literals in the TEST_ADT1, TEST_ADT2, and
TEST_TIME fields.

47

Chapter 1. Independent Form Description Language

During a send request for record R1, the Form Manager converts the character strings for TEST_ADT1
and TEST_ADT2 from international date/time format to the 64-bit OpenVMS ADT value inform data.

During a receive request for record R1, the Form Manager converts the values for TEST_ADT1
and TEST_ADT2 to international date and time format. It takes 10 characters to represent dates, 16
characters to represent times, and 27 characters to represent an absolute date and time in international
date/time format.

For more information on international date and time format, see the FORM DATA declaration syntax
section.

DATETIME FIELD Clause
DATETIME FIELD Clause — The DATETIME FIELD clause specifies date and time fields in a form
record.

datetime-field-clause
Format

Where you specify this clause:

Syntax Rules
ADT

Specifies that the field is a standard 64-bit OpenVMS binary date/time field. This value is expressed as
an absolute time (a specific date and time of day). The value is a binary number in 100-nanosecond units
offset from the system base date and time, which is 00:00 hours, November 17, 1858 (the Smithsonian
base date and time for the astronomical calendar). This value is always positive.

TIME

Specifies a standard 64-bit OpenVMS binary date/time field. Only the low-order (time) bits are used.
The high-order (date) bits are ignored.

DATE

Specifies a standard 64-bit OpenVMS binary date/time field. Only the high-order (date) bits are used.
The low-order (time) bits are ignored.

DATETIME

Specifies a numeric string of integer length as the field. Depending on its length:

1. The first four digits are the year.

2. The next two digits are the month.

48

Chapter 1. Independent Form Description Language

3. The two following are the day of the month.

4. The next two are the digits in the 24 hour clock.

5. The next two digits are the minutes.

6. The next two digits are the seconds.

7. The remaining digits are the fractions of seconds.

The time is assumed to be local time. Precision is relative to the length of the string: if the string is 14
digits long it has a precision of 1 second; if the string is 8 digits long it has a precision of 1 day.

integer

Specifies the length of the DATETIME form data item.

TM

Specifies a DECforms record field of nine longwords that represents a date and time. This corresponds
to struct tm as specified by ANSI X3.159, C programming language, and X/Open™.These nine
longwords specify:

1. seconds

2. minutes

3. hours

4. day of the month

5. month of the year

6. year since 1900

7. day of the week

8. day of the year

9. Daylight Savings Time

The standards define the tm structure in terms of ANSI C syntax. To write portable programs you
must use this structure only in ways that are defined by the standards. The standards do not specify the
length of the tm structure in bytes. You must not assume that the tm structure as implemented by your C
compiler has the same length or offsets as the DECforms implementation of the tm structure.

A C compiler from a different vendor, or a new version of your present C compiler, may change the
length or offsets while remaining compliant to the ANSI standard. If you depend on the C compiler's tm
structure matching the DECforms tm data type, your program may fail when run with the new compiler.

To avoid such dependencies,you should copy data only between a C tm structure and a form record's tm
structure one field at a time. Here is an example taken from the tm demonstration program:

 struct time_record {
 Forms_Tm current_forms_tm;
 };
#define TIME_SIZE sizeof (struct time_record)

49

Chapter 1. Independent Form Description Language

 struct time_record time_rec;
 struct tm *current_tm;

 Forms_Record_Data record_data;

 time_rec.current_forms_tm.tm_sec = current_tm->tm_sec;
 time_rec.current_forms_tm.tm_min = current_tm->tm_min;
 time_rec.current_forms_tm.tm_hour = current_tm->tm_hour;
 time_rec.current_forms_tm.tm_mday = current_tm->tm_mday;
 time_rec.current_forms_tm.tm_mon = current_tm->tm_mon;
 time_rec.current_forms_tm.tm_year = current_tm->tm_year;
 time_rec.current_forms_tm.tm_wday = current_tm->tm_wday;
 time_rec.current_forms_tm.tm_yday = current_tm->tm_yday;
 time_rec.current_forms_tm.tm_isdst = current_tm->tm_isdst;

The Forms_Tm structure is defined in the DECforms include files, and contains the fields listed
previously. By writing your application as shown, you can move it between standard-conforming
implementations of ANSI C because the application is not sensitive to the length or offsets of fields in
the tm structure.

For a complete example of how to use the TM data type in a portable program, see the source code for
the TM demonstration program in FORMS$EXAMPLES.

Example
Form Record R1
 TEST_DATE date
 TEST_ADT1 character(27)
 TEST_ADT2 character(27)
 TEST_TIME integer(4)
End Record

In form record R1, TEST_DATE is specified as a standard OpenVMS date field.

DEACTIVATE Response Step
DEACTIVATE Response Step — The DEACTIVATE response step takes items off the activation list.

deactivate-response-step
Format

50

Chapter 1. Independent Form Description Language

Where you specify this clause:

Syntax Rules

DEACTIVATE

Removes the specified item or items from the activation list. If an activation item is not already on the
activation list,a DEACTIVATE response step for that activation item has no effect.

The DEACTIVATE response step is ignored in PRINTER layouts.

BUTTON button ON panel-name-1 (window layouts)

Removes button from the activation list. Panel-name-1 specifies the panel on which button occurs. The
operator is allowed to enter only function key input, not data input, into button.

BUTTON button-array ON panel-name-2 (window layouts)

Removes all the buttons in the array reference from the activation list. Panel-name-2 specifies the panel
on which button-array occurs. The operator is allowed to enter only function key input, not data input,
into the buttons specified in button-array.

FIELD field ON panel-name-3

Removes field from the activation list. Panel-name-3 specifies the panel on which field occurs.

FIELD field-array ON panel-name-4

Removes all the panel fields in the array reference from the activation list. Panel-name-4 specifies the
panel on which field-array occurs.

GROUP panel-group ON panel-name-5

Removes all fields, icons, and buttons in that declaration of the panel group from the activation list.
Panel-name-5 specifies the panel on which panel-group occurs.

GROUP panel-group-array ON panel-name-6

Removes all fields, icons, and buttons in the array reference from the activation list. Panel-name-6
specifies the panel on which panel-group-array occurs.

ICON icon ON panel-name-7 (character-cell layouts)

Removes icon from the activation list. Icon is the name of the icon; the operator cannot enter data into
icon, but the operator can press function keys in icon. Panel-name-7 specifies the panel on which icon
occurs.

ICON icon-array ON panel-name-8 (character-cell layouts)

Removes all the icons in the icon array reference from the activation list. Icon-array is the name of the
array;the operator cannot enter data into the icons specified in icon-array, but the operator can press
function keys in icon-array. Panel-name-8 specifies the panel on which icon-array occurs.

51

Chapter 1. Independent Form Description Language

PANEL panel-name-9

Removes all fields, icons, and buttons on panel-name-9 from the activation list.

WAIT [ON panel-name-10] (character-cell layouts)

Deactivates the wait on panel-name-10. If panel-name-10 is not specified, any waits that were activated
without specifying a panel are deactivated.

ALL

Removes all activation items from the activation list.

General Rules
When an item is deactivated, you cannot position the cursor to it, you cannot perform field input, and the
item is not validated before control returns to the application program.

Examples
1. Deactivate All

This example deactivates all fields, icons, buttons, and waits.

2. Function Response DISCARD
 Deactivate
 Panel FILE_PULLDOWN_PANEL
 Remove
 FILE_PULLDOWN_PANEL
 Position To Previous Item
 Let FILE_ENTRY_CONTROL = 0
End Response
 .
 .
 .

A function response named DISCARD is declared.

The response specifies that FILE_PULLDOWN_PANEL is deactivated.

The response specifies that FILE_PULLDOWN_PANEL is removed once it is deactivated.

A POSITION response step specifies that the cursor is moved to the previous item on the
activation list.

A LET response step assigns a value of zero to the FILE_ENTRY_CONTROL data item.

DEVICE Declaration
DEVICE Declaration — The DEVICE declaration associates a device with a layout. DECforms supports
three layout device classes:the VT class (character-cell terminals), the pixel class (workstations that run
the Motif windowing system), and the PRINTER class (output-only file devices). The PRINTER class is
used to produce platform-specific output of panels. You cannot specify more than one device class in a
single layout.

52

Chapter 1. Independent Form Description Language

device-declaration

Format

device-color-clause

Where you specify this clause:

Syntax Rules
TERMINAL [terminal-name-1]

Specifies a terminal type to be used in a layout.

Terminal-name-1is the terminal name used in the FOR clause of the FUNCTION and ATTRIBUTE
declarations. Each terminal-name-1must be unique within a layout.

If you specify more than one terminal, the Form Manager chooses the device that is closest incapability
to the device on which the form is being enabled. Terminal types from different classes (VT, window,
and PRINTER) cannot be specified in the same layout.

TYPE %VT100

53

Chapter 1. Independent Form Description Language

Specifies a VT100 terminal with AVO (advanced video option). Terminals with AVO can display
blinking and bold characters, as well as some extended character sets.

TYPE %VT100_HEBREW

Specifies a VT100-series terminal with AVO capable of displaying Hebrew characters.

TYPE %VT100_NO_AVO

Specifies a VT100-series terminal without AVO.

TYPE %VT200 [device-color-clause]

Specifies either a monochrome VT200-series or a color VT200-series terminal.

TYPE %VT200_HEBREW [device-color-clause]

Specifies a monochrome or a color VT200-series terminal capable of displaying Hebrew characters.

TYPE %VT300 [device-color-clause]

Specifies either a monochrome VT300-series or a color VT300-series terminal.

TYPE %VT300_HEBREW [device-color-clause]

Specifies either a monochrome VT300-series or a color VT300-series terminal capable of displaying
Hebrew characters.

TYPE %VT400

Specifies a monochrome VT400-series terminal. If you specify a color VT400-series terminal with
device-color-clause, the IFDL Translator does not signal an error, even though the VT400-series terminal
does not support color.

The VT420 terminal supports screen sizes of 80 or 132 characters in width, by 24, 25, 36, 48, or 72
lines. Both widths are supported at the 24, 25, 36, and 48 line displays. Although DECforms supports
the 72-line page provided by the VT420 hardware, it does not support software-controlled panning of
this page length.

Because DECforms uses the rectangular area operations of the VT420 terminal, scrolling restrictions for
other VT-series terminals do not apply to the VT420 terminal. Constructing a scrolled region less than
the full width of the screen does not degrade performance significantly.

TYPE %VT400_HEBREW

Specifies a VT400-series terminal capable of displaying Hebrew characters.

TYPE %VT500

Specifies a VT500-series terminal. VT500-series terminals are all monochrome, with the exception of
the VT525, which supports ANSI color. VT500-series terminals support the same screen sizes as the
VT420 terminal.

TYPE %VT500_HEBREW

54

Chapter 1. Independent Form Description Language

Specifies a VT500-series terminal capable of displaying Hebrew characters.

TYPE %BLOCKMODE

Specifies a standard block-mode terminal. All 3270 terminals are block-mode terminals and are included
in this terminal type.

To use DECforms with 3270 terminals,you must purchase the DEC SNA 3270 Application Services
software. For more information on using DECforms with 3270 terminals, see the DECforms Use with
3270 Terminals manual.

TYPE %3270_BASIC

Specifies an implementor name that specifies an IBM ® 3270-class terminal type. Because the 3270
terminals are block-mode terminals, their ability to support all forms features is limited and they require
their own layouts.

For more information, see the description of TYPE %BLOCKMODE.

PIXEL [terminal-name-2]

Specifies a terminal type to be used in a window or PRINTER layout.

Terminal-name-2 is the terminal name used in the FOR clause of the FUNCTION and ATTRIBUTE
declarations. Each terminal-name-2must be unique within a layout.

If you specify more than one terminal, the Form Manager chooses the device that is closest incapability
to the device on which the form is being enabled. You cannot specify different class terminal types in the
same layout.

TYPE %MOTIF

Specifies a Motif device: a window device capable of displaying pixels.

[PLANES integer-1]

Specifies the number of color planes of the Motif device. The Form Manager selects a layout at enable
time by comparing the value in integer-1 with the number of planes of the display device.

device-color-clause

Specifies the color capability of the terminal. COLOR and COLOUR are synonyms. If this clause is not
specified, NOCOLOR is the default.

TYPE %PRINTER

Specifies a PRINTER class output device.

General Rules

If you specify more than one terminal type, the layout can use only those capabilities that are present
on all specified terminals,with the exception of color and those capabilities modified by FOR clauses
in ATTRIBUTE and FUNCTION declarations. If you specify TERMINAL TYPE %VT100 only, the
layout can use all the features applicable to character-cell terminals in DECforms. Normally you specify

55

Chapter 1. Independent Form Description Language

%VT100 for all character-cell terminals; at run time the Form Manager provides the appropriate layout
characteristics.

Otherwise, the following restrictions apply:

● A VT100 terminal without AVO is capable of a single emphasis rendition only, chosen by SET-
UP. On such a terminal, BOLD, BLINK, UNDERLINE, and REVERSE are mapped into the single
selected emphasis rendition.

● You can specify colors other than BLACK and WHITE for monochrome terminals; however, they
are ignored at run time.

● In general,the IFDL Translator accepts all other attributes that are incompatible with the terminal,
but the Form Manager ignores them.

● Hebrew terminal types cannot be specified in the same layout as non-Hebrew terminal types.

Example
The following example shows a typical DEVICE declaration.

Layout CHECKING_LAYOUT
 Device
 Terminal DECVT
 Type %VT100
 End Device
 .
 .
 .
End Layout

Begins the DEVICE declaration.

Specifies DECVT as the terminal name.

Specifies a VT100 as the terminal.

Ends the DEVICE declaration.

DISABLE RESPONSE Declaration
DISABLE RESPONSE Declaration — The DISABLE RESPONSE declaration specifies the response
performed when the Form Manager disables a form.

disable-response-declaration
Format

56

Chapter 1. Independent Form Description Language

Where you specify this clause:

Syntax Rules
response-step

Specifies the response steps performed during the disable response. For more information, see the
RESPONSE STEP clause syntax section.

REQUEST validation-response-declaration

Establishes the validation response as the response to be interpreted after the operator has signaled
completion of input during accept phase. For more information, see the VALIDATION RESPONSE
declaration syntax section.

REQUEST exit-response-declaration

Establishes a response to be executed after the completion of accept phase. For more information, see the
EXIT RESPONSE declaration syntax section.

General Rules
If the session being disabled is the only session active on the display device, the Form Manager leaves
the display device in the state it is in after completion of the disable response. You can choose to display
some panels, clear the display, or leave the display as it is by specifying the DISABLERESPONSE
declaration.

If other sessions are active on the display device at the time the form is disabled, the Form Manager
removes all panels from the current session so that the remaining sessions' panels can be seen, after the
form has been disabled.

Only one disable response can appear in a layout. The default is to do nothing.

Example
Disable Response
 Include FAREWELL
 Request Exit Response
 Remove All
 End Request
End Response

Internal Response FAREWELL
 Message 'Thanks for banking with MegaMoney Bank'
 Activate Wait
End Response

This disable response displays “Thanks for banking with MegaMoney Bank” in the message panel, waits
for the operator to acknowledge the message by pressing a function key, and then clears the display.

DISPLAY ATTRIBUTE Entry
DISPLAY ATTRIBUTE Entry — The DISPLAY ATTRIBUTE entry specifies one or more display
attributes that apply to a field, literal, icon, or button.

57

Chapter 1. Independent Form Description Language

display-attribute-entry

Format

Where you specify this clause:

Syntax Rules
attribute-name

Specifies named group of display characteristics. For further information, see the ATTRIBUTE
declaration syntax.

elementary-attribute

Specifies an attribute that can apply to literals, fields, buttons, and icons. For more information, see the
ELEMENTARY ATTRIBUTE syntax section.

implementor-attribute

An attribute that sets the keypad mode. For more information, see the IMPLEMENTOR ATTRIBUTE
syntax section.

General Rules
When declared in a field, literal, button, or icon, the display attribute entry specifies one or more display
attributes that apply to the item. If keypad mode is set for a particular item, the Form Manager sets that
mode while the item is the current activation item.

When declared in a panel, the display attribute entry specifies the display attributes that are inherited
by the fields, literals, icons, and buttons of the panel. You can redefine these inherited attributes by
subsequent field default declarations and literal default declarations within the panel.

If keypad mode is specified for a particular panel, the Form Manager sets that mode while the current
active item is on that panel.

If the device does not support an attribute, the Form Manager either ignores the attribute or substitutes a
supported attribute.

Example
 Attribute ATTR_1
 Is
 Bold
 Blinking

58

Chapter 1. Independent Form Description Language

End Attribute
 .
 .
 .
Field F1
 Display ATTR_1
 .
 .
 .
End Field

An attribute named ATTR_1 is declared.

ATTR_1 is specified as having the elementary attributes of bold and blinking.

DISPLAY Clause
DISPLAY Clause — The DISPLAY clause specifies elementary attributes and user-defined display
attributes previously declared in the ATTRIBUTE declaration. Display attributes control the appearance
of objects on the display device. The DISPLAY clause can appear in panel, literal, literal default, icon,
field, button, and field default definitions.

display-clause

Format

Where you specify this clause:

Syntax Rules

display-attribute-entry

Specifies the visual characteristics that apply to fields, icons, buttons, and literals within the scope of the
clause.

General Rules

A DISPLAY clause does not replace the attributes of a higher level display clause, but is merged with
them. Conflicts are resolved in favor of the lowest level display clause; for example, displays specified at
the field level override those defined at the panel level.

If no DISPLAY clause is specified at any level,the attributes are the DECforms defaults, as specified in
the ELEMENTARY ATTRIBUTE syntax section.

59

Chapter 1. Independent Form Description Language

Examples
1. Display TWINKIE_ATTRIBUTES

This example causes the attributes previously defined as TWINKIE_ATTRIBUTES to be displayed.

2. Literal Text
 Line 2 Column 27
 Value "ACCOUNT DATA"
 Display Font Size Double High
End Literal

This example displays the phrase “ACCOUNT DATA” in a double-high, double-wide font. (Choosing
the double-high font gives you characters that are double high and double wide;double-wide specifies
double-wide characters only.)

3. Field LAST_NAME
 Same Line Column 16
 Output Picture X(20)
 Display Underlined
End Field

This example underlines the LAST_NAME field on the display device.

DISPLAY Response Step
DISPLAY Response Step — The DISPLAY response step displays panels in a viewport.

display-response-step

Format

Where you specify this clause:

Syntax Rules
DISPLAY [IMMEDIATE]

IMMEDIATE applies to PRINTER layouts only. IMMEDIATE specifies that output is directed to a file
and that the file is closed after the display operation is performed. If IMMEDIATE is not specified, the
Form Manager does not close the file, and output of subsequent DISPLAY response steps is appended to
the current device.

panel-name

The panel to be displayed.

ON viewport-name

60

Chapter 1. Independent Form Description Language

The viewport where panel-name is displayed.

For character-cell layouts, when ON viewport-name is present in the DISPLAY response step, the
viewport specified must be at least as large as the viewport for which the panel was originally created.
Window and PRINTER layouts do not have this restriction.

If ON viewport-name is not specified, the panel is displayed in its default viewport.

General Rules
If a panel has already been displayed but becomes obscured or covered up, the DISPLAY response step
pops the occluded panel to the top so that it is no longer hidden.

Example
Send Response HAPPY_BDAY
 Display BDAY_PANEL
 Message "Happy Birthday!"
End Response

This example specifies that the BDAY_PANEL is displayed and a MESSAGE response step is
performed when the application sends the HAPPY_BDAY record to the form. The MESSAGE response
step issues the message “Happy Birthday!” to the message panel.

DISPLAY VIEWPORT Clause
DISPLAY VIEWPORT Clause — The DISPLAY VIEWPORT clause allows you to specify attributes
that apply to the viewport, background, and foreground of panel objects. In the case of character-cell
terminals, these attributes apply to the entire device. You can declare display viewport attributes at the
layout, viewport, and panel levels. At run time,the Form Manager merges display viewport attributes
from each level, with panel level attributes taking precedence over viewport level attributes, which in
turn take precedence over layout level attributes.

display-viewport-clause

Format

61

Chapter 1. Independent Form Description Language

Where you specify this clause:

Syntax Rules
BACKGROUND color-clause-1

Specifies color-clause-1 as the viewport background color. The viewport background is the area of the
viewport that does not contain any objects such as fields, icons, buttons, and literals. If FOREGROUND
is also specified, the foreground color should be a different color from the background. For more
information on color specification, see the COLOR clause syntax section.

BACKGROUND COLOR UNCHANGED is the default.

FOREGROUND color-clause-2

Specifies color-clause-2 as the color of the viewport foreground color. The viewport foreground is the
text on lines present in fields, icons, and literals. If BACKGROUND is also specified, the background
color should be a different color from the foreground. For more information on color specification, see
the COLOR clause syntax section.

FOREGROUND COLOR UNCHANGED is the default.

BOLD FOREGROUND color-clause-3 (character-cell layouts)

Specifies that an object is displayed in color-clause-3. To display an object in the color specified as
BOLD FOREGROUND, you must specify the BOLD attribute for that object.

If you specify BOLD FOREGROUND, whenever the BOLD attribute is applied to a literal or panel
field,that literal or panel field is displayed in the color-clause-3, instead of bolding.

REVERSE FOREGROUND color-clause-4 (character-cell layouts)

Specifies that an object is displayed in color-clause-4.To display an object in the color specified as
REVERSE FOREGROUND, you must specify the REVERSE attribute for that object.

If you specify REVERSE FOREGROUND, whenever the REVERSE attribute is applied to a literal or
panel field,that literal or panel field is displayed in the REVERSEFOREGROUND color.

Note

In character-cell layouts,the Form Manager ignores color specifications in the DISPLAY VIEWPORT
clause unless the display device is set to ReGIS mode. If your terminal supports ReGIS mode, and you
want to set ReGIS mode, type the following DCL command on your OpenVMS system:

$ SET TERMINAL/REGIS

%TERMINAL_WIDTH_80 (character-cell layouts)

62

Chapter 1. Independent Form Description Language

Specifies that the terminal width of this viewport is 80 columns.

%TERMINAL_WIDTH_132 (character-cell layouts)

Specifies that the terminal width of this viewport is 132 columns. If the number of columns specified
in the SIZE clause of the LAYOUT declaration has been declared as greater than 80 columns,
%TERMINAL_WIDTH_132 is assumed, even if it has not been explicitly specified.

%TERMINAL_WIDTH_UNCHANGED (character-cell layouts)

Specifies that this viewport does not affect terminal width, unless the panel is greater than 80 columns.

FILL pattern-clause (PRINTER layouts)
NOFILL

Specifies whether the viewport is filled. Pattern-clause is the pattern that fills the viewport's background.
For more information, see the PATTERN clause syntax section.

NOFILL is the default.

TITLE string-1 (window layouts)
TITLE data-1

Specifies the title in the viewport window's title box as either a static string, string-1, or a dynamic data
item, data-1. If the value of data-1 changes, the title is dynamically changed to reflect the new data.

The default viewport title is the name of the panel displayed in the viewport.

[NO]DECORATIONS (window layouts)

Specifies whether the viewport window has decorations. Decorations include a full window border,
border resize handles,maximize and minimize buttons, a window menu button, and a title bar.
Decorations apply only to window layouts.

DECORATIONS is the default. NODECORATIONS must be specified as one word.

ICONLABEL string-2 (window layouts)
ICONLABEL data-2

Specifies the label for the viewport icon, either a static string, string-2, or a form data item, data-2. If the
data-2 value changes while the window is shrunk to an icon, the label is dynamically changed to reflect
the new data.

The default viewport ICONLABEL for a minimized (iconized) viewport is the name of the panel
displayed in the viewport.

General Rules
Attributes specified by the DISPLAY VIEWPORT clause do not affect the inheritance of attributes
for fields, icons, buttons, or literals on panels displayed in the viewport except for background and
foreground colors.

On character-cell devices,when a panel is removed from the display, the Form Manager determines the
width of the largest panel remaining on the display and resizes the viewport if necessary. If there are no
panels displayed that need 132 columns, and if %TERMINAL_WIDTH_80 is specified on at least one
of the remaining panels,the Form Manager resizes the display to 80 columns. When multiple viewports
are displayed, the terminal width is that of the viewport of the most recently displayed or active panel.

63

Chapter 1. Independent Form Description Language

When designing a layout for monochrome character-cell terminals, it is recommended that form
designers do not specify black or white backgrounds, but allow operators to keep their own preference.

Because the OpenVMS operating system does not keep track of the current background color of the
terminal and the Form Manager cannot determine the current background color of character-cell
terminals, DECforms cannot return the background color to its original state after it is changed to a color
specified in the form.

For the VT200- and VT300-series terminals, the operator can lock the background color of the terminal.
This feature means that the operator can disable all background color changes, so that program control
of background color is ignored, no matter what the form specifies. In this case, the original color of the
terminal is available after the operator finishes data input, but intermediate color changes specified in the
form are denied.

VT400 terminals are monochrome terminals; specifying a background color other than black or white
does not affect display.

If the layout in which the DISPLAY VIEWPORT clause is declared contains no color-capable
devices, you can specify only BLACK or WHITE in the COLOR clause of the BACKGROUND and
FOREGROUND colors.

All color defaults are UNCHANGED. If you specify a color clause in the PRINT response step, the
BACKGROUND COLOR default is white and cannot be changed.

Example
Form COLOR_TEST
 Layout ATT_REQUEST_LAYOUT
 Device
 Terminal
 Type %VT200
 Color
 End Device
 Units Characters
 Size 24 Lines By 80 Columns

 Viewport V1
 Lines 2 Through 2
 Columns 1 Through 80
 Display Viewport
 Background Color Black
 End Viewport

 Viewport V_BLACK
 Lines 4 Through 4
 Columns 1 Through 20
 Display Viewport
 Foreground Color Black
 End Viewport

 Viewport V_WHITE
 Lines 7 Through 7
 Columns 1 Through 20
 Display Viewport
 Bold Foreground Color White
 End Viewport

64

Chapter 1. Independent Form Description Language

 Viewport V_BLUE
 Lines 10 Through 10
 Columns 1 Through 20
 Display Viewport
 Reverse Foreground Color Blue
 End Viewport

 Enable Response
 Activate All
 End Response

 Panel P1
 Viewport V1
 Display Viewport
 Background Color White
 Foreground Color Black
 Icon Icon1
 Literal Text
 Value "Panel P1 in V1"
 End Literal
 End Icon
 End Panel

 Panel P2
 Viewport V_BLACK
 Icon Icon2
 Literal Text
 Value "Panel P2 in V_BLACK"
 End Literal
 End Icon
 End Panel

 Panel P3
 Viewport V_WHITE
 Icon Icon3
 Literal Text
 Value "Panel P3 in V_WHITE"
 DISPLAY BOLD
 End Literal
 End Icon
 End Panel

 Panel P4
 Viewport V_BLUE
 Icon Icon4
 Literal Text
 Value "Panel P4 in V_BLUE"
 DISPLAY REVERSE
 End Literal
 End Icon
 End Panel

 End Layout
End Form

In the layout ATT_REQUEST_LAYOUT, a VT200 or better terminal with color capabilities is
declared as the display device. The actual colors displayed depend on the activation order of the

65

Chapter 1. Independent Form Description Language

panels, as noted in the callouts. If Panel P1 is displayed first, the screen has a white background. If
Panel P2 is displayed first, the screen background is whatever it was when the form was activated.

If you use the FORMS TEST APPEARANCES command to test this form, and use the NEXT
ITEM function to go through the panels, you will get the results specified in callouts 2 to 9.

Viewport V1 is specified with a black background.

Viewport V_BLACK is specified with a black foreground.

On a color terminal, objects with the BOLD attribute displayed within viewport V_WHITE are
displayed with a white foreground.

Objects within the panel displayed in viewport V_BLUE are specified as having a reversed blue
foreground. Specifying REVERSE FOREGROUND means that objects displayed in the V_BLUE
viewport with the REVERSE attribute are blue.

Icon Icon1 on Panel P1 is displayed as having black text against a white background,overriding the
declaration of Viewport V1.

Icon Icon2 on Panel P2 is displayed as having black text against a white background.

Icon Icon3 on Panel P3 is displayed as having white text against a white background.

Icon Icon4 on Panel P4 is displayed as having blue text against a white background.

EDITING Clause
EDITING Clause — The EDITING clause allows you to specify phrases that provide capabilities to edit
a picture field value in conjunction with the OUTPUT PICTURE clause before display. Editing clauses
are also used with the INPUT PICTURE clause to provide information for removing editing characters
from the data item after input.

editing-clause
Format

Where you specify this clause:

66

Chapter 1. Independent Form Description Language

Syntax Rules
SCALE integer

Specifies that the value of the form data item to be edited is multiplied by 10 raised to the integerpower
before any other editing takes place. Integer must be in the range of –128 to 127 inclusive.

SIGN

Specifies the sign for the numeric field value. See Table 1.4, "Sign Control Symbol Values".

SIGN PLUS

Specifies plus and minus as sign symbols. Plus signs explicitly appear. See Table 1.4, "Sign Control
Symbol Values".

SIGN MINUS

Specifies plus and minus as sign symbols. Plus signs are displayed as blanks. See Table 1.4, "Sign Control
Symbol Values".

SIGN PARENTHESES

Specifies that matched parentheses are displayed for negative values and blanks are displayed for positive
values.

SIGN POSITIVE string-1

Specifies a string, string-1,as a positive sign symbol. String-1 is a character string of any length. String-1
cannot contain digits, spaces, or the decimal point character applicable to the field. String-1 must not
equal string-2 or string-6.

SIGN NEGATIVE string-2

Specifies a string, string-2,as a negative sign symbol. String-2 cannot contain digits, spaces, or the
decimal point character applicable to the field. String-2 must not equal string-1 or string-6.

SIGN ZERO string-3

Specifies a string, string-3,as a zero sign symbol. String-3 cannot contain digits, spaces, or the decimal
point character applicable to the field. String-3 must not equal string-6. Zeros are still output in addition
to being specified as a sign symbol.

REPLACE LEADING string-4

Specifies the character to be used as a replacement character and placed to the left of the decimal
character for leading zeros in numeric displays and for leading spaces in alphanumeric displays. String-4
must be exactly one character long and in single or double quotation marks. String-4 cannot contain the
decimal point character applicable to the field.

If REPLACE LEADING is specified with a field that defines a Format 4 (date) picture string,
string-4must be either a space or 0. If an inappropriate default is inherited, it is ignored and 0 is used
instead.

REPLACE TRAILING string-5

67

Chapter 1. Independent Form Description Language

Specifies the character to be used as a replacement character and placed to the right of the decimal
character for trailing zeros in numeric displays and for trailing spaces in alphanumeric displays. String-5
must be exactly one character long and in single or double quotation marks. String-5 cannot contain the
decimal point character applicable to the field.

DECIMAL POINT IS PERIOD

Specifies that a period is used to designate the decimal point. A period can appear only once in an input
or output picture for the picture field. A period can appear only once in any input to the picture field.
If you choose a period to specify the decimal point, you can use a comma as an ordinary nonnumeric
insertion literal within a picture string for the field.

DECIMAL POINT IS COMMA

Specifies that a comma is used to designate the decimal point. A comma can appear only once in an
input picture or output picture string for the picture field. A comma can appear only once in any input
to the field. If you choose a comma to specify the decimal point, you can use a period as an ordinary
nonnumeric insertion literal within a picture string for the field.

CURRENCY SIGN IS string-6

Specifies a string, string-6, as the currency sign. String-6 cannot contain the decimal point character
applicable to the field.

General Rules

If the INPUT PICTURE clause for the field contains an S picture character, string-4, string-5, and
string-6 cannot contain a sign.

The sign rules for editing clauses are as follows:

● Signs are not applicable to DATE picture strings (Format 4 picture strings) or to Format 1 picture
strings.

● The characters of the SIGN clause must be unique; they cannot appear in another SIGN clause for
the same field or in any other REPLACE or CURRENCY clause. The characters of a SIGN clause
apply to an edited item only when the S picture character appears in the corresponding picture string.

● The sign control symbols specified in the SIGN clause produce the results shown in Table 1.4, "Sign
Control Symbol Values", depending on the value of the form data item.

Table 1.4. Sign Control Symbol Values

Form Data Item Value
Sign Control Symbol Negative Zero Positive

PLUS – + +
MINUS – space space
PARENTHESES leading left and trailing

right parentheses
leading and trailing
spaces

leading and trailing
spaces

POSITIVE1 – space string-12

NEGATIVE1 string-22 space space

68

Chapter 1. Independent Form Description Language

Form Data Item Value
Sign Control Symbol Negative Zero Positive

ZERO1 – string-32 space
1If the sign of the value matches the clause given, the string in the corresponding clause is used as the sign character.
2The number of spaces (or the number of spaces and the minus sign) is the maximum of the length of string-1, string-2, or string-3. Each
string-1, string-2, and string-3 is extended with spaces to reach the same length.

● The characters of a SIGN clause appear as fixed or floating characters, or leading or trailing
characters in an edited item (according to the picture string), except when you specify
PARENTHESES, the “accountant's positive and negative”.

When PARENTHESES is specified, the appropriate left parenthesis or space is inserted at the left
of the edited item, and the appropriate right parenthesis or space is inserted at the right of the edited
item. The picture string specifies the exact positions of the form data item.

The currency rules for editing clauses are as follows:

● The characters in any CURRENCY clause must be unique: they cannot appear in any other SIGN or
REPLACE clause. The characters of a CURRENCY clause apply to an edited item only when the W
picture character appears in the corresponding picture string.

● The position of string-6 in the edited item is given by the location of the W within the picture string.

● If no CURRENCY clause applies to the field, the dollar sign character($) is used.

● For more information on picture string symbols, see the PICTURE STRING syntax section.

Defaults
SCALE
0

SIGN
MINUS

REPLACE LEADING
Space character

REPLACE TRAILING
Space character

DECIMAL POINT
PERIOD

CURRENCY SIGN
$

Examples
1. Field CHECKING_BALANCE

 Same Line Next Column +1
 Output Picture 99,999,99W9.99
 Scale -2
 Protected
End Field

69

Chapter 1. Independent Form Description Language

In this field, the Scale –2 clause divides the value of the edited form data item by 100. Because the
value of CHECKING_BALANCE is maintained in pennies, Scale –2 allows the field to be displayed
as dollars.

2. Field AMOUNT
 Same Line Next Column
 Output Picture 999,99R9.99
 Justification Right
 Replace Leading "*"
 Scale -2
 .
 .
 .
End Field

In this field, the Scale –2 clause divides the value of the form data item AMOUNT by 100. Field
AMOUNT is stored in pennies, so Scale –2 allows AMOUNT to be displayed as dollars. The R in
the picture string and the Replace Leading "*"clause specify that any leading zeros are replaced with
asterisks (*) when the picture is displayed.

ELEMENTARY ATTRIBUTE
ELEMENTARY ATTRIBUTE — An elementary attribute is an attribute that applies to the way an
object is rendered. You can group elementary attributes together in an ATTRIBUTE declaration,
and then refer to that name in a DISPLAY ATTRIBUTE entry. There are three types of elementary
attributes: area, line, and text attributes. Area attributes affect the area an object covers, or the
background of an object. Line attributes affect the outlines drawn around objects. Text attributes affect
how the textual parts of objects are represented on a screen.

elementary-attribute

Format

elementary-attribute

area-attribute

70

Chapter 1. Independent Form Description Language

line-attribute

text-attribute

71

Chapter 1. Independent Form Description Language

character-set-name

Where you specify this clause:

Syntax Rules
area-attribute

Specifies a set of attributes that affect the area covered by an object.

BACKGROUND color-clause-1

Specifies color-clause-1 as the color against which objects are seen on the display device. For ReGIS
terminals, the Form Manager ignores this clause. ReGIS terminals are the VT125, the VT240, and the
VT340. ReGIS color is supported on only VT241 and VT340 terminals.

BACKGROUND COLOR UNCHANGED is the default. For more information, see the COLOR clause
syntax section.

BORDER WIDTH IS number (window layouts)

Specifies the width of the border drawn around an object. Number specifies a positive or zero value. If a
value of zero is specified for number, no border is drawn for the object. BORDER WIDTH IS number is
supported only for window layouts; all other layout types ignore this clause.

In Motif layouts, number is expressed in layout units and represents the width of the border. For example,
if you express number as .225 and your units are inches, the border generated will be .225 inches wide.
The default value for number is zero in Motif layouts.

72

Chapter 1. Independent Form Description Language

NOFILL

Specifies that an object is not filled with any pattern.

FILL pattern-clause (PRINTER and window layouts)

Specifies pattern-clause as the pattern that fills a graphic literal object. Only closed polyline literals and
rectangles within a PRINTER layout or window layout can have a FILL pattern. For more information,
see the PATTERN clause syntax section.

NOFILL is the default.

FOREGROUND color-clause-2

Specifies color-clause-2 as the foreground color for an object. The foreground of an object is that
perceived as the closest to the user. All objects do not have foregrounds (panels, for example). The Form
Manager ignores this clause for ReGIS terminals.

FOREGROUND COLOR UNCHANGED is the default. For more information, see the COLOR clause
syntax section.

REVERSE
NEGATIVE

Specifies that the current background and foreground colors are reversed. REVERSE and NEGATIVE
are synonyms.

NOREVERSE is the default.

NOREVERSE
NONEGATIVE

Specifies that the background and foreground colors are not reversed. NOREVERSE and
NONEGATIVE are synonyms.

NOREVERSE is the default.

SHADOW (window layouts)
NOSHADOW

Specifies whether or not an object has a shadow.

SHADOW is the default.

line-attribute

Specifies the line attributes for a graphic literal object. For PRINTER layouts, all line attributes are
applicable, but LINEWIDTH must be specified as a numeric value. LINE WIDTH SINGLE, NORMAL,
DOUBLE HIGH, and DOUBLE WIDE,do not apply to PRINTER layouts.

Window layouts support the same line attributes as PRINTER layouts with two exceptions: LINE
MARKER does not apply, and CAP END does not apply. (CAP START is applicable and determines
how the end of the line is drawn.)

For character-cell layouts, the only line attributes that apply are LINE WIDTH SINGLE, NORMAL,
DOUBLE HIGH, and DOUBLE WIDE.

LINE STYLE (PRINTER and window layouts)

73

Chapter 1. Independent Form Description Language

Specifies how the outline of a graphic literal object is drawn. LINE STYLE SOLID is the default.

LINE STYLE SOLID (PRINTER and window layouts)

Specifies that the outline of an object is drawn as a solid line.

LINE STYLE DASHED (PRINTER and window layouts)

Specifies that the outline of an object is drawn as a dashed line.

LINE STYLE DOTTED (PRINTER and window layouts)

Specifies that the outline of an object is drawn as a dotted line.

LINE STYLE DASHEDDOTTED (PRINTER and window layouts)

Specifies that the outline of an object is drawn as a dashed and dotted line.

LINE WIDTH

Specifies the width of the outline of a graphic literal object in layout units.

LINE WIDTH IS number (PRINTER and window layouts)

Specifies the width of the outline of a graphic literal object. Number specifies a positive or zero value
and is expressed in layout units.

The default for number is zero. If a value of zero is chosen,the thinnest line possible is drawn as the
object's outline.

LINE WIDTH SINGLE
LINE WIDTH NORMAL (character-cell layouts)

Specifies the width of the outline of an object as one layout unit. SINGLE and NORMAL are synonyms.

LINE WIDTH NORMAL is the default.

LINE WIDTH DOUBLE HIGH (character-cell layouts)

Specifies the width of the outline of an object as twice the standard line width and height.

LINE WIDTH DOUBLE WIDE (character-cell layouts)

Specifies the width of the outline of an object as twice the width of a normal line.

LINE MARKER (PRINTER layouts)

Specifies the shapes of markers used at the joints of lines.

The default is no line marker.

LINE MARKER DOT (PRINTER layouts)

Specifies that a dot is used to join lines.

LINE MARKER PLUS (PRINTER layouts)

Specifies that a plus sign is used to join lines.

LINE MARKER ASTERISK (PRINTER layouts)

74

Chapter 1. Independent Form Description Language

Specifies that an asterisk is used to join lines.

LINE MARKER CIRCLE (PRINTER layouts)

Specifies that a circle is used to join lines.

LINE MARKER CROSS (PRINTER layouts)

Specifies that a cross is used to join lines.

CAP START (PRINTER and Motif layouts)
CAP END (PRINTER layouts)

Specifies how the beginning and end of line segments are drawn. CAP END is ignored at run time for
window layouts and for rectangles.

If either CAP START or CAP END is omitted,the omitted attribute defaults to the specified attribute.
CAP START must be the same as CAP END unless either is specified as ARROW.

If both attributes are omitted, ROUND is the default.

CAP START BUTT (PRINTER and Motif layouts)
CAP END BUTT (PRINTER layouts)

Specifies the start and end of a line segment are flat.

CAP START ROUND (PRINTER and Motif layouts)
CAP END ROUND (PRINTER layouts)

Specifies the start and end of a line segment are rounded.

CAP START SQUARE (PRINTER and Motif layouts)
CAP END SQUARE (PRINTER layouts)

Specifies the start and end of a line segment are squared.

CAP START ARROW (PRINTER and Motif layouts)
CAP END ARROW (PRINTER layouts)

Specifies the start and end of a line segment are arrows.

JOIN (PRINTER and Motif layouts)

Specifies how the joints of multisegmented objects are drawn.

ROUND is the default for JOIN.

JOIN MITER (PRINTER and Motif layouts)

Specifies that the joints of a multisegmented object are mitered: drawn at 90 degree angles.

JOIN ROUND (PRINTER and Motif layouts)

Specifies the joints of a multisegmented object are rounded.

ROUND is the default for JOIN.

JOIN BEVEL (PRINTER and Motif layouts)

Specifies the joints of a multisegmented object are beveled: drawn at angles other than 90 degrees.

75

Chapter 1. Independent Form Description Language

text-attribute

Specifies how text is displayed within an object. Text attributes include font style, underlining and
overlining, bolding, blinking, and character set.

BLINKING (character-cell layouts)
NOBLINKING

Specifies whether text in an object blinks.

NOBLINKING is the default.

BOLD (character-cell layouts)
NOBOLD
NORMAL INTENSITY

Specifies whether text in an object is displayed at an increased intensity. NOBOLD and NORMAL
INTENSITY are synonyms. This attribute is not applicable in Motif layouts, but specifying FONT
WEIGHT BOLD for Motif layouts may have a similar effect on increasing the intensity at which text is
displayed.

NOBOLD is the default.

CROSSOUT (PRINTER layouts)
NOCROSSOUT

Specifies whether text in an object is crossed out.

NOCROSSOUT is the default.

ENCLOSED BOX (PRINTER layouts)
ENCLOSED ENCIRCLE (PRINTER layouts)
NOENCLOSED

Specifies whether text in an object is enclosed within an outline. The outline may be either a box or a
circle.

NOENCLOSED is the default.

OVERLINED (PRINTER layouts)
NOOVERLINED

Specifies whether text in an object is overlined with a single line.

NOOVERLINED is the default.

UNDERLINED (character-cell and PRINTER layouts)
UNDERLINED DOUBLE (PRINTER layouts)
NOUNDERLINED

Specifies whether text in an object is underlined with a single or a double line, or not underlined.

NOUNDERLINED is the default.

font-declaration

Specifies the character font used to display a field or literal. A font is a set of print characters of one type
size and face. For more information on font characteristics, see the FONT declaration syntax section.

76

Chapter 1. Independent Form Description Language

TEXT PATH RIGHT
TEXT PATH HEBREW

Specifies the geographical path of text within an object. TEXT PATH RIGHT specifies that the
geographical path of an object's text is from left to right. TEXT PATH HEBREW specifies that the
geographical path of an object's text is from right to left in a Hebrew layout.

TEXT PATH RIGHT is the default for all layouts.

CHARACTER SET character-set-name

Specifies one of the registered international character set names or one of the valid private character
set names as the character set. he device you are using must support the character set that you specify.
Check your device documentation to see which character sets you can specify.

The standard character set names are of the following form:

ISO_XXXX_X
PRIVATE_yyy

XXXX_X is the ISO character set registration number and yyy is a character string up to 22 characters in
length defined by DECforms. The International Organization for Standardization (ISO) mandates that
character sets be specified with four digit registration numbers.

CHARACTER SET PRIVATE_USER_PREFERENCE is the default for character-cell layouts.
CHARACTER SET ISO_8859_1 is the default for PRINTER layouts. The default for Motif layouts is
supplied by the Motif toolkit.

character-set-name

Specifies one of the following as the character set that text is displayed in.

ISO_8859_1

Specifies ISO 8859/1 as the character set that displays text. ISO 8859/1 is an 8-bit single byte code
graphic character set. ISO 8859/1 is the same as PRIVATE_LATIN_1.

ISO_8859_9

Specifies ISO 8859/9 as the character set that displays text. ISO 8859/9 is an 8-bit single byte code
graphic character set. ISO 8859/9 is the same as PRIVATE_LATIN_5.

PRIVATE_ASCII

Specifies ASCII as the character set that displays text.

PRIVATE_DEC_ARABIC

Specifies the Arabic character set as the character set that displays text.

PRIVATE_DEC_HANGUL

Specifies the Hangul character set (used in Korea) as the character set that displays text.

PRIVATE_DEC_HANYU

Specifies the Hanyu character set (used in Taiwan) as the character set that displays text.

PRIVATE_DEC_HANZI

77

Chapter 1. Independent Form Description Language

Specifies the Hanzi character set (used in the People's Republic of China) as the character set that
displays text.

PRIVATE_DEC_HEBREW

Specifies the Hebrew character set as the character set that displays text.

PRIVATE_DEC_KANJI

Specifies the Kanji character set (used in Japan) as the character set that displays text.

PRIVATE_DEC_KATAKANA

Specifies the Katakana character set (used in Japan) as the character set that displays text.

PRIVATE_DEC_TURKISH

Specifies the Turkish character set as the character set that displays text.

PRIVATE_LATIN_1

Specifies Latin 1 as the character set that displays text. Latin 1 is an 8-bit character set that contains
190 graphic characters. The set includes letters with accents and diacritical marks used in languages in
many countries in western Europe and North and South America, as well as other special characters not
included in the DEC Supplemental Graphic set.

PRIVATE_LATIN_1 is a synonym for ISO_8859_1.

PRIVATE_LATIN_5

Specifies Latin 5 as the character set that displays text. Latin 5 is an 8-bit character set that contains 190
graphic characters. The set includes letters with accents and diacritical marks used in eastern European
languages that use Latin rather than Cyrillic characters, as well as other special characters not included in
the DEC Supplemental Graphic set.

PRIVATE_LATIN_5 is a synonym for ISO_8859_9.

PRIVATE_MIA_KANJI

Specifies the MIA Kanji character set as the character set that displays text.

MIA Kanji is a character set for displaying Kanji in a fixed 2-byte per character format.

PRIVATE_RULE

Specifies the DEC Special Graphic Character Set as the character set that displays text. The DEC Special
Graphic Character Set has 94 graphic characters,most of which are also in the ASCII character set. The
special characters include symbols and line-drawing characters.

PRIVATE_THAI

Specifies that the Thai character set (used in Thailand)is the character set that displays text.

PRIVATE_UK

Specifies the British version of ASCII as the character set that displays text.

PRIVATE_USER_PREFERENCE

78

Chapter 1. Independent Form Description Language

Specifies the user preference character set as the character set that displays text. On VT100 terminals,this
is ASCII. On VT200 terminals, it is the DEC Multinational Character Set (MCS). On VT300 and
VT400 terminals, it is either Latin 1 or DEC MCS, depending on set-up.

PRIVATE_VT100_SET1

Specifies the first VT100 customer-supplied character set as the character set that displays text.

PRIVATE_VT100_SET2

Specifies the second VT100 customer-supplied character set as the character set that displays text. This
character set is available only on a VT100 terminal with special ROM.

General Rules
Attribute defaults are determined according to layout types, as is the handling of attribute omission. In
character-cell and PRINTER layouts, omitted attributes are inherited from higher level display clauses. If
no higher level display clause contains an explicit setting for an attribute, a DECforms default is applied.

In window layouts, omitted attributes are also inherited from higher level display clauses, but if no
explicit settings are inherited, a DECforms default is not applied. The DECforms default is not applied
to allow a default value for that attribute to be applied at run time using the DECwindows resource file
mechanism.

If there is no default value for that attribute in the resource file, the IFDL Translator ignores the attribute
or issues an error message. See the description of each attribute for specific information. If the layout's
device class does not support an attribute, the IFDL Translator ignores the attribute.

Defaults
area-attribute

The area attribute defaults are:

BACKGROUND COLOR UNCHANGED
NOFILL
FOREGROUND COLOR UNCHANGED
NOREVERSE
SHADOW (window objects only)

line-attribute

The line attribute defaults are:

LINE STYLE SOLID (PRINTER and window layouts only)
LINE WIDTH SINGLE (character-cell layouts only)
LINE WIDTH IS 0 (PRINTER and window layouts only)
NO LINE MARKER (PRINTER layouts only)
JOIN ROUND (PRINTER and window layouts only)
CAP START ROUND (PRINTER and window layouts only)

In PRINTER layouts, if either CAP START or CAP END is omitted, the omitted attribute defaults to the
specified attribute.

text-attribute

79

Chapter 1. Independent Form Description Language

The text attributes defaults are:

NOBLINKING
NOBOLD
NOUNDERLINED
NOOVERLINED
NOCROSSOUT
NOENCLOSED
TEXT PATH RIGHT

Example
Attribute DOUBLE_ATTRIBS
 IS
 Background Color Unchanged
 Font Size Double High
 Nobold
 Noblinking
 Character Set Private_VT100_Set1
End Attribute

In this example, DOUBLE_ATTRIBS is an attribute declaration specifying the following elementary
attributes:

The background color is not modified by the operator.

The font size is specified as double high.

Text displayed is not bolded.

Text displayed does not blink.

Text is displayed in the PRIVATE_VT100_SET1 character set.

ENABLE RESPONSE Declaration
(ENABLE RESPONSE Declaration — The ENABLE RESPONSE declaration specifies the action or
actions that occur when a form is enabled. You can use an enable response to display a panel or a series
of panels until the next request following the enable is received.

enable-response-declaration
Format

Where you specify this clause:

80

Chapter 1. Independent Form Description Language

Syntax Rules
response-step

Specifies the response steps to be performed when the application enables the form. For more
information, see the RESPONSE STEP clause syntax section.

REQUEST validation-response-declaration

Establishes the validation response as the response to be interpreted after the operator has signaled
completion of input processing during accept phase (if any). For more information, see the
VALIDATION RESPONSE declaration syntax section.

REQUEST exit-response-declaration

Establishes a response to be executed after the completion of accept phase. For more information, see the
EXIT RESPONSE declaration syntax section.

General Rules
You can declare only one ENABLE RESPONSE declaration for each layout. When the session being
enabled is the only session on the display device, the default enable response clears the display. When
there are other sessions already running on the display device, the default enable response does nothing.

Example
Enable Response
 Display HOWDY FIRST_FORM
End Response

This ENABLE RESPONSE declaration displays the panels HOWDY and FIRST_FORM in their
respective viewports.

ENTER HELP Response Step
ENTER HELP Response Step — The ENTER HELP response step allows you to create DECforms help.

enter-help-response-step
Format

Where you specify this clause:

Syntax Rules
ENTER HELP

Causes the Form Manager to do all of the following:

● Switch from the main activation list to the help activation list.

● Set the HELP ACTIVE condition to true.

81

Chapter 1. Independent Form Description Language

● Activate the help panel specified in the USE HELP PANEL clause that applies to the current
activation item, if one has been declared in the LAYOUT declaration.

Control does not return to the response step after the ENTER HELP response step until a successful
EXIT HELP response step is executed, a successful RETURN response step is executed, or the help
activation list is empty.

The EXIT HELP and RETURN response steps are successful if they are specified as IMMEDIATE,
or if IMMEDIATE was not specified and the help activation item passed validation. If there is no USE
HELP PANEL clause, or if help is already active, the ENTER HELP response step is ignored.

For character-cell layouts, if there are no unprotected fields or icons on the panel when the help panel is
activated, the Form Manager performs an ACTIVATE WAIT on the panel.

For window layouts, if there are no unprotected fields or buttons on the panel when the help panel is
activated, the Form Manager displays the panel and an implicit EXIT HELP response step is executed.

The ENTER HELP response step is ignored in PRINTER layouts.

Example
ENTER HELP

This example specifies that a help panel is activated.

ENTRY RESPONSE Declaration
ENTRY RESPONSE Declaration — The ENTRY RESPONSE declaration specifies what action the
Form Manager takes when an item becomes the current activation item. Entry responses for the group
and panel level are called just before the Form Manager enters the first active field, button, or icon of the
group or panel. Entry responses are executed during accept phase only.

entry-response-declaration
Format

Where you specify this clause:

Syntax Rules
response-step

Specifies the response steps to be performed during accept phase. For more information, see the
RESPONSE STEP clause syntax section.

82

Chapter 1. Independent Form Description Language

General Rules
The Form Manager interprets entry responses for fields,buttons, and icons during accept phase just
before operator input into an item. The Form Manager performs an entry response for a group during
accept phase just before the Form Manager allows the operator to enter input into the first active field,
icon, or button of a group.

The Form Manager interprets the group entry response before the field, button, or icon entry response. If
you specify an entry response for a panel, the response is interpreted during accept phase just before the
Form Manager displays a panel to solicit input for an activation item on that panel.

There is no default entry response.

Examples
1. Panel P1

 Group G1
 Entry Response
 Message "Abandon hope all ye who enter here"
 End Response
 .
 .
 .
End Panel

This example specifies that a MESSAGE response step is performed when a field, button, or
icon from Group G1 becomes the current activation item. The response step displays the message
“Abandon hope all ye who enter here”.

2. Panel CHECK_PANEL
 Viewport MID_VP

 Entry Response
 Reset MEMO AMOUNT CHECK_MEMO
 End Response
 .
 .
 .
End Panel

This example specifies that the RESET response step is performed when panel CHECK_PANEL is
about to receive input to one of its fields,buttons, or icons. The response step specifies that the form
data items MEMO, AMOUNT, and CHECK_MEMO are restored to their initial values.

EXIT HELP Response Step
EXIT HELP Response Step — The EXIT HELP response step specifies that help activation processing
should end conditionally or unconditionally after validation.

exit-help-response-step
Format

83

Chapter 1. Independent Form Description Language

Where you specify this clause:

Syntax Rules
EXIT HELP [IMMEDIATE]

The EXIT HELP response step sets the HELP ACTIVE condition to false,and switches from the help
activation list to the current item on the main activation list. An EXIT HELP response step does not
change the current activation item on the main activation list.

IMMEDIATE specifies that validation is not performed on any item on the help activation list when help
is exited.

The EXIT HELP response step is ignored in PRINTER layouts.

Example
EXIT HELP IMMEDIATE

This example specifies that the Form Manager exits help without validating any items on the help
activation list, after completing any exit responses for the current activation item.

EXIT RESPONSE Declaration
EXIT RESPONSE Declaration — The EXIT RESPONSE declaration specifies what action the Form
Manager takes when an item is no longer the current activation item. Exit responses for the group and
panel level are called when the Form Manager exits the last active field, button, or icon of the group
or panel,and after the Form Manager has called the last field's, button's, or icon's exit response. Exit
responses are executed during accept phase only.

exit-response-declaration
Format

Where you specify this clause:

84

Chapter 1. Independent Form Description Language

Syntax Rules

response-step

Specifies the response steps to be performed during accept phase. For more information, see the
RESPONSE STEP clause syntax section.

General Rules

The Form Manager interprets an exit response for a field, button, or icon during accept phase after
the operator has indicated that item input is completed and the item has been validated, or the item is
bypassing validation.

For a group, the Form Manager interprets an exit response just after the operator has indicated that item
input into the last field, button, or icon of an active group is completed and the field has been validated,
or the item is bypassing validation.

An exit response for a panel is interpreted during accept phase just after the Form Manager completes
processing for an activation item on that panel, and either accept phase is ending or the next activation
item is on another panel.

There is no default exit response.

Example
Panel REGISTER_PANEL
 Viewport MID_VP
 Exit Response
 Let NEXT_UPDATE_MESSAGE = "Heigh Ho! You're broke!"
 End Response
 .
 .
 .
End Panel

This example specifies that a LET response step be performed when panel REGISTER_PANEL is
about to cease being the panel with the current activation item. A LET response step assigns a value
to a form data item. This response step puts the character string “Heigh Ho! You're broke!” into the
NEXT_UPDATE_MESSAGE form data item.

EXTENT Clause
EXTENT Clause — The EXTENT clause specifies the horizontal and vertical spans of an object in a
window or PRINTER layout.

extent-clause

Format

full-extent-clause

85

Chapter 1. Independent Form Description Language

partial-extent-clause

Where you specify this clause:

Syntax Rules
WIDTH number-1 HEIGHT number-2

Specifies the width and height of an object's extents; number-1 and number-2 are expressed in layout
units.

HEIGHT number-2 WIDTH number-1

Specifies the width and height of an object's extents; number-2 and number-1 are expressed in layout
units.

WIDTH number-1

Specifies the horizontal extent of an object; number-1 is expressed in layout units.

HEIGHT number-2

Specifies the vertical extent of an object; number-2 is expressed in layout units.

General Rules
An EXTENT clause can be used to specify explicitly the size of various DECforms objects. The size
of objects is particularly significant for objects within groups. The size of a group's occurrence, in the
absence of an EXTENT clause, is determined by the sum of the sizes of all the objects within that
occurrence. By default, a group's occurrence is the smallest extent rectangle that completely contains all
the objects within that occurrence.

For window layouts, the Form Manager retrieves the default size of these objects at run time by querying
the display device. Therefore, the default sizes of objects can vary slightly from one device to another.

For PRINTER layouts, the IFDL Translator sizes text objects by querying system font metric resource
files to determine the height and width of text literals and fields. If a specific font metric file is not
available, the metrics for FONT FAMILYCOURIER STYLE ROMAN SIZE 12 are used.

There are two types of EXTENT clauses: full and partial. You must specify both vertical and horizontal
dimensions in full extent clauses. You can omit either dimension in a partial extent clause.

Example
Push Button EXIT_APPLICATION
 Line 2500
 Column 200

86

Chapter 1. Independent Form Description Language

 Height 75
 Width 100
 Label "Exit"
End Button

This example creates an Exit push button.

EXTERNAL RESPONSE Declaration
EXTERNAL RESPONSE Declaration — The EXTERNAL RESPONSE declaration customizes the run-
time processing of the form. Each external response defines an action or set of actions to be performed
by the Form Manager when an external request is called. The requests that the application program can
make of the Form Manager that have reference to forms are enable form, disable form, send a record
message, receive a record message, and transceive (send and receive) record messages. In addition, each
of the five requests can have associated control text. (If this is the case, you can declare a control text
response.) For each external request you can declare a validation response, an exit response, or both. If
you specify an external response, and the response is defined for the current request, the Form Manager
performs that response. If you do not specify an external response for the current request, the Form
Manager performs a default response. For the defaults, see the Defaults section.

external-response-declaration

Format

Where you specify this clause:

Syntax Rules
enable-response-declaration

Performed when the Form Manager enables a form. Only one enable response may appear in each
layout. For more information, see the ENABLE RESPONSE declaration syntax section.

disable-response-declaration

Performed when the Form Manager disables a form. Only one disable response can appear in each
layout. For more information, see the DISABLE RESPONSE declaration syntax section.

send-response-declaration

Performed when an application sends a record message to the form. For more information, see the
SEND RESPONSE declaration syntax section.

receive-response-declaration

87

Chapter 1. Independent Form Description Language

Performed when the application receives a record message from the form. For more information, see the
RECEIVE RESPONSE declaration syntax section.

transceive-response-declaration

Performed when the application transceives (sends and receives) a record message or messages. For
more information, see the TRANSCEIVE RESPONSE declaration syntax section.

control-text-response-declaration

Performed when the application sends control text to the form. For more information, see the
CONTROL TEXT RESPONSE declaration syntax section.

Defaults
enable-response-declaration

The default enable response is to execute a REMOVE ALL response step and clear the display, unless
there are other sessions on the display device.

disable-response-declaration

The default disable response is to do nothing.

send-response-declaration

The default send response is to do nothing.

receive-response-declaration

The default receive response executes an ACTIVATE CORRESPONDING RECEIVE ALL response
step.

transceive-response-declaration

The default transceive response performs a receive response for the receive records.

control-text-response-declaration

The default control text response is to do nothing.

Example
The following are examples of external responses.

Enable Response
 Activate Panel WELCOME_PANEL

 Request Exit Response
 Display CHOICE_PANEL BALANCE_PANEL
 Message "USE ARROWS TO POSITION TO CHOICE AND PRESS Return"
 End Response
End Response

The ENABLE RESPONSE declaration is executed when the Form Manager enables the form and
displays the WELCOME_PANEL panel on the display device.

88

Chapter 1. Independent Form Description Language

The ACTIVATE response step causes the WELCOME_PANEL panel to be displayed and waits for
operator input.

REQUEST EXIT RESPONSE specifies that a DISPLAY response step is performed after the
completion of accept phase. This DISPLAY response step displays the CHOICE_PANEL and
BALANCE_PANEL panels.

REQUEST EXIT RESPONSE also specifies that a MESSAGE response step is performed after the
completion of accept phase. In this case a message telling the operator to use arrows to position to
the choice panel and press Return is displayed in the message panel.

The REQUEST EXIT RESPONSE declaration is ended.

The ENABLE RESPONSE declaration is ended.

FIELD DEFAULT Application
FIELD DEFAULT Application — The FIELD DEFAULT application specifies the default
characteristics applied to subsequent fields, icons, or buttons within a layout, group, or panel in an IFDL
source file.

field-default-application

Format

Where you specify this clause:

Syntax Rules
NO FIELD DEFAULT

Specifies that no user-defined defaults apply at the current level.

FIELD DEFAULT default-name

Specifies that the named default, default-name, applies at the current level.

FIELD DEFAULT OF [field-default-entry] ... END DEFAULT

89

Chapter 1. Independent Form Description Language

Specifies that a set of field default entries applies at the current level. For further information, see the
FIELD DEFAULT entry syntax section.

General Rules
Description entries for fields, icons, and buttons can be declared in the same field default. Only the
description entries allowed for each item are applied as field defaults: for example, field validation entries
cannot be applied to icons.

Field characteristics set by the FIELD DEFAULT application remain in effect for a layout, group,
panel,field, icon, or button until the end of that syntactic entity. At that time, all field characteristics
revert to defaults declared at a higher level, if any. If no defaults are declared at a higher level, field
characteristics revert to DECforms defaults.

When a field description entry from a field default is to be applied to a field, icon, or button,that field
description is applied only if it does not conflict with any field description entry in the field, icon, or
button. For a list of conflicting field description entries, see the FIELD VALIDATION entry syntax
section.

You cannot specify the negation of a field description entry—for example, NOT PROTECTED—in a
field default application. The negative field description entry is the default.

The declaration of a FIELD DEFAULT application can take one of the following forms:

● An explicit default declaration (FIELD DEFAULT OF), listing all the entries that compose the
default.

● A reference to a named default. The reference acts as if the entries in the named default had been
explicitly declared as an explicit default declaration.

● A NO FIELD DEFAULT declaration. This declares that no default is to be applied while the layout,
group, or panel is being processed.

● The absence of any defaulting declaration. Any default currently active remains in effect for the
layout, group, panel, field, button, or icon.

Defaults are not additive; when a default becomes active for an item, it completely obscures any default
that is active at a higher level.

When a field default is active within a layout, group, panel,field, button, or icon, the default is applied to
that object only when the clause in question is entirely absent from the object, and the clause in question
is explicitly declared in the default.

For example, the ACTIVE HIGHLIGHT clause in a default application is applied to a field within the
default application's influence only when an explicit ACTIVE HIGHLIGHT is absent from the field. If
there is no ACTIVE HIGHLIGHT in the default application, no ACTIVE HIGHLIGHT is applied to the
field.

Any inheritance of attributes within the DISPLAY clause for the object from higher levels takes place
after the defaulting mechanism is applied. Therefore, an object obtains display attributes from a default
application only when the object possesses no DISPLAY clause of its own, and there is an explicit
DISPLAY clause within the currently active default application.

In this case,the DISPLAY clause within the default acts (for inheritance purposes) exactly as if it were
the DISPLAY clause for the object; the fact that the object obtained the DISPLAY clause from the
default application is entirely transparent to the inheritance mechanism.

90

Chapter 1. Independent Form Description Language

Array expressions in field default applications either must be fully subscripted or must refer to data items
that are associated with panel fields that are contained in the panel group where the default application is
declared. Array expressions in named field default declarations must always be fully subscripted.

Defaults
If you specify NO FIELD DEFAULT, or if there are no applicable field entries, the field defaults are as
follows:

LOCATION Clause

For character-cell layouts, the LOCATION clause specifies that the field or icon display starts at the next
line,and the same column. You cannot default a location in a window or PRINTER layout.

FONT Declaration

For character-cell layouts, the character set defaults to PRIVATE_USER_PREFERENCE and the font
size defaults to SINGLE.

For Motif layouts, the character set and font defaults are supplied by the Motif toolkit.

For PRINTER layouts, the character set and font default is FAMILY COURIER STYLE ROMAN
WEIGHT MEDIUM SIZE 12.

BACKGROUND COLOR UNCHANGED

The background color remains as set by the user.

FOREGROUND COLOR UNCHANGED

The foreground color remains as set by the user.

Examples
1. Panel FOO

Apply Field Default
 Of
 Active Highlight Reverse
 Minimum Length 1
 Message "You must enter something "
End Default
 .
 .
 .
End Panel

This example specifies a field default of ACTIVE HIGHLIGHT REVERSE and MINIMUM
LENGTH 1; these apply to all the fields in panel FOO that do not have field default applications
declared in them.

2. Apply Field Default
 Of
 Same Line Next Column + 1
 Protected
End Default

This example specifies a field default of field placement at same line and next column + 1, relative to
the previously declared field. It also specifies protected as the field default.

91

Chapter 1. Independent Form Description Language

FIELD DEFAULT Declaration
FIELD DEFAULT Declaration — The FIELD DEFAULT declaration specifies a named set of defaults
at the layout level that can be applied as the default characteristics of subsequent fields, icons, or buttons
within a panel in an IFDL source file.

field-default-declaration
Format

Where you specify this clause:

Syntax Rules
field-default-name

Specifies a name for a default to be subsequently referred to in one or more field default applications.

field-default-entry

Specifies the attributes to be used as field defaults. For further information, see the FIELD DEFAULT
entry syntax section.

General Rules
You cannot specify negative field description entries—for example, NOT PROTECTED—in a FIELD
DEFAULT declaration. The negative field description entry is the default.

Array references in named field default declarations must be fully subscripted. For more information on
arrays and subscripts, see Appendix A, "Using Arrays with DECforms Software".

Examples
1. Field Default UC_DEF

 Uppercase
End Default

In this example, UC_DEF is the name of a field default that specifies uppercase.

2. Field Default PROT_DEF
 Protected
End Default

In this example, PROT_DEF is the name of a field default that specifies protected fields, buttons, and
icons.

3. Field Default ENTRY_FIELD

92

Chapter 1. Independent Form Description Language

 Display Underlined
 Active Highlight Reverse
 Minimum Length 1
 Message "You must enter something in this field."
End Default

In this example, ENTRY_FIELD defines attributes of fields that must be filled in by the operator.
Fields that receive this default are displayed with underlines, have the reverse attributes added to the
field when it is the active field, and require at least one nonzero or nonblank character.

FIELD DEFAULT Entry
FIELD DEFAULT Entry — The FIELD DEFAULT entry specifies characteristics for fields, icons, or
buttons that can be used in field default applications and field default declarations.

field-default-entry
Format

Where you specify this clause:

Syntax Rules
field-validation-entry

Specifies the validation attributes for a field. For more information, see the FIELD VALIDATION entry
syntax section.

item-description-entry

Specifies the display and processing attributes for an item. Item description entries are applied from
the previously stated item default in the same panel or group. For more information, see the ITEM
DESCRIPTION entry syntax section.

picture-field-description-entry

Specifies the display,validation, and processing attributes for a picture field. For more information, see
the PICTURE FIELD declaration syntax section.

slider-field-description-entry (window layouts)

Specifies characteristics of an object that presents and allows input of a numeric value within fixed
limits. For more information, see the SLIDER FIELD declaration syntax section.

text-field-description-entry

93

Chapter 1. Independent Form Description Language

Specifies characteristics of an object that presents and allows input of a multiline text value. For more
information, see the TEXT FIELD declaration syntax section.

Example
Field Default BORING_DEF
 Same Line
 Next Column
End Default

In this FIELD DEFAULT declaration, BORING_DEF is specified as the name for the field default entry
of same line, next column.

FIELD VALIDATION Entry
FIELD VALIDATION Entry — The FIELD VALIDATION entry specifies the validation attributes for a
field.

field-validation-entry
Format

Where you specify this clause:

Syntax Rules
INPUT REQUIRED

Specifies that the operator must enter data into the field for the field to be considered valid. (If the
operator enters the existing value of the panel field, the INPUT REQUIRED clause is not satisfied.
The INPUT REQUIRED clause is satisfied only if the value of the data item has been modified by the

94

Chapter 1. Independent Form Description Language

operator. The Read Verify function of the OpenVMS terminal driver determines the behavior of the
INPUT REQUIRED clause.) Once data has been entered into to the field, the field is considered valid
for the duration of the accept phase, or until the field is deactivated. Once the field is deactivated, its
valid status is reset. If the field is activated again later, and revisited, more data must be entered into the
field to validate it.

INPUT REQUIRED is not the same as MINIMUM LENGTH.

message-clause-1

Specifies the message that is displayed to the operator when INPUT REQUIRED validation fails. The
message text may be supplied as a form data item, as a text string, or as a code for a message text string
from the Form Manager.

NO INPUT REQUIRED

Specifies that the operator does not have to enter data into a field before the field is considered valid.

RANGE literal-1 THROUGH literal-2
RANGE data-1 THROUGH data-2
RANGE corresponding-data-1 THROUGH corresponding-data-2

Specifies a valid range of values, literal-1, data-1, or corresponding-data-1through literal-2, data-2,
corresponding-data-2 for the field. Literal-1 and literal-2 can be numeric literals or strings,but must be
consistent with the data type of the form data item associated with that field. Corresponding-data-item is
a data item that fulfills all the following conditions:

● Declared inside a data group.

● Declared in at least one multiply occurring group.

● At least one of the multiply occurring groups has a corresponding subscript specified.

The specified range is inclusive. THROUGH and THRU are synonyms.

message-clause-2

Specifies what is displayed to the operator if range validation fails. You can specify a form data item, a
text string, or a code for a message text string from the Form Manager as the message text.

NO RANGE

Specifies that there is no range check on the value of the form data item validation.

REQUIRE conditional-expression-1

Specifies that conditional-expression-1need be satisfied for the field to be considered valid. For more
information on conditional expressions, see the CONDITIONAL EXPRESSION syntax section.

message-clause-3

Specifies a message that is displayed to the operator if conditional-expression-1 is false. You can specify a
form data item, a text string, or a code for a message text string from the Form Manager as message text.

NO REQUIRE

Specifies that no REQUIRE condition needs to be satisfied for the field to be considered valid.

95

Chapter 1. Independent Form Description Language

SEARCH [NOT] list-name

Specifies that the field value must be one of a list of items, list-name. List-name must contain all numeric
items if the field's data type is numeric; list-name must contain all alphanumeric items if the field's data
type is alphanumeric. For more information, see the LIST declaration.

If you specify SEARCH NOT, the field value must not be one of the items in list-name. You must not
use date fields as items in list-name in SEARCH.

message-clause-4

Specifies what is displayed to the operator if the item does not pass SEARCH validation. You can
specify a form data item, a text string, or a code for a message text string from the Form Manager as the
message text.

NO SEARCH

Specifies that no list is checked for field validation.

General Rules
Field validation entries must be either on or off. If you specify a particular field characteristic, you
cannot specify the negative of that same characteristic in the same field declaration.

If a message clause is omitted, a default message is printed in its place.

Table 1.5, "Conflicting Field Description Entries" lists the field description entries and the entries that
conflict with each.

Table 1.5. Conflicting Field Description Entries

Field Description Entry Conflicting Entries

ACTIVE HIGHLIGHT NO ACTIVE HIGHLIGHT, CONCEALED,
PROTECTED

AUTOSKIP NO AUTOSKIP, NO DATA INPUT, PROTECTED
CONCEALED NOT CONCEALED, ACTIVE HIGHLIGHT,

CONCEALED WHEN, DISPLAY CLAUSE,
HIGHLIGHT WHEN, OUTPUT PICTURE

CONCEALED WHEN CONCEALED, NOT CONCEALED
DATA INPUT NO DATA INPUT, PROTECTED
DISPLAY NO DISPLAY, CONCEALED
ENTRY RESPONSE NO ENTRY RESPONSE, PROTECTED
EXIT RESPONSE NO EXIT RESPONSE, PROTECTED
FUNCTION RESPONSE NO FUNCTION RESPONSE, PROTECTED
HIGHLIGHT WHEN NO HIGHLIGHT, CONCEALED
INPUT PICTURE NO DATA INPUT, PROTECTED
INPUT REQUIRED NO INPUT REQUIRED, NO DATA INPUT,

PROTECTED
JUSTIFICATION DECIMAL JUSTIFICATION LEFT, JUSTIFICATION RIGHT, NO

DATA INPUT, PROTECTED

96

Chapter 1. Independent Form Description Language

Field Description Entry Conflicting Entries

JUSTIFICATION LEFT JUSTIFICATION DECIMAL, JUSTIFICATION
RIGHT, NO DATA INPUT, PROTECTED

JUSTIFICATION RIGHT JUSTIFICATION LEFT, JUSTIFICATION DECIMAL,
NO DATA INPUT, PROTECTED

MAXIMUM DOWN MAXIMUM UP, MAXIMUM LEFT, MAXIMUM
RIGHT

MAXIMUM LEFT MAXIMUM RIGHT, MAXIMUM DOWN,
MAXIMUM UP

MAXIMUM RIGHT MAXIMUM LEFT, MAXIMUM DOWN,
MAXIMUM UP

MAXIMUM UP MAXIMUM DOWN, MAXIMUM LEFT,
MAXIMUM RIGHT

MINIMUM LENGTH NO MINIMUM LENGTH, NO DATA INPUT,
PROTECTED

MIXED CASE UPPERCASE, NO DATA INPUT, PROTECTED
NO DATA INPUT INPUT PICTURE, AUTOSKIP, INPUT REQUIRED,

MINIMUMLENGTH, MIXED CASE, PROTECTED,
RANGE, REQUIRE, SEARCH, UPPERCASE

OUTPUT PICTURE CONCEALED
OUTPUT WHEN NO OUTPUT WHEN
PROTECTED NOT PROTECTED, PROTECTED WHEN, accept-

response-declaration, ACTIVE HIGHLIGHT,
AUTOSKIP, DATA INPUT, INPUT PICTURE,
INPUT REQUIRED, MINIMUM LENGTH, MIXED
CASE,RANGE, REQUIRE, SEARCH, TIMEOUT,
USE HELP MESSAGE, USE HELP PANEL,
UPPERCASE

PROTECTED WHEN PROTECTED, NOT PROTECTED
RANGE NO RANGE, NO DATA INPUT, PROTECTED
REQUIRE NO REQUIRE, NO DATA INPUT, PROTECTED
SEARCH NO SEARCH, NO DATA INPUT, PROTECTED
TIMEOUT NO TIMEOUT, PROTECTED
UPPERCASE MIXED CASE, NO DATA INPUT, PROTECTED
USE HELP MESSAGE NO HELP MESSAGE, PROTECTED
USE HELP PANEL NO HELP PANEL, PROTECTED
VALIDATION RESPONSE NO VALIDATION RESPONSE, PROTECTED

Example
Field RANGE_FIELD
 Line 18
 Column 1
 Range data_x_1 Thru data_x_2
 MESSAGE "Data must be between data_x_1 and data_x_2."-
 "No other value will suffice."

97

Chapter 1. Independent Form Description Language

END FIELD

The field RANGE_FIELD specifies that the data must be between data_x_1 and data_x_2 and displays
a message when the data is not in the correct range.

FONT Declaration
FONT Declaration — The FONT declaration specifies the set of type for text rendition.

font-declaration
Format

Where you specify this clause:

98

Chapter 1. Independent Form Description Language

Syntax Rules
FAMILY

Specifies the font type for text rendition. DECforms supports three font families:

● A Latin set:

Courier
Helvetica
Menu
Symbols Set
Terminal
Times

● An Asian set:

Gothic
Gotic
Hei
Heiti
Kmenu
Mincho
Myungcho
Screen
Songti
Sung

● A Hebrew set:

David
Frankruhl
Gam
Miriam
Miriamfixed
Narkisstam

The font specified by FAMILY specifies the font used for text rendition. Each font specified in
FAMILY has a set of characteristics that you can specify: STYLE, WEIGHT, and SIZE. See Table 1.6,
"Valid IFDL Font Combinations for Motif" for valid font combinations for Motif layouts.

FAMILY cannot be specified for character-cell terminals.

"user-name"

In Motif layouts, "user-name" specifies an X Logical Font Definition (XLFD) family as the font used for
text rendition. "User-name" must be a supported XLFD font.

If "user-name" is specified, it will be used as the XLFD family name when building the XLFD font
name. This gives you the ability to select XLFD font families that are not explicitly supported in the
IFDL, for example, Asian fonts.

STYLE

Specifies a particular style of font. STYLE ROMAN is the default font style.

99

Chapter 1. Independent Form Description Language

STYLE ROMAN

Specifies that a Roman style is applied to the chosen font. A Roman style is characterized by upright
letters. This is the default style.

STYLE ITALIC

Specifies that an Italic style is applied to the selected font. An italic style is characterized by letters
slanting to the right. STYLE ITALIC and STYLE OBLIQUE are equivalent for all fonts with the
exception of user-name. If you specify user-name, you must specify the appropriate style for the font on
your system.

STYLE OBLIQUE

Specifies that an oblique style is applied to the selected font. An oblique style is characterized by letters
that are neither parallel nor perpendicular to the line they rest upon.

WEIGHT

Specifies the heaviness, or thickness, of the font. WEIGHT MEDIUM is the default font weight. These
font weights are listed in ascending order of lightest to heaviest.

WEIGHT MEDIUM

Specifies that the font is of average weight. This is the default.

WEIGHT BOLD

Specifies the heaviest weight of the font.

SIZE

Specifies the physical dimension of the font.

SIZE integer

Specifies that the height of the font is integer. The default for integer is 12, specifying 12 point type.

SIZE SINGLE
SIZE NORMAL

Specifies the standard font size for the display device. SIZE SINGLE and SIZE NORMAL are
synonyms. This is the default font for character-cell terminals.

SIZE SINGLE and SIZE NORMAL apply only to character-cell layouts.

SIZE DOUBLE HIGH

Specifies a font that is twice as high and twice as wide as the standard font size.

SIZE DOUBLE HIGH applies only to character-cell layouts.

SIZE DOUBLE WIDE

Specifies a font that has twice the normal width of the standard font size, but has the standard height.

SIZE DOUBLE WIDE applies only to character-cell layouts.

100

Chapter 1. Independent Form Description Language

General Rules
The FAMILY, STYLE, WEIGHT, and SIZE integerclauses are permitted only in window and PRINTER
layouts. If the integer clause is not specified, the SIZE clause is supported only in character-cell layouts.

You cannot use SINGLE (NORMAL), DOUBLE HIGH, and DOUBLE WIDE in combination for fields
and literals on the same line in a panel in character-cell layouts.

In character-cell layouts, you are restricted as to where fields and literals that have a DOUBLE HIGH or
DOUBLE WIDE font size may appear. These constraints result from hardware restrictions on VT-class
terminals.

Objects having either DOUBLE HIGH or DOUBLE WIDE font size must be in odd columns. Because
the physical column is made up of two components, the viewport base and the object COLUMN clause,
the restrictions on the objects' COLUMN clauses are stated in one of two ways.

If an object is in a panel that has a viewport starting in an odd column, the object must have an odd
column specification. If the object is in a panel that has a viewport starting in an even column, the object
must have an even column specification. For example, panels in a viewport starting in column 1 must
have all DOUBLE font objects starting in odd columns.

If you define two successive text literals as DOUBLE HIGH, and the second literal has a NEXT LINE
clause, you will receive an error as follows:

%FORMS-E-NODBLHIGH, double high objects cannot exist on this line

You can work around this problem by declaring the second literal with a NEXT LINE+1 clause. For
more information, see the Examples section.

If an object has a DOUBLE HIGH font size, the line specified is the line of the bottom half of the object.
Such objects must have line clauses that specify at least line two (to allow the upper half of the characters
room in the viewport).

Defaults
Character-Cell Layouts

The default font is FONT SIZE NORMAL or FONT SIZE SINGLE.

PRINTER Layouts

The default font is FONT FAMILY COURIER FONTSTYLE ROMAN FONT WEIGHT MEDIUM
FONTSIZE 12.

Window Layouts

The default font is device-specific. See Table 1.6, "Valid IFDL Font Combinations for Motif" for valid
Motif font combinations.

Table 1.6. Valid IFDL Font Combinations for Motif

Family Description Weight Style Size

Latin Languages

COURIER Fixed width,
serif

Medium
Bold

Roman
Italic
Oblique

8 10 12 14 18 24

HELVETICA Variable width, Medium Roman 8 10 12 14 18 24

101

Chapter 1. Independent Form Description Language

Family Description Weight Style Size
sans serif Bold Italic

Oblique
MENU Screen menu font Medium Roman 10 12
SYMBOLS SET Math and Greek symbols Medium Roman 8 10 12 14 18 24
TERMINAL VT100 Character Set Medium

Bold
Roman 14 18 28 36

TIMES Variable width,
serif

Medium
Bold

Roman
Italic
Oblique

8 10 12 14 18 24

Asian Languages

GOTHIC Katakana, Kanji fonts Medium Roman 8 10 12 14 18 24
GOTIC Hangul font Medium Roman 16 24
HEI Hanyu font Medium Roman 16 24
HEITI Hanzi font Medium Roman 16 24 34
KMENU Katakana font Medium Roman 12
MINCHO Katakana, Kanji fonts Medium Roman 8 10 12 14 18 24
MYUNGCHO Hangul font Medium Roman 16 24 32
SCREEN Hanzi, Hanyu, Hangul

fonts
Medium Roman 18 24

SONGTI Hanzi font Medium Roman 16 24 34
SUNG Hanyu font Medium Roman 24 32
Hebrew Languages

DAVID Hebrew font Medium
Bold

Roman
Italic
Oblique

8 10 12 14 18 24

FRANKRUHL Hebrew font Medium
Bold

Roman
Italic
Oblique

8 10 12 14 18 24

GAM Hebrew font Medium
Bold

Roman
Italic
Oblique

8 10 12 14 18 24

MIRIAM Hebrew font Medium
Bold

Roman
Italic
Oblique

8 10 12 14 18 24

MIRIAMFIXED Hebrew font Medium
Bold

Roman
Italic
Oblique

8 10 12 14 18 24

NARKISSTAM Hebrew font Medium
Bold

Roman
Italic
Oblique

8 10 12 14 18 24

Examples
1. FONT SIZE DOUBLE HIGH

102

Chapter 1. Independent Form Description Language

In this example for character-cell layouts, the font size declared is DOUBLE HIGH, which specifies
a font that is twice as high and twice as wide as the standard font size.

2. FONT SIZE NORMAL

In this example, the font is specified as the standard character cell font.

3. FONT FAMILY Helvetica FONT STYLE Roman FONT WEIGHT Medium FONT SIZE 14

In this example, a Helvetica Roman medium weight 14 point font is specified.

4. Literal Text
 Line 2
 Column 1
 Value "lit1"
 Display
 Font Size Double High
End Literal

Literal Text
 Next Line +1
 Same Column
 Value "lit2"
 Display
 Font Size Double High
End Literal

In this example, you avoid positioning errors by declaring two successive text literals as DOUBLE
HIGH and by declaring the second one using NEXT LINE+1.

5. Literal Text
 Line 2
 Column 1
 Value "Choose one:"
 Display
 Font Family Menu
 Font Size 10
End Literal

In this example, text is displayed in the font most often used by Motif applications.

FORM DATA Declaration
FORM DATA Declaration — The FORM DATA declaration specifies all data stored in the form. Panel
fields provide for the visual display of information contained in form data. Form data have attributes that
belong to the form, independent of layouts; panel fields have attributes that belong to a panel, specific
to a display device. Panel fields, which are declared in a panel, declare the attributes for displaying the
information contained in form data items.

form-data-declaration
Format

103

Chapter 1. Independent Form Description Language

track-clause

form-data-item-declaration, Format 1

form-data-item-declaration, Format 2

builtin-name

form-data-group-declaration-1

104

Chapter 1. Independent Form Description Language

for-current-clause

for-locator-current-clause

Where you specify this clause:

Syntax Rules: form-data-declaration

track-clause-1

Specifies the tracking attribute for all the data items declared within the FORM DATA declaration. You
can change the tracking attribute for any form data item by declaring a track clause within a form data
group declaration.

Where the track clause adheres depends on where it is declared. You must declare track-clause-1 at the
beginning of a FORM DATA declaration, before any form data items are defined.

form-data-item-declaration-1

Specifies the name and data type of the form data stored within the form. Form data items must have
unique names.

The FORM DATA ITEM declaration has two formats. For more information, see the FORM DATA
ITEM declaration syntax rules.

form-data-group-declaration-1

Declares a group of form data items to be stored in the form.

More than one form data item can have the same name, provided that each item is in a different group.
To differentiate between form data items with the same names, you must use a qualified name.

A qualified name consists of the name of each group, beginning with the outermost group of which that
item is a member, and then the name of the data item. Qualified names separate each group and data
item name from the next with a period. For example:

GROUP firstgroup
 GROUP lastgroup
 ITEM_A CHARACTER(10)
END GROUPEND GROUP

105

Chapter 1. Independent Form Description Language

The form data item item_a must be referred to as FIRSTGROUP.LASTGROUP.ITEM_A. When
referring to this data item, the order in which the qualifying group names are specified must match the
order in which the nested groups are declared.

Intervening group names cannot be omitted. You can also embed spaces in qualified names, and specify
the components of qualified names on different lines.

Name qualification of form data must be complete in every instance. All references to data items must
be qualified, even references where lack of qualification does not result in ambiguity. In the following
example, FIRSTGROUP is an array occurring 10 times, and LASTGROUP occurs 5 times:

GROUP firstgroup OCCURS 10
 GROUP lastgroup OCCURS 5
 ITEM_A CHARACTER(10)
END GROUPEND GROUP

FIRSTGROUP(2).LASTGROUP(3).ITEM_A is the correct reference for a particular ITEM_A, not
FIRSTGROUP(2).LASTGROUP.ITEM_A(3).

The subscripts for each group and for the item must occur immediately after each multiply occurring
group.

for-current-clause-1

Allows a CURRENT item to be specified for any multiply occurring group, including those copied from
Oracle CDD/Repository.

for-locator-current-clause-1

Allows a LOCATOR CURRENT item to be specified for any multiply occurring group, including those
copied from Oracle CDD/Repository.

copy-statement-format-2

If you specify copy-statement-format-2, the IFDL Translator interprets each elementary field in
CDD$RECORD as a form data item and each structure as a form data group unless the FIELD IS clause
is present.

If the FIELD IS clause is present, the IFDL Translator interprets only the Oracle CDD/Repository field
or structure specified as a form data item or group. If a structure is specified, that structure and all its
contents are copied.

For compatibility with other languages, the IFDL Translator does not interpret the outermost CDDL
structure. The IFDL Translator extracts the data type and length from the Oracle CDD/Repository record
definition to obtain the IFDL description of the form data items.

For more information, see the COPY statement syntax section.

Syntax Rules: track-clause
TRACKED

Specifies that the Form Manager keep information specifying whether the form data item has been
modified, so that the information can be returned in shadow records for RECEIVE and TRANSCEIVE
requests.

106

Chapter 1. Independent Form Description Language

Tracking whether data is modified increases data storage and time. For further information on tracking,
see the VSI DECforms Programmer's Reference Manual.

UNTRACKED

Specifies that the Form Manager not keep in formation about whether the form data item has been
modified. UNTRACKED is the default.

Syntax Rules: form-data-item-declaration, Format 1
data-name

Specifies the name of a form data item.

text-data-clause

Specifies a text string interpreted by the Form Manager according to the text data type. For more
information, see the TEXT DATA clause syntax section.

atomic-clause

Specifies that the form data item has an atomic data type. For more information, see the ATOMIC clause
syntax section.

datetime-data-clause

Specifies that the form data item represents a date or time. For more information, see the DATETIME
DATA clause syntax section.

VALUE literal

Specifies an initial value for a form data item. Literal is the specified value.

When the value item specifies a value to a form data item using this clause, if there are decimal positions
in the value for an integer text data type, or more decimal positions in the value than declared for the
decimal data type, the value item is rounded up if the first extra decimal position is equal to or greater
than 5, and is truncated if less than 5.

VALUE is not allowed with the CURRENT clause in an ADT, DATE, or TIME form data item.

If you specify an initial value for an ADT form data item using the VALUE clause, you must specify it in
the following format:

YYYY NN DD GG II SS CCCCCCC

If you specify an initial value for a DATE form data item using the VALUE clause, you must specify it in
the following format:

YYYY NN DD

If you specify an initial value for a TIME form data item using the VALUE clause, you must specify it in
the following format:

GG II SS CCCCCCC

If you specify an initial value for a DATETIME form data item using the VALUE clause, you must
specify it in the following format:

YYYYNNDDGGIISSCCCCCCC

107

Chapter 1. Independent Form Description Language

The format characters have the meaning specified in the following table:

Format Character Description

YYYY Digits of year
NN Digits of month
DD Digits of day of month
GG Digits of 24-hour clock
II Digits of minute
SS Digits of whole seconds
CCCCCCC Digits of fractions of seconds

track-clause-2

Specifies the tracking attribute for only the data item it follows. It overrides any explicit or default
tracking set either at the top level of the form data declaration or at any group level.

Syntax Rules: form-data-item-declaration, Format 2
builtin-name

In addition to form data items that you can create,a set of predefined form data items are provided. You
use Format 2 of the form data item declaration to use these predefined form data items, which are called
built-in form data items.

To access these data items, which are read only, you must declare them as built-in data items. These
built-in data items cannot appear in a form data group; you cannot extract built-in data items from
Oracle CDD/Repository.

All built-in data items must be declared as CHARACTER (integer-1), CHARACTER (integer-1)
VARYING, or CHARACTER (integer-1) NULL TERMINATED in the declaration, with the exception
of FIELDVALUE.

Integer-1 is the length of the built-in form data item that you specify. The length of integer-1 depends on
which built-in form data item you specify. The built-in data item FIELDVALUE must not have a data
type associated with it. All these items contain read-only data.

Form data items with the same name as built-in data item names that are declared without the BUILTIN
clause are not read-only, and are not updated by the Form Manager. Names of built-in form data items
must not conflict with form data item names. This permits VSI to add new built-in data items in the
future without making forms you write today obsolete.

FIELDVALUE BUILTIN

Specifies that the form data item is set to the value and data type of the current field.

The FIELDVALUE data item is available only during accept phase. If you use the FIELDVALUE data
item outside of accept phase, the Form Manager sets the value of the item to spaces.

You cannot specify a data type for FIELDVALUE, as it changes dynamically according to the data
type of the current activation item. You cannot pass the FIELDVALUE built-in data item to an escape
routine.

108

Chapter 1. Independent Form Description Language

Syntax Rules: builtin-name
CURRENTITEM

Specifies that the form data item is set to the name of the current activation item:

● If the current activation item is a field, the form data item is set to the field name.

● If the current activation item is a wait with a panel, the form data item is set to the name of the
panel.

● If the current activation item is a wait with no panel, the form data item is set to spaces.

The CURRENTITEM data item is available only during accept phase. If you use the CURRENTITEM
data item outside of accept phase, the Form Manager sets the value of the item to spaces.

CURRENTITEMHELPED

Specifies that the form data item is set to the name of the current activation item for which help is being
given. When you are not in help, the Form Manager sets the value of the item to spaces.

The CURRENTITEMHELPED data item is available only during help processing.

CURRENTPANEL

Specifies that the form data item is set to the name of the panel of the current activation item:

● If the current activation item is a wait with a panel, the form data item is set to the name of the
panel.

● If the current activation item is a wait with no panel, the form data item is set to spaces.

The CURRENTPANEL data item is available only during accept phase. If you use the
CURRENTPANEL data item outside of accept phase, the Form Manager sets the value of the item to
spaces.

CURRENTPANELHELPED

Specifies that the form data item is set to the name of the panel on which CURRENTITEMHELPED
occurs. When you are not in help, the Form Manager sets the value of the item to spaces.

The CURRENTPANELHELPED data item is available only during help processing.

FIELDIMAGE

Specifies that the form data item is a character string that describes precisely what is displayed on the
screen for the current activation item:

● If the current activation item is an icon, a push button, a slider field, or a wait, FIELDIMAGE is set
to blanks.

The FIELDIMAGE built-in data item is available only during accept phase. If you use the
FIELDIMAGE data item outside of accept phase, the Form Manager sets the value of the item to spaces.

FORMNAME

Specifies that the form data item is set to the name of the form, as specified in the form declaration. The
FORMNAME data item is valid only after the completion of an enable request.

109

Chapter 1. Independent Form Description Language

FUNCTIONNAME

Specifies that the form data item is set to the name of the last function entered by the operator.

The FUNCTIONNAME data item is available only during accept phase. If you specify the
FUNCTIONNAME data item outside of accept phase, the Form Manager sets the value of the item to
spaces.

SESSION

Specifies that this form data item is set to the session string for the current session. The SESSION data
item is valid only after the completion of an enable request.

TERMINAL

Specifies that the form data item is set to the character string name of the display device as specified
in an enable request. The TERMINAL form data item is valid only after the completion of an enable
request.

PARENTREQUESTID

Specifies that the form data item is set to the request identification string of the current request.

You can pass PARENTREQUESTID only to an escape routine where it can be used as a parent
request ID on recursive calls into the Form Manager. You must declare PARENTREQUESTID as
CHARACTER(24).

LOCATORITEM

Specifies that the form data item is set to the name of the current locator item (the item that the locator
is positioned over):

● If the current locator item is a field, button, or icon,the form data item is set to the name of the field,
button, or icon.

● If the current locator item is a wait with a panel, the form data item is set to the name of the panel.

● If the current locator item is a wait with no panel, the form data item is set to spaces.

LOCATORITEM is the same as CURRENTITEM in character-cell layouts. In window layouts,
LOCATORITEM behaves in the same fashion as a CURRENTITEM, except when the operator uses
the locator to change the focus to a different item on the activation list. When the focus is changed,
LOCATORITEM is set to the name of the new activation item.

The LOCATORITEM data item is available only during accept phase. If you specify the
LOCATORITEM data item outside of accept phase, the Form Manager sets the value of the item to
spaces.

LOCATORPANEL

Specifies that the form data item is set to the name of the panel on which the locator is positioned.

The LOCATORPANEL built-in data item is available only during accept phase. If the
LOCATORPANEL data item is specified outside of accept phase,the Form Manager sets the value of the
item to spaces.

110

Chapter 1. Independent Form Description Language

Syntax Rules: form-data-group-declaration-1
group-name-1

Specifies the name for the group of form data items.

track-clause-3

Specifies the tracking attribute for a data item declared in form-data-item-declaration-1 except those form
data items having their own track clause.

OCCURS integer-2

States the number of occurrences of the form data items within a certain group, for support of data
arrays as multidimensional groups. (Form data items declared in a group are treated as a unit in certain
response step operations.) When declaring multiple repeating groups of form data items, the following
rules apply:

● Integer-2 must be greater than zero, and specifies that the form data items and form data groups
declared within group-name-1 have integer-2 occurrences.

● The maximum nesting level of groups is eight; the maximum number of repeating groups for these
nested groups is two (you can only declare one- or two-dimensional arrays).

● When reference is made to group-name-1 or the name of any form data item or form group name
declared in group-name-1,the highest subscript value allowed is integer-2 (unless BASE is declared,
in which case the highest subscript is integer-2 plus integer-3 minus 1).

BASE integer-3

Specifies that the value of integer-3 is to be considered the lowest subscript for the form data group. If
the BASE clause does not appear, integer-3 is assumed to be 1. This is the default.

A subscript on group-name-1, or on the name of any form data item or form group name declared in
group-name-1, selects the ordinal position in the group array or data array by subtracting the value of
integer-3 from the subscript expression and adding 1 to the result. The highest subscript value is integer-2
plus integer-3, minus 1.

CURRENT data-1

Specifies a form data item that will be set to the value of the subscript of the current form group item
whenever the form group is referenced at run time.

The Form Manager always updates the value of data-1 when it moves the active field among group-
name-1 elements. When the active field is not one of the group-name-1elements, the value of data-1 is
the index of the field that was most recently active in group-name-1.

The Form Manager may transfer the value of data-1 to the application program. If data-1 overflows
during forms processing, a run-time error is reported. The initial value of data-1 is integer-3. Data-1 is
read only; the form or a data transfer clause cannot change its value.

Data-1must have the following characteristics:

● Must be a numeric integer with no decimal point.

● Cannot be declared with a VALUE clause.

● Can be signed or unsigned.

111

Chapter 1. Independent Form Description Language

● Can be declared after it is referenced in an OCCURS clause.

● Cannot be declared in form-data-group-declaration-1.

● Can be referenced only in a single CURRENT clause inform data.

● Cannot be a built-in data item.

● Cannot be a member of a multiply occurring group.

LOCATOR CURRENT data-2

Specifies a form data item that will be set to the value of the subscript of the current form group item
whenever a locator function is entered in that group at run time.

The Form Manager always updates the value of data-2 when a locator function is entered within group-
name-1.

The Form Manager can transfer the value of data-2 to the application program. If data-2 overflows
during forms processing, a run-time error is reported. Data-2 is read only.

Data-2 must have the following restrictions:

● Must be a numeric integer with no decimal point.

● Cannot be declared with a VALUE clause.

● Can be signed or unsigned.

● Can be declared after it is referenced in an OCCURS clause

● Cannot be declared in form-data-group-declaration-1.

● Can be referenced only in a single LOCATOR CURRENT clause inform data.

● Cannot be a built-in data item.

● Cannot be a member of a multiply occurring group.

form-data-item-declaration-2

Specifies the form data items that are part of group-name-1. For more information, see the FORM
DATA ITEM declaration syntax rules.

form-data-group-declaration-2

Declares a group of form data items as part of group-name-1. For more information, see the FORM
DATA group declaration syntax rules.

for-current-clause-2

Specifies that data-2 is a CURRENT item to be associated with group-name-2, which can be a data
group copied from Oracle CDD/Repository. For-current-clause is the only way to specify a group copied
from Oracle CDD/Repository.

for-locator-current-clause-2

Allows a LOCATOR CURRENT item to be a specified data item for any multiply occurring group,
including those groups copied from the Oracle CDD/Repository.

112

Chapter 1. Independent Form Description Language

copy-statement-format-2

Specifies that form data information is copied from Oracle CDD/Repository. For more information, see
the COPY statement.

Syntax Rules: for-current-clause
for-current-clause

Allows a CURRENT item to be specified for any multiply occurring group, including those copied from
Oracle CDD/Repository.

FOR group-name-2 CURRENT data-3

Specifies that the value of data-3 is set to the subscript of group-name-2 at run time.

Syntax Rules: for-locator-current-clause
for-locator-current-clause

Allows a LOCATOR CURRENT item to be specified for any multiply occurring group, including those
copied from Oracle CDD/Repository.

FOR group-name-3 LOCATOR CURRENT data-4

Specifies that the value of data-4 is set to the subscript of group-name-3 at run time.

Examples
1. Form Data

 CALENDAR date current
End Data

In this example, a form data item called CALENDAR is declared, with a DATE CURRENT data
type.

2. Form Data
 ACCOUNT_NUMBER unsigned longword
 AMOUNT unsigned longword
 CHECKING_BALANCE unsigned longword
 CHECK_MEMO character(35)
 CHECK_NUMBER unsigned word
 CITY character(20)
 CURRENT_DATE adt current
 .
 .
 .
End Data

In this example from the DECforms sample application, which is a checking account, a number of
items are declared as form data—the account number, the amount of the check, and so on. The form
data items and their data types are declared as follows:

ACCOUNT_NUMBER, AMOUNT, and CHECKING_BALANCE have an UNSIGNED
LONGWORD data type.

CHECK_MEMO has a CHARACTER data type.

113

Chapter 1. Independent Form Description Language

CHECK_NUMBER has an UNSIGNED WORD data type.

CITY has a CHARACTER data type.

CURRENT_DATE has an ADT CURRENT data type.

FORM Declaration
FORM Declaration — The FORM declaration provides for definition of all records that are transferred
to and from the application program, and for all attributes of panels and fields transferred to and from
the display device. The FORM declaration specifies the syntactic beginning of the form definition in
the IFDL. A form consists of a name, data declarations,record declarations, record list declarations, and
layout declarations. You must supply a form name. This name does not need to match the form file
name when you load the form from a form file. (In your application program, you specify the file name
containing the form; the Form Manager uses the form in that file. When the form is linked with your
program or in a shareable image, the Form Manager uses the form name to find the form.)

form-declaration

Format

Syntax Rules
form-name

Specifies the name you supply for the form.

form-data-declaration

Specifies all data stored in the form. For more information, see the FORM DATA declaration syntax
section.

form-record-declaration

Describes a data structure to be exchanged between the application program and the form. For more
information, see the FORM RECORD declaration syntax section.

record-list-declaration

Declares a list of records to be combined for the transfer of multiple records between the application
program and the form. For more information, see the RECORD LIST declaration syntax section.

layout-declaration

114

Chapter 1. Independent Form Description Language

Maps a form to a display device. For more information, see the LAYOUT declaration syntax section.

General Rules
The IFDL Translator translates only the first form in a source file. Upon reaching the END FORM
statement, the IFDL Translator closes all files and stops translating. The IFDL Translator ignores
statements in the IFDL source file that appear after the END FORM statement, and displays a message
stating that these statements were ignored.

Example

Form MY_FORM
 Layout STANDARD_LAYOUT
 Device Terminal T1
 Type %VT100
 End Device
 Size 24 Lines By 80 Columns
 End Layout
End Form

The FORM declaration of a form called MY_FORM.

The beginning of the declaration of the STANDARD_LAYOUT layout.

The end of the LAYOUT declaration.

FORM RECORD Declaration
FORM RECORD Declaration — The FORM RECORD declaration describes a data structure to be
exchanged between the application program and the form. This declaration also specifies how the values
in the record are transferred to and from form data. Form records are composed of record groups and
record fields.

form-record-declaration

Format

record-field-description

115

Chapter 1. Independent Form Description Language

record-group-description

Where you specify this clause:

Syntax Rules: form-record-declaration
record-name

Identifies the name of a record.

record-field-description-1

Specifies a record field that must be defined as a text, atomic, or date/time field. Each record field that
has the same name as a form data item transfers data to and from that form data item when records are
sent and received.

To transfer data between record fields and form data items with different names, you must use transfer-
clause or data-transfer-clause. For information about data-transfer-clause, see the TRANSFER clause
syntax section.

record-group-description-1

Treats a group of record fields as a unit within a record.

transfer-clause-1

Allows you to specify source and destination mappings between record fields and form data items. You
can specify the TRANSFER clause anywhere within a record declaration. However, the record field
specified within a TRANSFER clause must have been previously declared within the same form record
declaration. For more information, see the TRANSFER clause syntax section.

copy-statement-format-2

Allows you to incorporate source text from Oracle CDD/Repository into form record definitions. You
can substitute a COPY statement for the record field descriptions.

If the COPY statement includes a record definition from Oracle CDD/Repository, the IFDL Translator
extracts the data type, field lengths, decimal point, and sign clauses from the Oracle CDD/Repository
record definition to obtain the IFDL description of a form record. Always put the Oracle CDD/
Repository record name in quotation marks.

You can have more than one COPY statement in a record; the IFDL Translator concatenates the
groups and fields defined as the record, along with any record fields and record groups. If you specify

116

Chapter 1. Independent Form Description Language

FIELD IS, only the item or structure specified is copied. For more information, see the Format 2 COPY
statement in the COPY statement syntax section.

Syntax Rules: record-field-description
record-field-name

Identifies the record field. By default, data is transferred between record fields and form data with
the same names. More than one record field can have the same name, as long as the record fields are
in different groups. To refer to these fields by unique names, you must specify record-field-name as a
qualified name. For more information on qualified names, see Appendix A, "Using Arrays with DECforms
Software".

text-record-field-clause

Specifies a text record field. Text record fields are composed of text strings that are interpreted by the
Form Manager according to the text field type. For more information, see the TEXT RECORD FIELD
clause syntax section.

atomic-clause

Describes data items in records or form data, declared, interpreted, and stored as OpenVMS atomic data
types. For more information, see the ATOMIC clause syntax section.

datetime-field-clause

Specifies date and time fields. For more information, see the DATETIME FIELD clause syntax section.

data-transfer-clause

Specifies a way to transfer data between record fields and form data with different names. For more
information on data transfer, see the TRANSFER clause syntax section.

Syntax Rules: record-group-description
GROUP group-name

Specifies the name for the form record group.

OCCURS integer

Specifies the number of occurrences of the form record group and all its contained items. Integer must be
greater than zero.

record-field-description-2

Specifies a record field that must be defined as a text, atomic, or date/time field.

record-group-description-2

Specifies a group of record fields.

transfer-clause-2

Specifies data transfer. For more information, see the TRANSFER clause syntax section.

117

Chapter 1. Independent Form Description Language

copy-statement-format-2

Allows you to incorporate source text from Oracle CDD/Repository into form record definitions. You
can substitute a COPY statement for the record field descriptions.

If the COPY statement includes a record definition from Oracle CDD/Repository, the IFDL Translator
extracts the data type, field lengths, decimal point, and sign clauses from the Oracle CDD/Repository
record definition to obtain the IFDL description of a form record. Place the Oracle CDD/Repository
record name in quotation marks.

Example
Form Record NEW_CUSTOMER
 Copy "CDD$TOP.JONES.CUSTOMER_RECORD" From Dictionary End Copy
End Record

In this example, the IFDL Translator copies all fields from the CUSTOMER_RECORD record in Oracle
CDD/Repository into a form record called NEW_CUSTOMER.

FUNCTION Declaration
FUNCTION Declaration — The FUNCTION declaration allows you to associate a physical terminal key
or key sequence with a particular logical function. When the key or key sequence is pressed, the Form
Manager decides what logical function it corresponds to and interprets an associated function response.
(You specify this response in the FUNCTION RESPONSE declaration.)

function-declaration
Format

for-clause

is-clause

key-name

Where you specify this clause:

118

Chapter 1. Independent Form Description Language

Syntax Rules: function-declaration
function-name

A logical name you choose to associate with a physical key name. You can name the function whatever
you want, provided the name follows DECforms naming conventions and it does not conflict with other
names in the form. Once you have declared a function name,you can refer to this name in function
responses.

builtin-name

Specifies a built-in DECforms function that is associated with a predefined key and a predefined
function response. When you declare one of these built-in functions, you change the keys that invoke the
built-in function. Such a declaration does not change what happens as a result of pressing the key; you
must define a function response to do that.

The following built-in functions cannot appear in a function declaration because they are generated by
the windowing system or are context-dependent:

BOUNDARY CURSOR UP
BOUNDARY CURSOR DOWN
BOUNDARY CURSOR LEFT
BOUNDARY CURSOR RIGHT
BOUNDARY DELETE LEFT
BUILTIN FUNCTION
FOCUS CHANGE
TRIGGER OBJECT
UNDEFINED FUNCTION
USER FUNCTION
VALUE CHANGE

For more information on built-in functions, see the BUILTIN FUNCTION clause syntax section.

Syntax Rules: for-clause
for-clause

Specifies a terminal or list of terminals for which the function is valid. Each terminal name must be
declared in the DEVICE declaration for the layout. If the FOR clause does not appear, the corresponding
attributes apply to all terminals declared for the layout.

There can be only one IS clause without a FOR clause in the FUNCTION declaration and it must be the
last IS clause in the declaration.

terminal-name

Specifies a terminal name from a device declaration. This can be either a character-cell terminal name,
or a window terminal name, as appropriate.

Syntax Rules: is-clause
is-clause

Specifies the list of keys or key sequences that invoke the function for the specified terminal.

NONE

119

Chapter 1. Independent Form Description Language

Specifies that the function is disabled for the layout in which it is declared.

If you specify NONE, the predefined keys for that function are available for other functions. Use NONE
to disable a built-in function; specifying a nondefault key binding for a built-in function has the effect of
making default keys available for redefinition without disabling the built-in function.

Syntax Rules: key-name
key-name

Specifies a key name recognized by DECforms. See Appendix G, "Intrafield Editing Functions" for
supported key names for each character-cell and window device, respectively.

%ALT

Specifies an Alt key prefix in a chorded key specification. %ALT is supported in window layouts only.

%CONTROL

Specifies a Control key prefix in a chorded key specification.%CONTROL is supported in window
layouts only.

%SHIFT

Specifies a Shift key prefix in a chorded key specification.%SHIFT is supported in window layouts only.

%implementor-key-name

Specifies the name of a key defined by the implementor. See the Appendix D, " DECforms Function Key
Names" for a complete list of key names.

General Rules
A function can be associated with more than one key or key sequence. If any of the keys or key
sequences associated with a function are pressed, the function response associated with that key or key
sequence is executed.

A key or key sequence can be associated with more than one function name only if each function
response exists on a different level in the form hierarchy for a given terminal. Context determines the
meaning of the key:the key executes the lowest level function response. This constraint follows the levels
of the form hierarchy, from lowest to highest: field, button or icon, group, panel, and layout.

Key-name-1, key-name-2, and key-name-3 must not name any printable character in the character set; in
other words,any character that is valid input to a picture string on character-cell devices. However, this
restriction does not hold true for alphanumeric keys used in conjunction with %ALT or %CONTROL on
window devices.

Key-name-3 and key-name-4cannot name the same key. Therefore, repeatedly typing key-name-3 when it
is the first key in a two-key sequence does not cause an error.

Key-name-3 and key-name-4 must be typed in the exact order in which the key names are specified in
the key sequence to be recognized as a valid function key sequence.

Two-key sequences are not supported for window layouts.

The execution state of a key sequence, specified by key-name-3 and key-name-4, is not maintained across
errors. If an error occurs, the whole key sequence must be entered again.

120

Chapter 1. Independent Form Description Language

If you declare a single-key function, you cannot declare a two-key function with the same first key as the
single-key function.

A user-defined function name cannot be a DECforms keyword that begins a built-in function name
consisting of more than one keyword. This restriction prohibits use of the following user-defined
function names:

DELETE
ERASE
INSERT
CURSOR
BOUNDARY
TERMINATE
NEXT
PREVIOUS
REFRESH
EXIT
UP
DOWN
LEFT
RIGHT
USER
BUILTIN
UNDEFINED
BOUNDARY

The VT420 terminal provides a way to designate F1 to F5 as function keys, overriding their standard
behavior. You can set the keys by using the SET-UP option on the terminal. The Form Manager supports
these keys if they are declared in a form, and have been set to the Fkey state using the SET-UP menu.

The %ALT, %CONTROL, and %SHIFT prefixes are used to produce chorded key specifications in
window layouts. Chording with %SHIFT is not allowed for alphanumeric keys.

Chorded keys are not allowed in character-cell layouts. Key sequences are not allowed in window
layouts. Function keys may be declared in PRINTER layouts, but are ignored at run time.

Specifying %CONTROL + %SMALL_X or %CONTROL + %CAPITAL_X in a window layout is
equivalent to specifying %CTRL_X in a character-cell layout. See Appendix F, "Built-In Functions" for
the complete list of built-in (default) key combinations.

Examples
The following are FUNCTION declaration examples. The first eight examples are for character-cell
devices; the last is a window example.

1. Function
 Next Item Is %carriage_return %horizontal_tab
End Function

In this FUNCTION declaration,the carriage return and the horizontal tab keys are each associated
with the NEXT ITEM function.

2. Function Previous Item
 For VT1 Is (%PF1 %BACKSPACE)
 For VT2 Is (%CONTROL_B)
 Is (%PF1 %KP_0)

121

Chapter 1. Independent Form Description Language

End Function

In this FUNCTION declaration, the PREVIOUS ITEM function is associated with different key
sequences for different devices: PF1 BACKSPACE for VT1, CONTROL B for VT2, and PF1 0 on
the keypad for other devices.

3. Function
 Transmit Is %KP_ENTER
End Function

In this FUNCTION declaration, the Enter key on the keypad is accepted as the TRANSMIT
function. This FUNCTION declaration works only if the keypad is in application mode.

4. Function
 Cancel Is %F6
End Function

In this FUNCTION declaration, the F6 function key is associated with the CANCEL function on the
OpenVMS operating system. Because of OpenVMS restrictions, the F6 key may be used only if you
disable the advanced line-editing features for command lines, or if you set the terminal to PASTHRU
mode. To disable line-editing, use the following command:

$ SET TERMINAL/NOLINE

To set the terminal to PASTHRU mode, use the following command:

$ SET TERMINAL/PASTHRU

5. Function
 Transmit Is (%PF1 %KP_ENTER)
End Function

In this FUNCTION declaration, the key sequence PF1, Enter is used as the TRANSMIT logical
function.

6. Function
 USER_I Is (%PF1 %KP_3)
End Function

In this FUNCTION declaration, the key sequence PF1, Keypad 3 is used to define a user-defined
function, USER_I.

7. Function
 NEXT ITEM Is NONE
End Function

In this FUNCTION declaration, NONE is used to disable the built-in key association for the NEXT
ITEM function.

8. Function CURSOR_L
 Is %LEFT
End Function

Function CURSOR_R
 Is %RIGHT
End Function

Function Response CURSOR_L

122

Chapter 1. Independent Form Description Language

 Position to LEFT ITEM
End Response

Function Response CURSOR_R
 Position to RIGHT ITEM
End Response

In this example, functions and function responses are defined to use right and left arrow keys to
move between icons without using boundary cursor functions.

9. Function PRINT_FILE
 Is %CONTROL + %SMALL_P
End Function

In this FUNCTION declaration, Ctrl/P is used to execute a user-defined function, PRINT_FILE, in a
window layout.

FUNCTION RESPONSE Declaration
FUNCTION RESPONSE Declaration — The FUNCTION RESPONSE declaration specifies what action
the Form Manager takes when the operator enters a function during input.

function-response-declaration
Format

Format 1

Format 2

Where you specify this clause:

Syntax Rules: Format 1
builtin-function

Specifies that the Form Manager executes the BUILTIN FUNCTION function response when the key or
key sequence pressed is bound to a built-in function, but no function response is declared at this level.

123

Chapter 1. Independent Form Description Language

The following built-in functions cannot appear in a FUNCTION RESPONSE declaration; they are
intrafield editing functions:

CURSOR UP
CURSOR DOWN
CURSOR LEFT
CURSOR RIGHT
DELETE CHARACTER
ERASE FIELD
INSERT LINE
INSERT OVERSTRIKE
NEW TAB
PAGE DOWN
PAGE UP

function-name

Must be the name of a built-in function or must be defined in the FUNCTION declaration. The
FUNCTION declaration allows you to associate a physical terminal key or key sequence with a particular
logical function.

response-step

Specifies the response steps to be performed during accept phase. For more information, see the
RESPONSE STEP clause syntax section.

Syntax Rules: Format 2
BUILTIN FUNCTION RESPONSE (character-cell layouts)

Restores the meaning of the function to the DECforms default at the level at which the BUILTIN
function response is declared.

builtin-function

Specifies the DECforms default for the function response to be invoked at this level. You may want to
use builtin-function to restore the DECforms default at a lower level after overriding it at a higher level.
This is the only way to restore the default meaning for an intrafield editing function.

General Rules
You may declare function responses at several levels: layout, panel, group, icon, field,and button. The
lower-level declarations override the higher level declarations. There is no default function response
for a user-defined function. For the default function response for built-in functions, see the BUILTIN
FUNCTION syntax section.

Function responses are ignored in PRINTER layouts.

Only one function response for a given function name can appear at a given level.

A given key name or key sequence can be associated with only one function response at a given level.
The key name of a function response is either:

● A key name or key sequence associated with the function in a FUNCTION declaration.

124

Chapter 1. Independent Form Description Language

● A key name or key sequence associated with a built-in function by default.

Examples
1. Function Response NEXT PANEL

 Message "Press F8 or PF1-C to cancel the update or "
 Message " F10 or CTRL/Z to update your personal record."
End Response

This defines the function response for NEXT PANEL to be a message.

2. Form FUNCTION_EXAMPLE
 .
 .
 .
 Layout SAMPLE
 .
 .
 .
 Function Response NEXT ITEM
 Message "The NEXT ITEM key does not work at this level"
 Signal %Bell
 End Response
 Panel TEST_PANEL_1
 Function Response NEXT ITEM
 Message "In TEST_PANEL_1 NEXT ITEM key reverses the display"
 Signal %Reverse
 End Response

 Field FIELD_1
 .
 .
 .
 End field

 Field FIELD_2
 .
 .
 .
 End Field
 End Panel

 Panel TEST_PANEL_2
 Field FIELD_1
 .
 .
 .
 End Field

 Field FIELD_2
 Builtin Function Response NEXT ITEM
 .
 .
 .
 End Field

 Field FIELD_3
 Function Response NEXT ITEM

125

Chapter 1. Independent Form Description Language

 Message "You encountered a field level response"
 Signal
 End Response
 End Field
 End Panel
End Layout
 .
 .
 .
End Form

A function response NEXT ITEM is declared to be associated with the built-in function NEXT
ITEM at the layout level.

If there is no definition of NEXT ITEM at a lower level(in the field, group or panel), the user-
specified function response outputs the message “The NEXT ITEM key does not work at this
level ” and rings the bell. This function response overrides the DECforms default of moving the
cursor to the next item on the activation list.

TEST_PANEL_1 defines its own function response for NEXT ITEM and overrides the
DECforms default and the function response declared at the layout level. As a result, if the
operator presses the Tab key (assuming that the Tab key is associated with NEXT ITEM) in
FIELD_1 or FIELD_2 on TEST_PANEL_1, the display is reversed.

There is no function response defined for NEXT ITEM at the panel level for TEST_PANEL_2.

If the operator presses the Tab key in FIELD_1 on TEST_PANEL_2, the function response
outputs the message “The NEXT ITEM key does not work at this level” and rings the bell. The
function response declared at the layout level is invoked because there is no definition of the
function at the field, group, or panel level.

If the operator presses the Tab key in FIELD_2 on TEST_PANEL_2, the DECforms default
function response is invoked. The BUILTIN FUNCTION RESPONSE clause in FIELD_2
overrides the definitions at the higher level in the same way a function response at the field
level would override a function response at the group, panel, or layout level.

If the operator presses the Tab key in FIELD_3 on TEST_PANEL_2, the function response
outputs the message, “You encountered a field level response”.

If the operator presses the F12 or Backspace key, the PREVIOUS ITEM function is invoked.
Because you have not declared a function response of this name at any level, the DECforms
default would be invoked at all levels in the layout.

GROUP Declaration
GROUP Declaration — The GROUP declaration groups a logically related set of fields, icons, buttons,
and literals within a panel. All fields declared as members of the group on the panel must have their
form data declarations in the form data declaration of group-name.

group-declaration
Format

126

Chapter 1. Independent Form Description Language

Where you specify this clause:

Syntax Rules
group-name

The name specified for the group. Group-name must appear as a group declaration in the FORM DATA
declaration. For more information, see the FORM DATA declaration syntax section.

HORIZONTAL

Specifies that group-name is replicated on the panel horizontally.

VERTICAL

Specifies that group-name is replicated on the panel vertically.

127

Chapter 1. Independent Form Description Language

DISPLAYS integer-1

Specifies that integer-1 occurrences of data group group-name appear on the panel in the chosen
direction.

Integer-1 must be greater than zero and must not be larger than the number of occurrences declared for
group-name in the FORM DATA declaration.

DISPLAYS integer-1 specifies the following:

● If integer-1 is less than the number of occurrences of group-name, occurrences of group-name scroll
in the direction specified.

● If VERTICAL or HORIZONTAL appears without DISPLAYS, the size of the OCCURS clause in
the FORM DATA declaration is used as integer-1. In this case, all occurrences of the form data are
displayed on the panel.

FIRST

Specifies which indexed element of group-name is to be displayed at the top of the scrolled region for the
VERTICAL clause, or at the left of the scrolled region for the HORIZONTA L clause.

If you do not specify FIRST and you specified BASE as a numeric literal, FIRST defaults to the base
of the form data group. If you did not specify BASE as a numeric literal, FIRST defaults to 1.BASE
is specified in the FORM DATA declaration associated with the group. For more information, see the
FORM DATA declaration syntax section.

In some cases it is not possible to specify an arbitrary occurrence of a group as FIRST. For example,
suppose you have a data group with BASE 1 and OCCURS 20. The corresponding panel group has a
DISPLAYS 5 clause, but its first clause is FIRST 19.

In this case, it is not possible to display the 19th occurrence as FIRST,because five occurrences must
be displayed and there is only one occurrence beyond the 19th (20). When there are not enough
occurrences to fill the DISPLAYS clause, the Form Manager fills the display area with the end of the
array. In this example, the 16th to 20th occurrences are displayed, with occurrence 16 as FIRST.

integer-2

Specifies the index of the first element displayed at the top of the scrolled area (if the array is scrolling
vertically) or to the left of the scrolled area (if the array is scrolling horizontally), as the first element
displayed the first time the group is displayed. Operations on the scrolled area can change the first
element displayed during execution of the form.

Integer-2 must be greater than or equal to the minimum subscript of the group (the base of the associated
data group), and must be less than or equal to the maximum subscript for the group minus integer-1 plus
1.

data

Controls the first element displayed at the top of or the left of the scrolled area by specifying the index of
that element.

If data is changed at any time, the group display is adjusted accordingly. If the Form Manager changes
the index of the first element displayed because of a POSITION response step that causes scrolling of the
group, the contents of data are modified accordingly.

128

Chapter 1. Independent Form Description Language

Data should have the following characteristics:

● It must be an integer.

● It cannot be declared with a VALUE clause.

● It can be signed or unsigned.

If data is out of the bounds of the array, or causes any of the displayed occurrences in the group to be
out of bounds of the array, the Form Manager forces the value of data to be such that the displayed area
is filled with either the beginning or end of the array. If data is greater than the array upper bound, the
end of the array is used; if datais less than the array lower bound, the beginning of the array is used.

SCROLL BY PAGE

Specifies that scrolling is to be done by multiples of integer-1 occurrences of group-name, rather than by
one occurrence at a time. The entire contents of the scrolled area are replaced, that is, moved, by page. If
there are fewer elements remaining in group-name than on a page, scrolling can be performed by smaller
units to reach the end of the range limit of group-name.

full-location-clause

Specifies the vertical and horizontal position of an occurrence of the group. This clause is required for
panel groups declared in window and PRINTER layouts, but is not allowed for panel groups declared in
character-cell layouts. The LOCATION clause must be expressed using absolute (Format 1) positions.
For more information, see the LOCATION clause syntax section.

partial-extent-clause

Specifies the size of one occurrence of a group in window and PRINTER layouts. For more information,
see the EXTENT clause syntax section.

scroll-bar-clause (window layouts)

Species the scroll bars for the group.

The scroll bar default for groups is SCROLLBAR BOTTOM DYNAMIC SCROLLBARRIGHT
DYNAMIC. This default specifies that scroll bars appear if, in a multiply occurring group,the integer
specified in the DISPLAYS clause is less than the integer specified in the OCCURS clause of the
associated data group.

For more information, see the SCROLL BAR clause syntax section.

entry-response-declaration

Specifies a response when the group becomes the current activation item.

Entry responses for groups are interpreted during accept phase just before the Form Manager allows the
operator to enter input into the first active field, icon, or button of a group.

There is no default response for entry response processing. For more information, see the ENTRY
RESPONSE declaration.

exit-response-declaration

Specifies a response when the Form Manager exits the group. Exit responses for the group level are
called when the Form Manager exits the last active field, button, or icon of the group,and after the

129

Chapter 1. Independent Form Description Language

last active field, button, or icon's exit response is called. There is no default response for exit response
processing. For more information, see the EXIT RESPONSE declaration.

function-response-declaration

Specifies a response when the operator enters a function. Function responses can be declared at
the layout, panel, group,field, icon, and button level. For more information, see the FUNCTION
RESPONSE declaration.

validation-response-declaration

Performs a response when the operator has completed input into a panel,group, field, icon, or button. For
more information, see the VALIDATION RESPONSE declaration.

USE HELP PANEL panel-name

Specifies that the Form Manager activate a help panel when an ENTER HELP response step is executed
and there are no USE HELP PANEL clauses at lower levels. If you specify USE HELP PANEL in
an item that has been activated as a help panel, the Form Manager ignores the USE HELP PANEL
declaration at run time.

NO HELP PANEL

Specifies that no help panels are activated.

USE HELP message-clause

Specifies a message to be displayed in the message panel when the Form Manager executes the
MESSAGE response step and there are no USE HELP message clauses at lower levels.

NO HELP MESSAGE

Specifies that no help message is displayed.

field-default-application

Specifies the application of one or more field defaults to the group. These defaults remain in effect until
the end of the group. For more information, see the FIELD DEFAULT application syntax section.

literal-default-application

Specifies the application of one or more literal defaults to the group. These defaults remain in effect until
the end of the group. For more information, see the LITERAL DEFAULT application syntax section.

group-declaration

Specifies a group within the group. You can nest a group only within a group; you cannot nest groups
more than two levels deep.

picture-field-declaration

Specifies an object that displays the image attributes of a form data item on a panel. For more
information, see the PICTURE FIELD declaration.

text-field-declaration

Specifies an object that presents and allows input of a multiline text value. For more information, see the
TEXT FIELD declaration.

130

Chapter 1. Independent Form Description Language

slider-field-declaration (window layouts)

Specifies an object that presents and allows input of a numeric value within fixed limits. For more
information, see the SLIDER FIELD declaration syntax section.

icon-declaration (character-cell layouts)

Specifies the characteristics of an icon within the group. For more information, see the ICON declaration
syntax section.

pushbutton-declaration (window layouts)

Specifies an active object that contains either a label or an arrow. For more information, see the PUSH
BUTTON declaration syntax section.

literal-declaration

Describes an object (a text string, a point, line segments, or a rectangle) to be drawn on the panel. For
more information on literals, see the LITERAL declaration syntax section.

General Rules
A group is a set of panel fields, icons,buttons, or literal declarations that can be referred to collectively
and that can have accept responses associated with them. (You may want to refer to a group, for
example, in an ACTIVATE response step.) The group declaration in a panel specifies that some or all
form data items and data groups within group-name are to appear on the panel. If data group group-
name has multiple occurrences, you can view all occurrences of the included form data items and data
groups on the panel.

Each panel group is the mapping of a form data group to the panel and so must have a form data group
of the same name associated with it. Each field within a panel group must also have a form data item
defined that is a member of the associated form data group; each panel group within a group must have a
form data group defined that is within the same owning group.

A maximum of two panel groups that have associated data groups with OCCURS clauses may appear
in a nested set of panel group declarations. When two nested groups occur multiple times, the innermost
multiply occurring group cannot have a DISPLAYS clause. This permits the display of one- and two-
dimensional arrays, in which the first dimension can scroll vertically or horizontally, but the second
dimension does not scroll at all.

For multiple-occurrence panel groups, the LOCATION clauses of the first occurrence of each field,
literal, icon, or button in the group are evaluated once. The first occurrence of each field,literal, icon, and
button is located on the panel (for character-cell layouts) and on the group (for window and PRINTER
layouts) according to that position.

In character-cell layouts, objects in a group are placed relative to a panel. In window and PRINTER
layouts, objects in a group are placed relative to the origin of the group.

If a partial extent clause is not specified, the aggregate of all field and literal description entries defines a
rectangle around the minimum and maximum LINE and COLUMN for the group. The group is repeated
the number of times specified in the DISPLAYS clause with only the LINE and COLUMN clauses
changed by the size of the rectangle in the direction stated (vertical, horizontal), with no additional space
between vertical or horizontal occurrences. The repetitions must not cause display positions of fields to
extend beyond the boundaries of the viewport specified by the containing panel on character-cell layouts.

If a partial extent clause is specified, the size of the group is determined by the clause.

131

Chapter 1. Independent Form Description Language

On character-cell layouts, if you want extra vertical or horizontal space to appear between occurrences,
you can specify a text literal of zero or more blanks to extend the size of the repeated rectangle.
(Specifying a text literal of zero blanks sets the size of the group.)

An occurrence can occupy more than a single line on the display. When the group scrolls, it scrolls by
multiples of the number of lines for a single occurrence. On window and PRINTER layouts, the partial
extent clause can be used to add extra space to an occurrence.

If the OCCURS clause does not appear in the FORMDATA declaration for the group, neither
VERTICAL nor HORIZONTAL can occur in the panel declaration of the group. If the OCCURS clause
does appear in the FORM DATA declaration for the group, either VERTICAL or HORIZONTAL must
occur in the panel declaration of the group.

See Appendix A, "Using Arrays with DECforms Software" for information on how to reference elements
in groups.

Example
Group MESSAGE_GROUP Vertical
 Use Help Message "Get Help!"
 .
 .
 .
End Group

This example specifies a panel group called MESSAGE_GROUP that replicates vertically, and displays a
help message that says, “Get Help!” whenever help is requested for objects within the group.

The group in this example has no DISPLAYS clause. The group is displayed vertically with all
occurrences of the group displayed.

HELP PANEL Declaration
HELP PANEL Declaration — The HELP PANEL declaration describes a panel that is referenced by any
other panels and in response steps as a help panel and contains help for the panels that reference it.

help-panel-declaration
Format

132

Chapter 1. Independent Form Description Language

Where you specify this clause:

Syntax Rules
panel-name

The name of the help panel.

panel-property

Specifies properties of the help panel, such as the viewport in which the help panel is displayed, its
title, and the responses associated with the help panel. For more information on panel-property, see the
PANEL declaration syntax section.

field-default-application

Specifies default attributes of fields declared within the help panel. The field defaults remain in effect
until the end of the panel. For a detailed description of field default applications, see the FIELD
DEFAULT application syntax section.

literal-default-application

Specifies default characteristics of literals within the help panel. The literal defaults remain in effect
until the end of the panel. For a detailed description of literal default applications, see the LITERAL
DEFAULT application syntax section.

group-declaration

Groups together a logically related set of fields, literals, buttons, and icons within a help panel. For more
information, see the GROUP declaration syntax section.

picture-field-declaration

Specifies an object that displays the image attributes of a form data item on a panel. For more
information, see the PICTURE FIELD declaration syntax section.

text-field-declaration

Specifies an object that presents and allows input of a multiline text value. For more information, see the
TEXT FIELD declaration syntax section.

slider-field-declaration (window layouts)

Specifies an object that presents and allows input of a numeric value within fixed limits. For more
information, see the SLIDER FIELD declaration syntax section.

pushbutton-declaration (window layouts)

Specifies an active item that contains either a label or an arrow. For more information, see the PUSH
BUTTON declaration syntax section.

icon-declaration (character-cell layouts)

133

Chapter 1. Independent Form Description Language

Specifies the characteristics of an icon within the help panel. For more information, see the ICON
declaration syntax section.

literal-declaration

Describes an object (a text string, a point, line segments, or a rectangle) to be drawn on the help panel.
For more information, see the LITERAL declaration syntax section.

General Rules
A help panel gives information about the display when the Form Manager executes an ENTER HELP
response step. It is illegal to specify the USE HELP PANEL clause at the help panel level; the Form
Manager ignores the USE HELP PANEL clause at run time. To provide additional help, you must
explicitly write function responses to do so.

Example
Help Panel VSI_1
 Field HELP_FIELD
 Line 10
 Column 10
 End Field
End Panel

This example specifies a help panel named VSI_1 that contains a picture field that is displayed at line 10,
column 10.

HIGHLIGHT WHEN Clause
HIGHLIGHT WHEN Clause — The HIGHLIGHT WHEN clause specifies display attributes to be
applied to fields, icons, and buttons in addition to attributes already specified in the DISPLAY clause
and ACTIVE HIGHLIGHT clause of the item description entry. The WHEN clause specifies the
condition under which the item is highlighted. When the expression becomes true, the attributes in the
HIGHLIGHT WHEN clause are added to the current highlights of the item.

highlight-when-clause

Format

Where you specify this clause:

Syntax Rules
HIGHLIGHT display-attribute-entry WHEN conditional-expression

Specifies the condition under which afield, icon, or button has attributes applied to it. Display-
attribute-entry specifies one or more display attributes that apply to a field, icon, or button WHEN

134

Chapter 1. Independent Form Description Language

conditional-expression specifies that the highlight is applied if the Form Manager determines that
conditional-expressionis true. For more information on conditional expressions, see the CONDITIONAL
EXPRESSION syntax section.

NO HIGHLIGHT

Specifies that no HIGHLIGHT WHEN clause applies to this field, icon, or button.

General Rules
Attributes that change the size of a field, icon, or button in a character-cell layout are not allowed for
the HIGHLIGHT WHEN item description entry. These attributes are SINGLE, NORMAL, DOUBLE
HIGH, and DOUBLE WIDE for font size or line width.

For Motif layouts, using a FONT SIZE clause doescause an autosized field or button to resize itself.

On initial display of a field, icon, or button in its panel, when more than one HIGHLIGHT is specified,
each WHEN is evaluated in order and display-attribute-entry is applied if the WHEN condition is true.
If applying one attribute would necessarily exclude the application of another attribute, the last applied
attribute is used.

When an ACTIVE HIGHLIGHT clause also applies to the field, icon, or button, the order of evaluation
is DISPLAY clause, ACTIVE HIGHLIGHT clause, HIGHLIGHT WHEN clause. For more information,
see the ACTIVE HIGHLIGHT clause syntax section.

If a form data item in conditional-expression changes while the item is displayed, the effect of the WHEN
clause is immediately recalculated.

If conditional-expression becomes false, the highlight attributes are turned off.

If conditional-expressionbecomes true, the highlight is applied and the result of conflicting attributes
being applied is recalculated depending on the true conditions.

Examples
1. Icon CHOICE_CASH_100

 Highlight Blinking When CHECKING_BALANCE < 10000
 Protected When CHECKING_BALANCE < 10000
 .
 .
 .
End Icon

This example specifies that the icon CHOICE_CASH_100 blink when the checking account balance
is less than 10 000 (which is $100.00 when the 10 000 units are pennies).

2. Icon CHOICE_CHECK
 Highlight Bold When ROOM_IN_REG = 0
 .
 .
 .
End Icon

This HIGHLIGHT WHEN clause specifies that the CHOICE_CHECK icon is highlighted in bold
when there is no room left in the checkbook register.

135

Chapter 1. Independent Form Description Language

ICON Declaration
ICON Declaration — The ICON declaration describes an icon, which is an item that can be activated;
its appearance is specified by literals. You cannot enter data into icons, but function keys can be pressed
in icons. Icons are allowed only in character-cell layouts. Push buttons, a similar construct, are used in
window layouts.

icon-declaration

Format

Where you specify this clause:

Syntax Rules
icon-name

Specifies the name for the icon. An icon cannot have the same name as a form data item.

field-default-application

Specifies the application of one or more field defaults to the icon. For more information, see the FIELD
DEFAULT application syntax section.

literal-default-application

Specifies the application of one or more named literal defaults to the literals on the icon. If no literal
default appears, literal defaults previously stated in the same panel, group, or layout are applied to the
literal declarations within the icon. The icon cannot contain any literal default declarations. For more
information, see the LITERAL DEFAULT application syntax section.

item-description-entry

Specifies the display, validation, and processing attributes for this icon. Item description entries are
applied from previously stated field defaults in the same panel, group, or layout.

Item description entries declared in this icon override previously applied defaults. For more information,
see the ITEM DESCRIPTION entry syntax section.

literal-declaration

136

Chapter 1. Independent Form Description Language

Describes an object (a text string, a point, line segments, or a rectangle) as it appears on the icon. For
more information on literals, see the LITERAL declaration syntax section.

General Rules
An icon may be activated, deactivated, positioned to, and validated.

Literals declared within an icon inherit attributes from the icon's display clause.

Because icons possess no associated data, icons can be included in a panel group without an associated
data item existing in the data group. If the icon is declared inside a help panel, USE HELP PANEL or
USE HELPMESSAGE clauses within the ICON declaration are illegal. For more information on the
USE HELP PANEL and USE HELP MESSAGE clauses, see the ITEMDESCRIPTION Entry syntax
section.

Example
Icon CHOICE_CASH_100
 Active Highlight Reverse
 Concealed When CHECKING_BALANCE < 10000
 Protected When CHECKING_BALANCE < 10000
 Function Response SELECT
 Let AMOUNT = 10000
 Let NEXT_UPDATE_AMOUNT = "$100"
 Return
 End Response
 Literal Text
 Next Line Same Column
 Value " $100"
 End Literal
End Icon

An icon named CHOICE_CASH_100 is specified.

ACTIVE HIGHLIGHT REVERSE specifies that the foreground and background colors of the icon
are reversed:the icon is displayed using the REVERSE color when operator input is allowed on this
icon.

CONCEALED WHEN specifies that the icon is concealed when the checking balance is less than
$100.00 (because 10 000 is treated as pennies).

PROTECTED WHEN specifies that the icon does not go on the activation list and cannot be
positioned to. Therefore, the icon does not accept function key input when the checking balance is
less than $100.00.

A function response is declared that is associated with a user-defined function called SELECT.

The LET response step assigns two separate values, an integer 10 000 to the AMOUNT form data
item, and a string, $100.00 to the NEXT_UPDATE_AMOUNT form data item.

The RETURN response step specifies that accept phase (that is, input from the operator) should
end. Since you did not declare IMMEDIATE, validation occurs before accept phase ends.

LITERAL specifies a text literal of “$100” as the appearance of the icon.

End Icon completes the ICON declaration.

137

Chapter 1. Independent Form Description Language

IF Response Step
IF Response Step — The IF response step lets you specify optional response step execution based on the
evaluation of a conditional expression.

if-response-step
Format

Where you specify this clause:

Syntax Rules
conditional-expression

Defines an expression that is tested to enable the Form Manager to select a set of response steps.
Conditional expressions containing corresponding data references are illegal in IF response steps. For
more information on conditional expressions, see the CONDITIONAL EXPRESSION syntax section.

THEN response-step-1

Specifies the Form Manager perform these response steps as the result of conditional-expression being
evaluated as true.

ELSE response-step-2

Specifies that the Form Manager perform these response steps as a result of the evaluation of conditional-
expression as false.

END IF

Specifies that if the condition is false, and no ELSE clause exists, the Form Manager performs no
response steps.

General Rules
The IF response step is a control response step. Control response steps allow you to control the order of
interpretation of response steps. The IF response step lets you perform alternate sets of response steps,
such as activating or deactivating panel fields and icons, depending on whether a conditional expression
is true or false. You can use the IF response step to provide different views of a single form.

Example
IF A > B
THEN
 LET A = B
ELSE
 LET B = A
END IF

138

Chapter 1. Independent Form Description Language

In this example, if the conditional expression A > B is true, then B is assigned to A. Otherwise, A is
assigned to B.

IMPLEMENTOR ATTRIBUTE
IMPLEMENTOR ATTRIBUTE — An implementor attribute specifies keypad attributes. Keypad
attributes are only valid in character-cell layouts. Keypad attributes do not apply to wait activation items.

implementor-attribute
Format

mplementor-attribute

Where you specify this clause:

Syntax Rules
%KEYPAD_NUMERIC

Specifies numeric keypad mode for operator input into a field or or icon. %KEYPAD_NUMERIC
specifies that the keypad's values be numeric. This is the default.

%KEYPAD_APPLICATION

Specifies that each keypad key is treated as a function key for operator input into a field or icon.

%KEYPAD_UNCHANGED

Specifies that the current keypad setting remain unchanged, whether set by the terminal operator or by
the form designer.

Example
%KEYPAD_NUMERIC

This example specifies keypad numeric mode for operator input.

INCLUDE Response Step
INCLUDE Response Step — The INCLUDE response step specifies an internal response to be
performed as part of the processing for the current response. The INCLUDE response step is similar to a
subroutine call without parameters.

include-response-step
Format

139

Chapter 1. Independent Form Description Language

Where you specify this clause:

Syntax Rules
INCLUDE

Specifies an internal response to be performed as part of the processing for the current response. The
included response must have been previously declared as an internal response.

internal-response-name

Identifies an internal response that can be referred to by other responses. This name must be unique at
the layout level. For more information on internal-response-name, see the INTERNAL RESPONSE
declaration syntax section.

Example
Include MY_RESPONSE

This example specifies that MY_RESPONSE is performed.

INPUT PICTURE Clause
INPUT PICTURE Clause — The INPUT PICTURE clause defines the legal values for input to a picture
field.

input-picture-clause
Format

Where you specify this clause:

Syntax Rules
picture-string-1

Specifies a Format 1, Format 2, or Format 3 picture string. For more information on the format of this
string, see the PICTURE STRING syntax section.

FOR DATE picture-string-2

Specifies a Format 4 picture string. For more information on the format of this string, see the PICTURE
STRING syntax section.

General Rules
The operator is allowed to enter characters into a picture field's image value. The Form Manager then
removes the editing characters from the data item according to the picture string to produce the picture
field's data value.

140

Chapter 1. Independent Form Description Language

If the picture field's data value is incorrect after the editing characters have been removed from the data
item, the operator is informed of a validation error and is required to correct the value.

If you do not specify an input picture, the output picture is used for validation.

If you specify both an input picture and an output picture clause fora panel field, the picture strings must
be of the same length. The insertion literals specified in the input picture and the output picture must
occupy the same character positions in each picture.

For more information, see the PICTURE STRING syntax section.

Example
Input Picture For Date GG:II

This example specifies a Format 4 picture string with digits of hours and digits of minutes of a 24-hour
clock.

INTERNAL RESPONSE Declaration
INTERNAL RESPONSE Declaration — The INTERNAL RESPONSE declaration provides a method
of referencing response steps used in more than one response.

internal-response-declaration

Format

Where you specify this clause:

Syntax Rules
internal-response-name

Identifies an internal response that can be referred to by other responses. This name must be unique in
each layout.

response-step

Specifies the response steps to be performed. For more information, see the RESPONSE STEP clause
syntax section.

General Rules
An internal response can be referred to by other responses by using the INCLUDE response step. An
internal response is treated as if it were included inline by the referring response.

141

Chapter 1. Independent Form Description Language

An internal response may not include itself, either directly or indirectly.

Example
Send Response RECORD_1
 Display PANEL_A
 Include RESPONSE_MSG
 Display PANEL_A
End Response

When the application sends the record message named RECORD_1 to the form, the Form Manager
interprets RECORD_1 by displaying PANEL_A and performing the RESPONSE_MSG internal
response. RESPONSE_MSG was declared earlier in the form as follows:

Internal Response RESPONSE_MSG
 Display PANEL_C
 Message "Your dentist called. Your appt. is tomorrow at 8:00"
 Display PANEL_D
End Response

RESPONSE_MSG sends the image for PANEL_C to the display, and displays the message, “Your
dentist called. Your appt. is tomorrow at 8:00” in the message panel. PANEL_D is then displayed, and
then PANEL_A is redisplayed.

INVALID Response Step
INVALID Response Step — The INVALID response step specifies the current activation item (field,
icon, button, or wait) as invalid during input.

invalid-response-step
Format

Where you specify this clause:

Syntax Rules
INVALID

Specifies that the current activation item is considered invalid during input validation. It also executes an
implicit POSITION IMMEDIATE TO CURRENT ITEM response step.

The implicit response step overrides any previous POSITION response step so that the Form Manager
requests input from the operator for the current activation item again. (A POSITION IMMEDIATE
response step tells the Form Manager to get input from the position target first, even when this activation
item is invalid.)

If a POSITION IMMEDIATE response step occurs after an INVALID response step, it overrides the
implicit POSITION IMMEDIATE TO CURRENT ITEM response step.

The INVALID response step is ignored in PRINTER layouts.

142

Chapter 1. Independent Form Description Language

Example
Field FOO
 Line 12
 Column 16
 Validation Response
 IF A > B
 THEN
 INVALID
 END IF
 End Response
End Field

In this example, if the conditional expression in the IF response step is true, the field is specified as
invalid.

ITEM DESCRIPTION Entry
ITEM DESCRIPTION Entry — The ITEM DESCRIPTION entry specifies the display and processing
attributes for a field, icon, or button.

item-description-entry
Format

Where you specify this clause:

Syntax Rules
accept-response-declaration

143

Chapter 1. Independent Form Description Language

States what entry, exit, validation, and function responses are invoked during input to the field, icon, or
button. For more information, see the ACCEPT RESPONSE declaration syntax section.

active-highlight-clause

Specifies one or more display attributes to add to the field, icon, or button while the operator is allowed
to enter input to it. Attributes that change the size of the item (SINGLE, NORMAL, DOUBLE HIGH
and DOUBLE WIDE) are not allowed for character-cell devices. For more information, see the ACTIVE
HIGHLIGHT clause syntax section.

concealed-clause

Specifies that the contents of the picture field, text field, or icon are not displayed. The CONCEALED
clause is ignored for push buttons and slider fields in window layouts. For more information, see the
CONCEALED clause syntax section.

display-clause

Specifies display attributes for the field, icon, or button. For more information,see the DISPLAY clause
syntax section.

NO DISPLAY

Negates the display attributes that would be inherited or would default to the field,icon, or button. It has
no effect on whether the contents of the item are displayed.

DATA INPUT

Specifies that the operator can enter data into the field. (DATA INPUT is not allowed for buttons or
icons.) DATA INPUT is the default: you only need to specify DATA INPUT to override a NO DATA
INPUT clause in a field default.

NO DATA INPUT [message-clause-1]

Specifies that the operator cannot enter data into the field, icon, or button, but the operator can position
to the item and function key input can be accepted for the item. All icons and buttons are NO DATA
INPUT.

Message-clause-1 specifies a message that is displayed if the operator attempts to enter data into the field
or icon. In character-cell layouts,specifying NO DATA INPUT with a message clause allows the form
designer to specify the message to be displayed when the operator attempts to enter data. In window
layouts, a message clause specified for a NO DATA INPUT item is ignored.

For more information, see the MESSAGE clause syntax section.

USE HELP message-clause-2

Specifies that the Form Manager displays message-clause-2 in the message panel when it executes the
MESSAGE HELP response step. If this clause is omitted, a default message is displayed.

For more information, see the MESSAGE response step syntax section.

NO HELP MESSAGE

Specifies that no help message is displayed in the message panel.

USE HELP PANEL panel-name

144

Chapter 1. Independent Form Description Language

Specifies that the Form Manager activate a help panel when it executes an ENTER HELP response step.
If you specify USE HELP PANEL in an item that has been activated as a help panel, the Form Manager
ignores the USE HELP PANEL declaration at run time.

NO HELP PANEL

Specifies that no help panel is activated when the Form Manager performs an ENTERHELP response
step.

highlight-when-clause

Specifies whether the field, icon, or button is augmented by an additional set of attributes under certain
circumstances. For more information, see the HIGHLIGHT WHEN clause syntax section.

For character-cell terminals, attributes that change the size of an item are not allowed for the
HIGHLIGHT WHEN clause. These attributes are SINGLE, DOUBLE HIGH, and DOUBLE WIDE.

protected-clause

Specifies whether afield, icon, or button may or may not accept operator input. When a field, icon, or
button is protected, it cannot be the current activation item. For more information, see the PROTECTED
clause syntax section.

timeout-clause

Specifies the number of seconds allowed for operator input. A TIMEOUT clause in an external request
or in an ACTIVATE response step overrides a TIMEOUT clause in an item description entry. For more
information, see the TIMEOUT clause syntax section.

General Rules
Item description entries must be either on or off. If you specify a particular item characteristic, you
cannot specify the negation of that same characteristic in the same item declaration.

Negative item description entries (specified by NO or NOT in front of the entry) allow you to override
currently active defaults set by the FIELD DEFAULT declaration. Override item description entries that
do not have a negative item description entry by specifying an alternate or null attribute.

You can write the clauses of an item description entry in any order.

Examples
1. Field TIMER_FIELD

 Line 22
 Column 1
 Timeout 10
End Field

Field TIMER_FIELD has the TIMEOUT item description entry specified. This TIMEOUT clause
specifies that the operator has 10 seconds between characters to enter input.

2. Field JUST_LOOKING
 Line 8
 Column 1
 No Data Input
 Message "You can't type here!"
End Field

145

Chapter 1. Independent Form Description Language

The JUST_LOOKING field specifies NO DATA INPUT and displays the message “You can't type
here!” if the operator attempts to enter input into the field. The message clause on the NO DATA
INPUT clause is ignored in window layouts.

LAYOUT Declaration
LAYOUT Declaration — The LAYOUT declaration maps a form to a display device. You can specify
more than one layout for each form. The Form Manager selects a layout when the form is enabled, using
information specified in the layout, such as the device class, the natural language, and the display size.
The layout is a group of panels specified for a particular device:what the operator sees as the form.
Form designers must take into account the different capabilities of different display devices. For more
information on device capability, see the DISPLAYVIEWPORT clause.

layout-declaration
Format

146

Chapter 1. Independent Form Description Language

Where you specify this clause:

Syntax Rules
layout-name

Name you supply for the layout. You use layout-name to list the layouts in a form within an FDE editing
session.

device-declaration

States the device that the layout is enabled on. For more information, see the DEVICE declaration syntax
section.

LANGUAGE string-1

A character string that the Form Manager uses to select a layout. String-1 is the language of the layout.

In Motif and PRINTER layouts, if a language is specified at form enable time, and the value of
string-1 matches the translated value of the OpenVMS logical name FORMS$LANGUAGE, the Form
Manager chooses the layout whose language string matches the logical definition. If you do not define
FORMS$LANGUAGE, the language specified for the logical name SYS$LANGUAGE is matched to
the LANGUAGE clause. If no LANGUAGE declaration is made, the Form Manager does not attempt to
match the layout to the logical name or to FORMS$LANGUAGE.

For more information on the run-time selection of language, see the VSI DECforms Programmer's
Reference Manual.

Note

The LANGUAGE clause controls layout selection based on the FORMS$LANGUAGE logical name, but
does not affect run-time messages generated by the Form Manager.

147

Chapter 1. Independent Form Description Language

LAYOUT SELECTION string-2 (PRINTER layouts)

Specifies a string used for PRINTER layout selection. LAYOUT SELECTION is ignored in all
layouts except PRINTER layouts. For more information on layout selection, see the VSI DECforms
Programmer's Reference Manual.

UNITS

Specifies the units in which position coordinates and measurements are expressed. If VT-class terminals
are specified in the layout, the layout UNITS clause must specify CHARACTERS. The UNITS clause is
required for window and PRINTER layouts.

CHARACTERS (character-cell layouts)

Specifies that position coordinates and measurements are expressed in characters, typically 1/6
inch vertically and 1/10 inch horizontally. The lowest specifiable coordinate is LINE 1, COLUMN
1:representing the top-left corner of the device. Fractional character positions are truncated to integer.
Whether the font is normal size or double high or double wide, a unit is still the size of a single character
cell.

INCHES (PRINTER and window layouts)

Specifies that position coordinates and measurements are expressed in inches. The lowest specifiable
coordinate is LINE 0, COLUMN 0: representing the top-left corner of the device. Fractions can be
specified to thousandths of an inch; for example, 2.341 inches.

MILLIMETERS (PRINTER and window layouts)

Specifies that position coordinates and measurements are expressed in millimeters. The lowest
specifiable coordinate is LINE 0, COLUMN 0:representing the top-left corner of the device. Fractions of
a millimeter can be specified to hundredths of a millimeter; for example, 2.34 millimeters.

PIXELS (window layouts)

Specifies that position coordinates and measurements are expressed in pixels. The lowest specifiable
coordinate is LINE 0, COLUMN 0:representing the top-left corner of the device. Fractions of a pixel
cannot be specified; fractional pixel positions are truncated to integer.

PIXELS is not recommended if you anticipate that your form will be used on more than one resolution
of screen.

POINTS (Motif and PRINTER layouts)

Specifies that position coordinates and measurements are expressed in points. One point is equivalent
to 1/72 of an inch. The lowest specifiable coordinate is LINE 0, COLUMN 0: representing the top-left
corner of the device. Fractions of a point can be specified to hundredths of a point; for example, 2.34
points.

BMUS (PRINTER layouts)

Specifies that position coordinates and measurements are expressed in Basic Measurement Units. One
BMU is equivalent to 1/1200 of an inch. The lowest specifiable coordinate is LINE 0, COLUMN
0:representing the top-left corner of the device. Fractions of a BMU cannot be specified.

BMUS can be specified in PRINTER layouts only.

148

Chapter 1. Independent Form Description Language

SIZE

Defines the size of the default viewport. In character-cell layouts, all the viewports must fit within the
default viewport, except for viewports declared with the FOR PRINTING clause (see the VIEWPORT
declaration syntax section). You must specify the size of the layout. PRINTER layouts can use the
standard paper sizes in Table 1.7, "Standard Paper Size"; all other layouts must specify the LINES BY
COLUMNS clause.

number-1 LINES BY number-2 COLUMNS

Number-1 specifies the number of units in the vertical direction in the SIZE clause. Number-2specifies
the number of units in the horizontal direction in the SIZE clause. For the VT100-, VT200-, and
VT300-series terminals supported by DECforms, the maximum number of lines is 24 and the maximum
number of columns is 132. For VT400-series terminals, the maximum number of lines is 48 and the
maximum number of columns is 132.

The IFDL Translator allows the SIZE clause to declare more lines and columns than a character-cell
terminal or printer so that it can take advantage of emulated terminals on VAXstation computers.

On the OpenVMS operating system, the Form Manager uses the size of the terminal as specified in the
OpenVMS terminal services to determine whether the layout fits. On windowing systems, the Form
Manager queries the window device to determine whether the layout fits.

A (PRINTER layouts)

Specifies the A standard paper size as the maximum rectangular area for a PRINTER layout. See Table
1.7, "Standard Paper Size" for the dimensions corresponding to A.

A3 (PRINTER layouts)

Specifies the A3 standard paper size as the maximum rectangular area for a PRINTER layout. See Table
1.7, "Standard Paper Size" for the dimensions corresponding to A3.

A4 (PRINTER layouts)

Specifies the A4 standard paper size as the maximum rectangular area for a PRINTER layout. See Table
1.7, "Standard Paper Size" for the dimensions corresponding to A4.

A5 (PRINTER layouts)

Specifies the A5 standard paper size as the maximum rectangular area for a PRINTER layout. See Table
1.7, "Standard Paper Size" for the dimensions corresponding to A5.

B (PRINTER layouts)

Specifies the B standard paper size as the maximum rectangular area for a PRINTER layout. See Table
1.7, "Standard Paper Size" for the dimensions corresponding to B.

B3 (PRINTER layouts)

Specifies the B3 standard paper size as the maximum rectangular area for a PRINTER layout. See Table
1.7, "Standard Paper Size" for the dimensions corresponding to B3.

B4 (PRINTER layouts)

Specifies the B4 standard paper size as the maximum rectangular area for a PRINTER layout. See Table
1.7, "Standard Paper Size" for the dimensions corresponding to B4.

149

Chapter 1. Independent Form Description Language

B5 (PRINTER layouts)

Specifies the B5 standard paper size as the maximum rectangular area for a PRINTER layout. See Table
1.7, "Standard Paper Size" for the dimensions corresponding to B5.

C (PRINTER layouts)

Specifies the C standard paper size as the maximum rectangular area for a PRINTER layout. See Table
1.7, "Standard Paper Size" for the dimensions corresponding to C.

D (PRINTER layouts)

Specifies the D standard paper size as the maximum rectangular area for a PRINTER layout. See Table
1.7, "Standard Paper Size" for the dimensions corresponding to D.

E (PRINTER layouts)

Specifies the E standard paper size as the maximum rectangular area for a PRINTER layout. See Table
1.7, "Standard Paper Size" for the dimensions corresponding to E.

F (PRINTER layouts)

Specifies the F standard paper size as the maximum rectangular area for a PRINTER layout. See Table
1.7, "Standard Paper Size" for the dimensions corresponding to F.

Table 1.7. Standard Paper Size

Size Inches Millimeters Points BMUs

A 8.5 x 11 216 x 279 612 x 792 1208.5 x 13200
A3 11.69 x 16.54 297 x 420 841.68 x 1190.88 14028 x 19848
A4 8.27 x 11.69 210 x 297 595.44 x 841.68 9924 x 14028
A5 5.83 x 8.27 148 x 210 419.76 x 595.44 6996 x 9924
B 11 x 17 279 x 432 792 x 1224 13200 x 20400
B3 13.9 x 19.68 353 x 500 1000.8 x 1416.96 16680 x 23616
B4 9.84 x 13.9 250 x 353 708.48 x 1416.96 11808 x 16680
B5 6.93 x 9.84 176 x 250 498.98 x 708.48 8316 x 11808
C 17 x 22 432 x 559 1224 x 1584 20400 x 26400
D 22 x 34 559 x 864 1584 x 2448 26400 x 40800
E 34 x 44 864 x 1118 2448 x 3168 40800 x 52800
F 28 x 40 711 x 1016 2016 x 2880 33600 x 48000

PORTRAIT (PRINTER layouts)

Specifies that the page has a portrait orientation: the shorter dimension is the width of the page. You can
specify PORTRAIT only if you have specified a standard page size.

LANDSCAPE (PRINTER layouts)

Specifies that the page has a landscape orientation: the longer dimension is the width of the page. You
can specify LANDSCAPE only if you have specified a standard page size.

list-declaration

150

Chapter 1. Independent Form Description Language

Specifies a list of values to be used in field validation in the SEARCH clause. For more information on
the LIST and SEARCH clauses, see the LIST declaration syntax section.

attribute-declaration

Specifies a name for a set of display attributes that are applied to fields, icons, buttons, or literals. For
more information, see the ATTRIBUTE declaration syntax section.

display-viewport-clause

Allows you to specify default attributes that apply to viewports in the layout. Display viewport attributes
are not included in the inheritance of attributes for fields, literals, icons, or buttons of panels displayed in
the viewport. For more information, see the DISPLAY VIEWPORT clause syntax section.

viewport-declaration

Specifies a rectangular area of the display device that is used to display panels within the layout.
The default viewport is the entire layout size declared. For more information, see the VIEWPORT
declaration syntax section.

function-declaration

States what terminal keys are recognized in this layout. For more information, see the FUNCTION
declaration syntax section.

external-response-declaration

Declares what action or actions the Form Manager performs when the application makes an external
request of the form while this layout is displayed. For more information, see the EXTERNAL
RESPONSE declaration syntax section.

internal-response-declaration

Used by other responses to simplify common response sequences. For more information, see the
INTERNAL RESPONSE declaration syntax section.

function-response-declaration

States what actions the Form Manager should take if the terminal operator invokes a function while
the Form Manager is soliciting input from the operator. For more information, see the FUNCTION
RESPONSE declaration syntax section.

USE HELP PANEL panel-name

Specifies a help panel that is displayed when the Form Manager executes an ENTER HELP response
step and there are no USE HELP PANEL clauses at lower levels. If you specify USE HELP PANEL
in an item that has been activated as a help panel, the Form Manager ignores the USE HELP PANEL
declaration at run time.

NO HELP PANEL

Specifies that no help panel is displayed.

field-default-declaration

Specifies named field defaults that can be referred to in subsequent field default applications. For more
information, see the FIELD DEFAULT declaration syntax section.

151

Chapter 1. Independent Form Description Language

literal-default-declaration

Specifies named literal defaults that can be referred to in subsequent literal default applications. For more
information, see the LITERAL DEFAULT declaration syntax section.

field-default-application

Specifies the application of a field default. For more information, see the FIELD DEFAULT application
syntax section.

literal-default-application

Specifies the application of a literal default. For more information, see the LITERAL DEFAULT
application syntax section.

message-panel-declaration

Used to display error and informational messages. For more information, see the MESSAGE PANEL
declaration syntax section.

panel-declaration

Specifies items (fields, literals, icons, buttons, and groups) displayed in viewports. For more information,
see the PANEL declaration syntax section.

help-panel-declaration

Specifies a panel that gives information about the display when the Form Manager executes an ENTER
HELP response step. For more information, see the HELP PANEL declaration syntax section.

Examples
Layout COLOR_LAYOUT
 Device Terminal C1
 Type %VT200 Color
 End Device
 Units Characters
 Size 24 Lines By 80 Columns
 Viewport FIRST_VIEWPORT
 Lines 1 Through 22
 Columns 1 Through 80
 End Viewport
 Panel P1
 Viewport FIRST_VIEWPORT
 Field F1
 End Field
 End Panel
End Layout

This example declares the following layout specifications for COLOR_LAYOUT:

The device is a terminal class that supports color, for example, a VT241.

Units are characters.

The display size is 24 lines by 80 columns.

A viewport named FIRST_VIEWPORT is declared, with Panel P1 displayed on it.

152

Chapter 1. Independent Form Description Language

No natural language is specified.

Layout WINDOW_LAYOUT
 Device
 Pixel WL1
 Type %Motif
 End Device
 Display Viewport
 Title "TRAVEL VOUCHER FORM"
 Nodecorations
 Units Inches
 Size 6.250 Lines By 8.991 Columns
 .
 .
 .

This example declares the following layout specifications for WINDOW_LAYOUT:

The device is a Motif device.

The title that appears at the top of the viewport is "TRAVEL VOUCHER FORM".

The viewport has no decorations, such as borders, maximize and minimize buttons, or a title bar.

Units are inches.

The display size is 6.25 inches by 8.991 inches.

LET Response Step
LET Response Step — The LET response step assigns a value to a form data item.

let-response-step
Format

Where you specify this clause:

Syntax Rules
LET data-1

Assigns a value to a form data item. The LET response step cannot assign a value to any of the built-in
read-only data items.

data-2

Specifies that the assigned value is another data item.

153

Chapter 1. Independent Form Description Language

%REV(string)

Specifies that the assigned value is a nonnumeric literal stored in reverse order in the form data item.
This is useful for displaying text in Hebrew layouts.

literal

Specifies that the assigned value is a literal. Only a string or character data item in international date/
time format can be assigned to a DATE, TIME, or ADT data item in a LET response step. (For example,
LET X = "1993 04 15" is a legal response step, where X has been declared as a date data type.) For
information on the international date/time format, see the discussion of the VALUE clause in the FORM
DATA declaration syntax section.

scalar-numeric-expression

Specifies a scalar numeric expression: an expression whose computed value is specified by a single
number (an expression that does not contain a “corresponding” subscript (that is, (*)). For more
information, see the NUMERIC EXPRESSION syntax section and Appendix A, "Using Arrays with
DECforms Software".

scalar-string-expression

Specifies a string expression: an expression whose computed value is a single character string. For more
information, see the STRING EXPRESSION syntax section.

General Rules
If the data type of the right side of the LET response step does not match the data type of the left side,
the Form Manager attempts to convert the left side's data type. Serious conversion errors (errors other
than string truncation) result in request termination.

For further information on data conversion, see the VSI DECforms Programmer's Reference Manual.

Example
1. LET Choice = "2"

In this example, the LET step assigns the string 2 to the CHOICE form data item.

2. LET ADT1 = ADT2

In this example, the LET step assigns the value ADT2 to ADT1.

LIST Declaration
LIST Declaration — The LIST declaration specifies a set of items that are used for validation checking
in afield with the SEARCH field validation entry.

list-declaration

Format

154

Chapter 1. Independent Form Description Language

Where you specify this clause:

Syntax Rules
list-name

The name you select for the list of items. This name is used in the SEARCH clause.

EXACTCASE

Specifies that alphanumeric comparisons require a match in case as well as contents; you cannot use this
clause when all elements in a list are numeric.

If you do not use EXACTCASE, alphanumeric comparisons provide a match if the only difference is in
the case of the alphabetic characters of the string. This is the default.

literal

Specify the search items. Literal specifies that the search items are either numeric or nonnumeric literals;
data specifies that the search items must be either numeric or nonnumeric data items.

You cannot mix character string and numeric elements in the same list.

Examples
1. List DAY_LIST

 'MONDAY'
 'TUESDAY'
 'WEDNESDAY'
 'THURSDAY'
 'FRIDAY'
End List

If a field has Search DAY_LIST as a field validation entry, the value of the field has to match one of
the days on DAY_LIST to pass validation.

2. List STATE_LIST Exactcase
 "AL" "AK" "AZ" "AR" "CA" "CO" "CN" "DE" "DC" "FL"
 "GA" "HI" "ID" "IL" "IN" "IA" "KS" "KY" "LA" "ME"
 "MD" "MA" "MI" "MN" "MS" "MO" "MT" "NE" "NV" "NH"
 "NJ" "NM" "NY" "NC" "ND" "OH" "OK" "OR" "PA" "RI"
 "SC" "SD" "TE" "TX" "UT" "VA" "VT" "WA" "WV" "WI"
 "WY"
End List

If a field has Search STATE_LIST as a field validation entry, the value of the field has to be an
uppercase, 2-character abbreviation for a state on the STATE_LIST list to pass validation.

155

Chapter 1. Independent Form Description Language

LITERAL Declaration
LITERAL Declaration — The LITERAL declaration describes an object (a text string, a point, line
segments, or a rectangle) to be drawn on the display at or between the specified coordinates. Literals
represent the parts of panels that never change, such as background text and drawings.

literal-declaration

Format

Where you specify this clause:

Syntax Rules
TEXT location-clause

Specifies a character string to be displayed. Location-clause specifies the position of the string. For
character-cell layouts, if you do not specify location-clause, the location of the current literal default
is used. If no literal default is in effect, the default NEXT LINE, SAME COLUMN is used. There is
no default location for window and PRINTER layouts. If you do not specify a location in a window
or PRINTER layout, the IFDL Translator signals an error and your form is not translated. For more
information, see the LOCATION clause syntax section.

VALUE string

Specifies a string value for the text literal.

For character-cell layouts, the area allotted for a literal by location-clause and the size of the viewport
must be compatible with the value to be displayed in the area. The length of the literal must be less than
or equal to the maximum number of characters that can be inscribed into this rectangular area.

For window layouts, the area allotted for a literal by location-clause does not have to be contained within
the viewport. If the literal expands beyond the area of the viewport, the Form Manager uses scroll bars
on the viewport.

156

Chapter 1. Independent Form Description Language

POINT full-location-clause-1

For character-cell layouts, POINT specifies a single dot to be drawn on the panel. Full-location-clause-1
specifies the coordinates of the point.

For window and PRINTER layouts, POINT specifies a polyline with height equal to width. The location
of the point is specified by full-location-clause-1. The height and width of the point are specified by the
line width elementary attribute.

POLYLINE

A series of one or more connecting line segments. At least two points are required to define a polyline.
If the beginning and end points of a polyline specify the same location, the polyline is considered closed.
Otherwise, the polyline is open.

An open polyline cannot be filled in Motif layouts.

full-location-clause-2
full-location-clause-4
full-location-clause-4

Specifies the point coordinates at which the lines of the polyline are drawn.

For character-cell layouts, the sequence of points in polylines must be orthogonal.

RECTANGLE

A rectangle is a special type of closed polyline. Two points representing opposite diagonal corners are
required to specify a rectangle.

full-location-clause-5
full-location-clause-6

Specifies the point coordinates of the opposite corners of the rectangle.

literal-default-application

Specifies the application of defaults to a literal declaration. For more information, see the LITERAL
DEFAULT application syntax section.

display-clause

Specifies display attributes for the literal. For more information, see the DISPLAY clause syntax section.

NO DISPLAY

NO DISPLAY cancels out the effect of the display attributes that would be inherited or would default
to the literal. It has no effect on whether the contents of the literal are displayed. For example, if you
specify NO DISPLAY on a literal that has the BOLD attribute applied, the literal is not automatically
specified as NO BOLD. The literal would not have the BOLD applied if it is not already in effect.

General Rules
Where graphic literals meet in a character-cell display, the proper,line-drawing characters are inserted
at the intersections of the literals. Where lines cross, a graphic cross is inserted, and where a line and an
end point meet, the appropriate T is inserted.

157

Chapter 1. Independent Form Description Language

Because window and PRINTER layouts are displayed on bit-mapped devices,lines are drawn directly on
the device. In PRINTER layouts, the line attributes determine the behavior of joined lines.

Examples
1. Literal Text

 Same Line Next Column +4
 Value "Zip"
End Literal

This example displays the word “Zip ”at the designated location on the panel.

2. Literal Rectangle
 Line 5 Column 2
 Line 17 Column 77
End Literal

This example displays a rectangle whose upper-left corner is at line 5, column 2, and whose lower-
right corner is at line 17, column 77, on the panel.

3. Literal Polyline
 Line 4 Column 1
 Line 4 Column 80
End Literal

This literal draws a single line from column 1 to column 80 on the fourth line of the panel.

LITERAL DEFAULT Application
LITERAL DEFAULT Application — The LITERAL DEFAULT application specifies the default
characteristics of literals within a layout, panel, group, icon, or literal. These defaults remain in effect
until the Form Manager reaches the end of the entity in which they are declared.

literal-default-application
Format

Where you specify this clause:

Syntax Rules
NO LITERAL DEFAULT

158

Chapter 1. Independent Form Description Language

Specifies no literal default is to be applied at the current level.

LITERAL DEFAULT default-name

Specifies a previously declared literal default as the default. Default-name is the name of the literal
default. For more information, see the LITERAL DEFAULT declaration syntax section.

LITERAL DEFAULT OF [literal-default-entry] ...

Specifies that a set of literal default entries applies at the current level. For more information, see the
LITERAL DEFAULT declaration syntax section.

General Rules
You can specify only Format 2 (relative) LOCATION clauses in a LITERAL DEFAULT application. If
you specify a literal default with a location in a window layout, the IFDL Translator signals an error.

Example
Literal Default B_DEF
 Next Line
 Next Column
 Display Blinking
End Default

Literal Text
 Value "Entry:"
 Apply Literal Default B_DEF
 Display Bold
End Literal

In this example, a LITERAL DEFAULT declaration, B_DEF, specifies a literal default of next line,
next column, and that the literal blinks on the display. However, when B_DEF is applied to the literal
that follows, "Entry:" is displayed in bold, because the DISPLAY BOLD clause overrides the previous
DISPLAY clause.

LITERAL DEFAULT Declaration
LITERAL DEFAULT Declaration — The LITERAL DEFAULT declaration specifies a named set of
defaults that can be applied as the default characteristics for the subsequent literals declared in the layout.

literal-default-declaration

Format

Where you specify this clause:

159

Chapter 1. Independent Form Description Language

Syntax Rules

LITERAL DEFAULT literal-default-name

Specifies the name of the literal default. You use this name to refer to subsequent literal default
applications.

literal-default-entry

Specifies a default for the literals. For more information, see the LITERAL DEFAULT entry syntax
section.

General Rules

If a LOCATION clause appears in a LITERAL DEFAULT declaration, it is applied only to text literals
in a character-cell layout that possess no explicit corresponding location clause themselves. Location
defaults cannot be applied to nontext or window and PRINTER literals.

Example
Literal Default BORING_DEF
 Next Line
 Same Column
End Default
 .
 .
 .
Literal Text
 Value "Entry:"
 Apply Literal Default BORING_DEF
 .
 .
 .
End Literal

In this example, a LITERAL DEFAULT declaration, BORING_DEF, specifies that each text literal begin
on the next line, directly under the object preceding it.

LITERAL DEFAULT Entry
LITERAL DEFAULT Entry — The LITERAL DEFAULT entry establishes defaults for literals.

literal-default-entry

Format

Where you specify this clause:

160

Chapter 1. Independent Form Description Language

Syntax Rules
partial-location-clause

Specifies the coordinates at which text literals appear. You can specify Format 2 LOCATION clauses
only. For more information, see the LOCATION clause syntax section.

display-clause

Specifies display attributes. For more information on display attributes, see the DISPLAY clause syntax
section.

Example
Literal Default BORING_DEF
 Next Line
 Same Column
End Default

In this example, a named literal default, BORING_DEF, specifies that each text literal begins on the line
directly under the object preceding it. NEXT LINE and SAME COLUMN are literal default entries.

LOCATION Clause
LOCATION Clause — The LOCATION clause specifies the vertical and horizontal positions of an
object. There are two types of location clauses: full and partial. You must specify both vertical and
horizontal positions in full location clauses. You can omit either position in a partial location clause.

location-clause

Format

location-clause

full-location-clause

partial-location-clause

horizontal-location-clause-format-1

horizontal-location-clause-format-2

161

Chapter 1. Independent Form Description Language

vertical-location-clause-format-1

vertical-location-clause-format-2

Where you specify this clause:

Syntax Rules
location-clause

Specifies the position of an object as a full or partial location clause.

full-location-clause

Specifies the vertical and horizontal positions of an object. You must specify a location clause as full-
location-clause in window and PRINTER layouts.

partial-location-clause

Specifies either the horizontal or vertical position of an object.

General Rules
For character-cell layouts, line and column specifications for fields and literals can be declared as either
Format 1 or Format 2 location clauses. All fields and literals in character-cell layouts must be contained
within their associated viewport. If a field or a literal extends beyond the viewport boundary, the IFDL
Translator signals an error and a form is not created.

For window and PRINTER layouts, the location of objects must be declared using Format 1 location
clauses for both horizontal and vertical positions. In addition, within such layouts object locations must
be specified as full location clauses, even if the syntax specifies partial.

All numbers in the horizontal-location-clause and vertical-location-clause are specified in the units
declared in the layout. If the layout units are inches, millimeters, or points, the lines and columns are
specified as decimal values. If the layout units are characters, pixels, or BMUs, decimal values are
rounded to the nearest integer value.

If you specify any nontext literal (a point, polyline, or a rectangle), you must specify vertical-location-
clause before horizontal-location-clause.

The maximum line or column specification for any form object allowed in all viewports is 65 535.

162

Chapter 1. Independent Form Description Language

Syntax Rules: horizontal-location-clause-format-1
horizontal-location-clause-format-1

Defines the horizontal location of an object as an absolute position within a panel.

COLUMN number-1

Specifies an absolute horizontal position of the object being declared. Number-1 must be positive.

In character-cell layouts, number-1 is an absolute horizontal position from the origin of the viewport of
the panel in which the field or literal is declared. Number-1 must lie within the viewport that contains the
object.

In window layouts, number-1 is an absolute horizontal position from the origin of the parent of the
object. The parent of a viewport is the screen itself. All other object coordinates are relative to the
viewport. The origin of all window objects is the upper-left corner of the object.

General Rules: horizontal-location-clause-format-1
Window and PRINTER layouts must use Format 1 of horizontal-location-clause.

The Format 1 (absolute) LOCATION clause is not allowed in field and literal defaults.

Syntax Rules: horizontal-location-clause-format-2
horizontal-location-clause-format-2

Defines the column of a field or literal relative to another field or literal within the panel.

SAME COLUMN

Specifies that the field or literal starts in the same column number as the first character in the previous
field or literal.

NEXT COLUMN

Specifies that the field or literal starts in the next available column number after the previous field or
literal. The picture string of the previous field or the size of the previous literal determines the next
column offset.

If the previously declared item requiring column coordinates is a point, polyline, or rectangle, NEXT
COLUMN is the first column after the highest column coordinate of the literal.

number-2

Specifies the number of units the column should move relative to the current or next column. The sum of
the current or next column plus number-2 must lie within the viewport that contains the column.

The following column placement rules hold true (left and right are relative to the display device):

● SAME/NEXT COLUMN + n moves the column coordinate n characters to the right.

● SAME/NEXT COLUMN – n moves the column coordinate n characters to the left.

General Rules: horizontal-location-clause-format-2
Format 2 is permitted only in character-cell layouts.

163

Chapter 1. Independent Form Description Language

If no previous column has been declared,SAME COLUMN or NEXT COLUMN is interpreted as
COLUMN 1 for single/normal and double high fonts; as COLUMN 2 for double wide fonts.

The Back Translator converts relative (Format 2) LOCATION clauses used in polyline literals to absolute
(Format 1) LOCATION clauses.

Syntax Rules: vertical-location-clause-format-1
vertical-location-clause-format-1

Defines the line of an object as an absolute position within a panel.

LINE number-3

Specifies an absolute vertical position of the object being declared. Number-3 must be positive.

In character-cell layouts, number-3 is an absolute vertical position from the origin of the viewport of the
panel in which the field or literal is declared. Number-3 must lie within the viewport that contains the
object.

In window layouts, number-3 is an absolute vertical position from the origin of the parent of the object.
The parent of a viewport is the screen itself. All other object coordinates are relative to the viewport.
The origin of all window objects is the upper-left corner of the object.

General Rules: vertical-location-clause-format 1
Window and PRINTER layouts must use Format 1 of vertical-location-clause. The Format 1 (absolute)
LOCATION clause is not allowed in field and literal defaults.

Syntax Rules: vertical-location-clause-format-2
vertical-location-clause-format-2

Defines the line of a field or literal relative to another field or literal within the panel.

SAME LINE

Specifies that the field or literal starts on the same line as the first character in the previous field or
literal.

NEXT LINE

Specifies that the field or literal starts in the next available line number after the previous field or literal.

The height of the font determines the NEXT LINE offset.

number-4

Specifies the number of units the line should move relative to the current or next line. The sum of the
current or next line plus number-4 must lie within the viewport that contains the line.

The following line placement rules hold true (up and down are relative to the top and bottom of the
display device):

● SAME/NEXT LINE + n moves the line coordinate n characters towards the bottom.

● SAME/NEXT LINE – n moves the line coordinate n characters towards the top.

164

Chapter 1. Independent Form Description Language

General Rules: vertical-location-clause-format-2
Format 2 is permitted only in character-cell layouts. For items having double-size fonts, the line specified
is the lower line of the character. The smallest line number possible for such items is line 2.

If no previous line is declared,the Form Manager interprets SAME LINE or NEXT LINE as LINE 1 for
single/normal and double wide fonts; LINE 2 for double high fonts.

The Back Translator converts relative (Format 2) LOCATION clauses in polyline literals to absolute
(Format 1) LOCATION clauses.

Examples
1. Same Column + 3

This clause places the starting column three characters to the right of the current column in a
character-cell layout.

2. Next Column

This clause places the starting column in the next available column to the right of the previous field
or literal in a character-cell layout.

3. Same Line +3

This clause places the starting line three characters down from the current line in a character-cell
layout.

4. Same Column -2

This clause places the starting column two characters to the lef of the current column in a character-
cell layout.

5. Column 4

This clause positions the starting column at the fourth column within the viewport within a character-
cell layout, and four units to the right of the parent object's origin in a Motif or PRINTER layout.

6. Next Line

This clause places the starting line as the next available line down in a character-cell layout.

7. Same Line -2

This clause places the starting line two characters up from the current line in a character-cell layout.

8. Line 4

This clause positions the starting line as the fourth line on the viewport in a character-cell layout and
four units down from the parent object's origin in a Motif or PRINTER layout.

9. Group REGISTER
 Vertical
 Displays 10
 First REGISTER_FIRST
 Scroll By Page

 Field REG_CHK_NUM

165

Chapter 1. Independent Form Description Language

 Line 5
 Column 1
 Output Picture 9999R
 End Field

 Field REG_DATE
 Next Line
 Same Column + 5
 Output Picture For Date NN/DD/YY
 End Field
End Group
 .
 .
 .
Group REGISTER
 Vertical
 Displays 10
 First REGISTER_FIRST
 Scroll By Page
 Line 1.000

 Field REG CHK_NUM
 Line .200
 Column .000
 Output Picture 9999R
 End Field

 Field REG_DATE
 Line .400
 Column .555
 Output Picture For Date NN/DD/YY
 End Field
End Group

In this example, the first group named REGISTER has been converted from a character-cell layout
to a Motif layout. The first group contains one set of relative (Format 2) clauses, but the second
contains only absolute (Format 1) clauses, because relative clauses are not allowed in Motif layouts.

The line 5 offset in the first group becomes line .200 in the second group, which is equivalent to .2
inches.

MESSAGE Clause
MESSAGE Clause — The MESSAGE clause specifies the components of a message to be displayed in
the message panel.

message-clause

Format

166

Chapter 1. Independent Form Description Language

Where you specify this clause:

Syntax Rules
MESSAGE

Outputs a string of values to the message panel,formatted in a word-wrapped manner.

form-manager-message-code

Specifies the value of a Form Manager message in the MESSAGE clause. For a list of Form Manager
messages, see the VSI DECforms Programmer's Reference Manual.

data

Specifies the contents of a form data item in the MESSAGE clause.

corresponding-data

Specifies the contents of a data item that is declared in at least one multiply occurring group and that one
of the multiply occurring groups has a corresponding subscript specified.

Corresponding-data must have one of the following data types:

● integer(n)

● unsigned byte

● byte integer

● unsigned word

● word integer

● unsigned longword

● longword integer

For more information on corresponding data, see Appendix A, "Using Arrays with DECforms Software".

string

Specifies a character string in the MESSAGE clause.

General Rules
You can specify text strings, contents of form data items, or values associated with Form Manager
messages as messages to the operator wherever a message clause is allowed. The Form Manager
concatenates all items and displays them on the message panel, performing word wrapping as necessary.
The MESSAGE clause is ignored in PRINTER layouts.

167

Chapter 1. Independent Form Description Language

Examples
1. Function Response NEXT PANEL

 Message "Press F8 or PF1-C to cancel the update or "
 Message " F10 or CTRL/Z to update your personal record."
End Response

This defines the function response for NEXT PANELto be a message.

2. Field RANGE
 Line 1
 Column 10
 Range 0 Thru 10
 Message %RANGE_FAILS

This MESSAGE clause specifies that Form Manager error message “data invalid; enter a value within
the correct range” is displayed in the message panel if the value specified is not between 0 and 1.

3. Range low_value Thru high_value
 Message "More than " low_value " but not exceeding " high_value "."

This MESSAGE clause specifies a sentence with the values of two data items.

4. Require (G(**).A*2) < G(**).B
 Message "You must enter at least "G(**).A*2" units."

This MESSAGE clause shows a validation using a corresponding subscript to compare a number on
one side with another.

MESSAGE PANEL Declaration
MESSAGE PANEL Declaration — The MESSAGE PANEL declaration describes the mapping and
display characteristics of error and informational messages onto a viewport of the display device. You
can associate the message panel with a specific viewport or with the default message viewport. You can
also specify the display attributes of the message panel and its contents.

message-panel-declaration

Format

Where you specify this clause:

168

Chapter 1. Independent Form Description Language

Syntax Rules
panel-name

Specifies a name for the message panel.

VIEWPORT viewport-name

Specifies the viewport in which the message panel is displayed. For more information, see the
VIEWPORT declaration syntax section.

display-viewport-clause

Allows you to specify attributes that apply only to the viewport in which the panel is displayed. Display
viewport attributes declared at the panel level are merged with and take precedence over display
viewport attributes declared at the viewport and layout levels. For more information,see the DISPLAY
VIEWPORT clause syntax section.

display-clause

Specifies the inheritance of display attributes of the panel's contents. For more information on display
attributes, see the DISPLAY clause syntax section.

DISPLAYS integer-1

Specifies the number of message lines that are visible in a window layout if no viewport is declared for
the message panel. Integer-1 must be a positive, nonzero integer.

If a named viewport is specified for the message panel, the number of message lines displayed is based
upon the number specified for the viewport.

If DISPLAYS is omitted, the default is two message lines.

RETAINS integer-2

Specifies the maximum number of messages kept on the list for scrolling in a window layout. Integer-2
must be a positive integer.

If RETAINS is omitted, the default for window layouts is 100 messages.

General Rules
If you do not declare a message panel in your IFDL source file, a default message panel is created. For
character-cell layouts,the Form Manager uses a default message viewport one line high that is the width
of the layout display size and is on its lowest line.

For window layouts, the default message panel is DISPLAYS 2 RETAINS 100. The panel is displayed
at the line specified in the layout SIZE clause, starting at column 0 with a width equal to the columns
specified in the layout SIZE clause. For PRINTER layouts, a message panel can be declared, but the
Form Manager ignores it at run time.

To send messages from your application program or from an escape routine, use a record field named
MESSAGEPANEL in a SEND record message. The field name MESSAGE PANEL acts almost like
a keyword —the value of the MESSAGEPANEL record field is transferred to the message panel and
the message panel is displayed automatically when that record message is sent to the form. You declare
MESSAGEPANEL in form records, but not in form data.

169

Chapter 1. Independent Form Description Language

The DISPLAYS and RETAINS clauses are valid only in window layouts. You can define only one
message panel for a layout.

Example
Message Panel WARNING_PANEL
 Viewport MESSAGE_VP
End Panel

The message panel WARNING_PANEL is displayed in viewport MESSAGE_VP.

MESSAGE Response Step
MESSAGE Response Step — The MESSAGE response step lets you send messages to the message
panel.

message-response-step
Format

Where you specify this clause:

Syntax Rules
message-clause

The message that can be sent in the MESSAGE response step can be specified in one or more of the
following formats:

● Stored in a form data item

● As a string literal

● As the code for a message text string from the Form Manager

The MESSAGE response step is ignored in PRINTER layouts.

MESSAGE HELP

Causes the text string associated with the USE HELP clause for the current item to be displayed in the
message panel. This display happens by default when the operator presses the function key defined as the
HELP key. If no text string is associated with the USE HELP clause for the current item, or if there is no
current item, this response step is ignored.

Example
Message "There is no money in that account."

This example specifies that a MESSAGE response step put out the message “There is no money in that
account.” to the message panel.

170

Chapter 1. Independent Form Description Language

NUMERIC EXPRESSION
NUMERIC EXPRESSION — Numeric expressions let you perform arithmetic operations with integers
in the form.

numeric-expression

Format

numeric-term

arithmetic-op

Where you specify this clause:

Syntax Rules
+

Specifies the addition operator. Can be a leading-sign unary operator.

–

Specifies the subtraction operator.

numeric-term-1

Specifies a form data item, number, or expression as the first operand in an arithmetic operation.

arithmetic-op

Specifies a valid arithmetic operator. Valid arithmetic operators can be one of the following:

+
-
*

171

Chapter 1. Independent Form Description Language

/

numeric-term-2

Specifies a form data item, number, or expression as the second operand in an arithmetic operation.

integer

Specifies an integer constant used as an operand. Integer must be an integer; decimal point and E-
notation are not allowed.

data

Specifies a form data item that is one of the following types:

● INTEGER(n)

● UNSIGNED BYTE

● BYTE INTEGER

● UNSIGNED WORD

● WORD INTEGER

● UNSIGNED LONGWORD

● LONGWORD INTEGER

The value of data is the content of the form data item referenced by data. Data must be a scalar data
reference: a data item that is not in a multiply occurring group or a single occurrence of a data item in a
multiply occurring group.

corresponding-data

Specifies a data item that fulfills the following conditions:

● Declared in at least one multiply occurring group.

● At least one of the multiply occurring groups has a corresponding subscript specified.

Corresponding-data-1 must have one of the following data types:

● integer(n)

● unsigned byte

● byte integer

● unsigned word

● word integer

● unsigned longword

● longword integer

172

Chapter 1. Independent Form Description Language

For more information on corresponding data, see Appendix A, "Using Arrays with DECforms Software".

numeric-expression

Specifies an arithmetic expression whose value is determined by evaluating the expression.

*

Specifies the multiplication operator.

/

Specifies the division operator. Only integer division is allowed; any remainder resulting from a division
operation is lost.

General Rules
The value of a numeric expression is a numeric value determined by applying the operators to the
operands as specified.

Higher precedence operators are evaluated before lower precedence operators; equal precedence
operators are evaluated from left to right. Addition has equal precedence to subtraction, and lower
precedence than either multiplication or division. Multiplication and division have equal precedence.

An initial negative sign (-) negates the value of numeric-term-1. An initial positive sign (+) does make the
value of numeric-term-1 positive.

Numeric expressions with more than one operator require computing intermediate values as the
operators are applied. The data type of intermediate values are determined as follows:

1. The data class of the intermediate value is the same as that of the numeric terms used in the
generating expression.

2. The intermediate data type is unsigned if both operands are unsigned and the data type is signed
otherwise.

3. If one operand is character-coded and the other is not (it is binary or computational), the operand
that is not character coded is converted to a character-coded operand.

4. The precision of the intermediate value is the number of decimal digits kept (for character-coded
values) or the number of binary places kept. The precision of the intermediate value depends on the
data class:

a. For class float, the precision is the maximum precision of the two operands, and the range
(of exponent values) is the maximum range of the two operands, as determined by the
implementation.

b. For binary integer data type operands (long integer and short integer), first determine the
maximum precision of the two operands. If that precision is the maximum available for the class,
it is used as the result. If there is a higher precision available, the next higher precision is used.
For example, for combining two short integer values, the precision resulting is long integer, but
the result of combining two long integer values is long integer.

c. For all other integer class data types and for class decimal, the total number of digits of precision
of the intermediate value is 18. The number of integer part digits (digits to the left of the decimal

173

Chapter 1. Independent Form Description Language

point) and decimal part digits (digits to the right of the decimal point) is determined in an
implementor defined manner, subject to the rule: the number of digits for the integer part is the
maximum necessary (up to 18) to store the result, with any remaining digits allocated to the
decimal part.

Overflow during the evaluation of a numeric expression results in a fatal error and leaves the state of the
session undefined.

The result of division by zero is undefined.

Corresponding data references are legal only in WHEN clauses. For more information on the legal usage
of corresponding data references, see Appendix A, "Using Arrays with DECforms Software".

Example
Form Data
 A Unsigned Word
 B Integer(10)
 C Byte Integer
 Group G1 Occurs 10
 F1 Integer(5)
 D Longword Integer
 E Word Integer
 End Group
End Data
 .
 .
 .
LET A = (B + G1(3).D)/C

In this example, the value of the expression on the right is assigned to A.

OUTPUT PICTURE Clause
OUTPUT PICTURE Clause — The OUTPUT PICTURE clause specifies the output editing necessary
to display a field.

output-picture-clause
Format

Where you specify this clause:

Syntax Rules
picture-string-1

Specifies a Format 1, Format 2, or Format 3 picture string.

FOR DATE picture-string-2

174

Chapter 1. Independent Form Description Language

Specifies a Format 4 picture string. For more information on picture string formats, see the PICTURE
STRING syntax section.

General Rules
The OUTPUT PICTURE clause uses picture-string-1 or picture-string-2 to define the editing of a form
data item value to create a picture field image value.

If you do not specify an OUTPUT PICTURE clause, the input picture is used.

If you specify both an input picture and an output picture clause fora panel field, the picture strings must
be of the same length. The insertion literals specified in the input picture and the output picture must
occupy the same character positions in each picture.

Editing Rules, picture-string-1
The following picture characters can make up picture-string-1: X 9 . C , A R W S V E. Picture-string-1
is edited in the following manner:

1. An image string is created that contains the same number of 9, X, C, A, and E characters as in
picture-string-1.

2. Literals from picture-string-1 are inserted into the image string.

3. Sign and currency replacement characters are inserted into the image string at a position specified by
S and W in picture-string-1.

4. Leading or trailing zeros or blanks in the image string are replaced by a replacement character. The
extent of the replacement is specified by the R in picture-string-1.

The editing process can be further broken down, and occurs in the following order:

1. The starting value for the image string is created from the form data item value for numeric items
(Formats 2 and 3 picture strings) as follows:

a. The absolute value of the form data value is represented as a series of decimal digit characters
with an implicit decimal point.

b. Truncation occurs on the left and right of the decimal point and leading and trailing characters
are added as necessary.

c. The sign of the image string is the sign of the form data item, unless all the decimal digit
characters in the image string corresponding to nine positions in picture-string-1 are zero. If all
these positions are zero, the sign of the image string is considered zero, so the sign of the image
can be zero even if the form data item does not have a value of zero.

2. Sign invocation:

● The appearance of one or two S picture characters in a picture string means that a sign is to be
inserted in the image string.

● Either sign replacement editing can occur at the left or right end of the image string, or it can
specify the replacement of leading or trailing zeros with a specified sign and (possibly) spaces.

● If the S character appears to the left of the V (a picture with no V is equivalent to the same
picture with a V following the last picture character), the sign appears to the left of the value.

175

Chapter 1. Independent Form Description Language

If the S character appears to the right of the V, the sign appears to the right of the value. If the
sign clause is PARENTHESES, a left parenthesis character (() appears to the left of the value
and a right parenthesis character ()) appears to the right of the value; the S character can appear
on either side or both sides (left and right) of the V.

If the S character is missing from the left side, it is assumed to be to the immediate left of the
leftmost 9.

If the S character is missing from the right side, and if the picture contains a V, the S character is
assumed to be to the immediate right of the rightmost 9.

If the picture does not contain a V, the S character is to the right of the implied V that is placed
at the right of the picture.

● If picture-string-1 specifies an S and there is no applicable SIGN clause, SIGN MINUS is
assumed.

● If an S is to the left of all 9s and insertion literals, the sign is said to be fixed on the left.

If an S is to the right of all 9s and insertion literals and at the right of the decimal point (explicit
or implied), the sign is said to be fixed on the right.

If an S appears in any other position, the sign is said to float, meaning that the sign replaces any
leading zeros and insertion literals to the outside of the S (the side away from the V character).

3. Currency invocation:

● The appearance of a W picture character in a picture string means that a currency sign is to be
inserted into the image string.

● Currency replacement editing can occur at the left or right end of the image string, or it can
specify the replacement of leading or trailing zeros with a specified currency and (possibly)
spaces.

● If the W character appears to the left of the V (a picture with no V equals the same picture with
a V following the last picture character), the currency sign appears to the left of the value. If the
W character appears to the right of the V, the currency sign appears to the right of the value.

4. Sign and currency replacement editing:

a. Spaces are added first to the left and right ends of the image string to achieve the same number
of currency sign and sign characters that are inserted by the W and S characters in picture-
string-1. The Form Manager calculates the number of characters from the length of the
applicable CURRENCY and SIGN clauses.

b. For fixed replacement on the left, the currency symbol or sign appears in the item aligned
immediately to the left of the leading symbol 9 or insertion literal.

c. For floating replacement on the left, the floating currency symbol or sign appears in the
item aligned immediately to the left of the leftmost leading nonzero digit in the image string
corresponding to the symbol 9 or the position corresponding to symbol S or W, whichever
applies.

d. For fixed replacement on the right, the currency symbol or sign appears in the item aligned
immediately to the right of the trailing symbol 9 or insertion literal.

176

Chapter 1. Independent Form Description Language

e. For floating replacement on the right, the floating currency symbol or sign appears in the item
aligned immediately to the right of the rightmost trailing nonzero digit in the image string
corresponding to the symbol 9 or the position corresponding to the symbol S or W, whichever
applies.

f. If both S and W appear adjacent or with only an R separating them, their relative order in
picture-string-1 determines the relative order of their appearance in the image string. For
example,in the picture string 99SW9, the sign appears to the left of the currency symbol in the
image string.

5. The symbol R appearing to the left of the actual or assumed decimal point invokes leading
replacement. Replacement proceeds as follows:

• The starting point of the replacement is the leftmost character in the image string of the following
characters: the leading nonzero digit, the character that corresponds to the first 9 or insertion
literal to the right of the R in picture-string-1, or any inserted floating sign or currency sign.

• All zeros and insertion literals to the left of the actual or assumed decimal point are replaced by
the replacement literal character.

6. The symbol R appearing to the right of the decimal point invokes trailing replacement. Replacement
proceeds as follows:

• The starting point of the replacement is the rightmost character of the following characters: the
trailing nonzero digit, the character that corresponds to the first 9 or insertion literal to the left of
th eR in picture-string-1, or any inserted floating sign or currency sign.

• All zeros and insertion literals to the right of the decimal point are replaced by the replacement
literal character.

7. Floating point editing:

The 9 symbols to the left of the symbol E represent the fraction. The 9 symbols to the right of the
symbol E represent the exponent.

Editing Rules, picture-string-2
Picture-string-2 specifies the picture string for date or time display. The following picture characters can
make up picture-string-2:

A C D G H I L M N P Q R S U Y – / : , .

The editing rules for picture-string-2 are as follows:

● If the number of M characters cannot contain the month name on edit (at run time), the Form
Manager generates a nonfatal run-time error. Similarly, if the number of A characters cannot contain
the full abbreviated month string on edit, the Form Manager generates a nonfatal run-time error. The
same rule applies to the P character (the meridian indicator).

● The C picture character can be repeated as many as seven times. The most significant digits of the
fraction of seconds are displayed within the number of characters given.

● The formats DD, NN, HH, and GG are equivalent to DRD,NRN, HRH, and GRG with a replace
leading nonnumeric literal of “0” (zero). The II and SS substrings are also filled with zeros on the
left if necessary.

177

Chapter 1. Independent Form Description Language

● If the M substring or the A substring does not end with the Q picture character, the month or
abbreviated month name are padded on the right with blanks if necessary.

Examples
1. RX(32)

Replace Trailing "_"

This produces a 32-character field with replace trailing. By default,input into this field is left-justified
overstrike.

2. A'.'A'.'

This is an example of a two-character alphabetic field with insertion literals. This picture can be used
to enter a two-digit state code. By default, input into this field is left-justified overstrike.

3. 999'-'99'-'9999
Justification Left

This example specifies an overstrike numeric field that is left justified. This field allows input of a
standard social security number.

4. 9999R9
Replace Leading "*"
Justification Right

This example specifies a right-justified numeric field with replace leading check protection. By
default, input into this field would be right-justified insert mode.

5. S99,999.99
Justification Decimal

This example specifies a numeric field with a fixed leading sign. Numeric entry occurs in fixed
decimal format.

6. W99,99S9.99
Justification Decimal

This example specifies a numeric field with a fixed leading currency and a floating leading sign.

7. Justification Decimal

This example specifies a field that is right justified by default. To improve performance, it is
suggested that input into floating fields use JUSTIFICATION DECIMAL. This example specifies the
same picture as Example 6.

8. W99,999.99S
Positive Sign "DB"
Negative Sign "CR"
Justification Decimal

This example specifies a picture with a fixed leading currency sign and floating trailing currency
sign. In this case, the sign is two characters long and is in the trailing position.

9. W99,99S9.99S
Sign Parentheses
Justification Decimal

178

Chapter 1. Independent Form Description Language

This example specifies a picture with a fixed leading currency sign, a floating leading sign
(parenthesis) with a fixed trailing sign (parenthesis). The leading sign can float during operator input.

PANEL Declaration
PANEL Declaration — The PANEL declaration describes the mapping of certain visual elements of the
form onto a viewport of the display device.

panel-declaration

Format

panel-property

179

Chapter 1. Independent Form Description Language

Where you specify this clause:

Syntax Rules

panel-name

The name of the panel.

panel-property

Specifies the properties of the panel.

field-default-application

Specifies default attributes of fields,icons, and buttons on the panel. The field defaults remain in
effect until the end of the panel. For a detailed description of field default applications, see the FIELD
DEFAULT declaration syntax section.

literal-default-application

Specifies default characteristics of literals within the panel. The literal defaults remain in effect until the
end of the panel. For more information, see the LITERAL DEFAULT application syntax section.

group-declaration

Specifies a group of logically related fields, literals, icons,buttons, or groups within a panel. For more
information, see the GROUP declaration syntax section.

picture-field-declaration

Specifies the characteristics of a picture field within the panel. For more information, see the PICTURE
FIELD declaration syntax section.

text-field-declaration

Specifies the characteristics of a text field within the panel. For more information, see the TEXT FIELD
declaration syntax section.

slider-field-declaration (window layouts)

Specifies the characteristics of a slider field within the panel. For more information, see the SLIDER
FIELD declaration syntax section.

pushbutton-declaration (window layouts)

Specifies the characteristics of a button within the panel. For more information, see the PUSH BUTTON
declaration syntax section.

icon-declaration (character-cell layouts)

Specifies the characteristics of an icon within the panel. For more information, see the ICON declaration
syntax section.

180

Chapter 1. Independent Form Description Language

literal-declaration

Specifies a background object (a text string, a point, line segments, or a rectangle) as applied to the icon.
For more information, see the LITERAL declaration syntax section.

Syntax Rules, panel-property
VIEWPORT viewport-name

Specifies the viewport in which the panel is displayed. For character-cell layouts, all items in the panel
are specified with positions (lines and columns) that are relative to this viewport (not relative to the
absolute coordinates of the display). For window and PRINTER layouts, the position of an object is
relative to the position of the object's parent.

If an object is declared inside a group, its parent is the group. Otherwise, its parent is the panel that
contains it.

If no VIEWPORT clause is specified, the default viewport for the panel is the default viewport for the
layout. The size of the layout's default viewport is specified in the layout's SIZE clause. If the panel does
not have a VIEWPORT clause, it will use the default viewport, unless it is referenced in a DISPLAY
response step with another viewport.

For more information, see the VIEWPORT declaration syntax section.

display-viewport-clause

Allows you to specify attributes that apply only to the viewport in which the panel is displayed. Display
viewport attributes declared at the panel level are merged with and take precedence over display
viewport attributes declared at the viewport and layout levels. For more information, see the DISPLAY
VIEWPORT clause syntax section.

display-clause

Specifies the attributes that will be inherited by display attributes of the panel's contents. For more
information on display attributes, see the DISPLAY clause syntax section.

postdisplay-clause

Specifies what happens to the viewport and its contents when the Form Manager exits the panel. For
more information, see the POSTDISPLAY clause syntax section.

scroll-bar-clause (window layouts)

Specifies the scroll bars for the panel.

The scroll bar default for panels is SCROLLBAR BOTTOM DYNAMIC SCROLLBARRIGHT
DYNAMIC. This default specifies that scroll bars appear if the area covered by the objects in the panel
is larger than the size of the viewport in which the panel is displayed.

For more information, see the SCROLL BAR clause syntax.

entry-response-declaration

Specifies that the Form Manager performs a response when the current activation item is on a different
panel from the previous activation items.

181

Chapter 1. Independent Form Description Language

The entry response for the panel is interpreted during accept phase just before the Form Manager has
displayed the panel to allow input to an activation item on the panel.

There is no default entry response at the panel level. For more information, see the ENTRY RESPONSE
declaration.

exit-response-declaration

Specifies that the Form Manager performs a response when the Form Manager exits the panel. An exit
response for the panel is called when the Form Manager exits the last active item of the panel,and after
the last active item's exit response is called. There is no default response for exit response processing. For
more information, see the EXIT RESPONSE declaration.

function-response-declaration

Specifies that the Form Manager performs a response when the operator enters a function at the panel
level. A function response declared at this level is overridden by functions at the group, field, icon, and
button level. For more information, see the FUNCTION RESPONSE declaration.

validation-response-declaration

Specifies that the Form Manager performs a response when the operator has completed input into the
panel. For more information, see the VALIDATION RESPONSE declaration.

USE HELP message-clause

Specifies a message to be displayed in the message panel when the MESSAGE HELP response step is
executed and there are no USE HELP MESSAGE clauses at lower levels. For more information, see the
MESSAGE clause syntax section.

NO HELP MESSAGE

Specifies that no help message is displayed.

USE HELP PANEL panel-name

Specifies a help panel that is displayed and possibly activated when the Form Manager executes the
ENTER HELP response step and there are no USE HELP PANEL clauses associated with items on the
panel. If USE HELP PANEL is specified in a help panel, the Form Manager ignores the USE HELP
PANEL declaration at run time.

NO HELP PANEL

Specifies that no help panels are activated.

Example
Panel NAME_PANEL
 Literal Text Line 5 Column 5
 Value "Name: "
 End Literal
 Field NAME
 Line 5 Column 12
 End Field

182

Chapter 1. Independent Form Description Language

End Panel

In this example, a panel named NAME_PANEL containing a literal at line 5, column 5, is displayed. The
operator sees “Name:” on the display device. The next field specifies the contents of a form data item to
be displayed.

PATTERN Clause
PATTERN Clause — The PATTERN clause specifies the pattern to be used for the FILL attribute.
Only closed objects—viewports, closed polyline literals, and rectangles—within PRINTER and window
layouts can have a FILL pattern.

pattern-clause

Format

Where you specify this clause:

Syntax Rules
PATTERN BUILTIN pattern-name

Specifies the pattern to be used on a closed object with the FILL attribute in a PRINTER or window
layout. Pattern-namecan be one of the following:

BACKGROUND

Specifies a solid pattern consisting of the background color.

FOREGROUND

Specifies a solid pattern consisting of the foreground color.

SHADE LIGHT

Specifies a speckled pattern where 25% of the bits are displayed in the foreground color and the
remainder are displayed in the background color. SHADE LIGHT appears as follows:

SHADE MEDIUM

Specifies a speckled pattern where 50% of the bits are displayed in the foreground color and the
remainder are the background color. SHADE MEDIUM appears as follows:

183

Chapter 1. Independent Form Description Language

SHADE DARK

Specifies a speckled pattern where 75% of the bits are displayed in the foreground color and the
remainder are the background color. SHADE DARK appears as follows:

Example
Literal Polyline
 Line 4 Column 1
 Line 4 Column 20
 Line 12 Column 1
 Line 4 Column 1
 Display
 Fill Pattern Builtin Foreground
End Literal

This example specifies that a solid pattern of the foreground color is used to fill a triangular PRINTER
polyline literal.

PICTURE FIELD Declaration
PICTURE FIELD Declaration — The PICTURE FIELD declaration specifies the characteristics of a
form data item as it is displayed on a panel.

picture-field-declaration
Format

184

Chapter 1. Independent Form Description Language

picture-field-description-entry

Where you specify this clause:

Syntax Rules

field

The name of the field. This name must match a form data item.

location-clause

Specifies the vertical and horizontal position of the picture field. In character-cell layouts, if you do not
specify the LOCATION clause for a picture field, the LOCATION clause of the current field default is
used. If no field default is currently in effect, NEXT LINE, SAME COLUMN is used.

You must specify a LOCATION clause for window and PRINTER layouts. For more information, see
the LOCATION clause syntax section.

partial-extent-clause (PRINTER and window layouts)

Specifies the size of the picture field. The default size of a picture field is a height tall enough for one
row of text and wide enough for the picture string. For more information, see the EXTENT clause syntax
section.

field-default-application

185

Chapter 1. Independent Form Description Language

Specifies the application of a previously defined field default. For more information,see the FIELD
DEFAULT application syntax section.

picture-field-description-entry

Specifies the display,validation, and processing attributes for a picture field.

copy-statement-format-2

You use the COPY statement to copy information from a Oracle CDD/Repository field into a field in
your IFDL source file.

item-description-entry

Specifies the display and processing attributes for the picture field.

field-validation-entry

Specifies the validation attributes for the picture field.

AUTOSKIP (character-cell layouts)

Specifies that a keystroke resulting in a full field also causes an automatic NEXT ITEM.

NO AUTOSKIP (character-cell layouts)

Specifies that no automatic NEXT ITEM is to be performed.

output-picture-clause

Specifies the picture for output editing. For more information, see the OUTPUT PICTURE syntax
section.

editing-clause

Specifies how output-picture-clause is edited. For more information, see the EDITING clause syntax
section.

input-picture-clause

States what is acceptable input for the picture field. For more information, see the INPUT PICTURE
clause syntax section.

JUSTIFICATION LEFT (character-cell and window layouts)

Declares that operator input begins at the leftmost data position of a picture field. The default insertion
mode for JUSTIFICATION LEFT in character-cell layouts is overstrike. When the picture field is in
overstrike mode, the characters in the field are typed over when new characters are entered into the
picture field.

When the insertion mode is set to insert, the character at the cursor position and the characters to
the right of the cursor are shifted right when a data character is inserted and shifted left when a data
character is deleted. The initial position for the cursor in a left-justified field in insert or overstrike mode
is the leftmost data position.

186

Chapter 1. Independent Form Description Language

JUSTIFICATION LEFT is the default justification for Format 1 picture strings and Format 2 picture
strings that do not contain a decimal point.

JUSTIFICATION LEFT is the default justification for window layouts.

JUSTIFICATION RIGHT (character-cell layouts)

Declares that operator input begins at the rightmost data position of a picture field. The default insertion
mode for JUSTIFICATION RIGHT is insert. When the picture field is in insert mode, the characters
to the left of the cursor are shifted left when a data character is inserted and shifted right when a data
character is deleted. The initial position for the cursor in a right-justified field is to the right of the
rightmost data position.

Window layouts do not support JUSTIFICATION RIGHT.

JUSTIFICATION DECIMAL (character-cell layouts)

Causes the whole part of the number to be entered in right-justified insert mode to the left of the decimal
point and the fractional part of the number to be entered in left-justified overstrike mode to the right of
the decimal point. The initial position for the text cursor is on the decimal point.

JUSTIFICATION DECIMAL is the default for Format 2 picture strings that have a decimal point.

UPPERCASE

Changes operator input to uppercase. In character-cell layouts, the conversion is done as the input is
typed. In window layouts, the conversion is done when the operator exits the field.

MIXED CASE

Accepts operator input as entered.

MINIMUM LENGTH integer

Specifies integer as the number of nondefault characters that must be in the field value for the picture
field to be considered valid. Default characters for nonnumeric fields are leading or trailing blanks; for
numeric fields default characters are leading zeros before the decimal point and trailing zeros after the
decimal point. Leading or trailing replacement characters count as zeros or blanks.

message-clause

Specifies the message to be displayed if the operator tries to enter fewer characters than the number
specified in the MINIMUM LENGTH clause. You may specify a form data item, a text string, or a code
for a message text string from the Form Manager as the message text. For more information, see the
MESSAGE clause syntax section.

NO MINIMUM LENGTH

Specifies that fields that contain all nondefault characters (blanks or zeros) are valid. For example, you
may specify zeros in a nonnumeric field.

OUTPUT string WHEN conditional-expression

Specifies that this picture field bypasses output editing when certain conditions are true. If conditional-
expression is true, string, a string, is displayed in the following fashion:

187

Chapter 1. Independent Form Description Language

● If string is the same length as the form field image value, no further output editing is performed.
String is used with no insertion literal editing and no replacement editing.

● If string is shorter than the field image value would be if full editing took place, string is extended on
the right with spaces to the length of the field image value.

● If string is longer than the field image value would be if full editing took place, string is truncated on
the right to the length of the field image value.

If more than one OUTPUT WHEN clause appears, conditional-expression is evaluated for each, in order
of declaration, until one evaluated as true is found, in which case the corresponding string is used as
specified previously.

If an OUTPUT WHEN clause appears in a field declaration, all OUTPUTWHEN clauses specified in an
applicable field default application are ignored. For more information on conditional expressions, see the
CONDITIONAL EXPRESSION syntax section.

NO OUTPUT WHEN

Specifies that output editing continues according to the editing clause applicable to the field.

General Rules
For character-cell layouts,the area allotted for the field's image value by the LOCATION clause must be
compatible with the value to be displayed in that area. The length of the field's image value implied by
the picture clauses must be less than or equal to the maximum number of characters that can be written
into this area. For window and PRINTER layouts, the length of a field is determined by the field picture
and its EXTENT clause.

If you do not specify a picture field description entry, the current field default characteristics determine
field characteristics. Any field characteristic that is different from the current field defaults holds for the
current field specification only.

Negative picture field default entries (specified by NO or NOT in front of the entry) allow you to
override currently active defaults set by the FIELD DEFAULT application. Override picture field
description entries that do not have a negative item description entry by specifying an alternate attribute.

Panel fields whose data items have DATE CURRENT, TIME, CURRENT, and ADT CURRENT data
types default to the NO DATA INPUT description entry.

If you specify both an input picture and an output picture clause fora panel field, the picture strings must
be of the same length. The insertion literals specified in the input picture and the output picture must
occupy the same character positions in each picture.

Defaults
If a field default application is not in effect, the following are the field defaults.

LOCATION Clause

For character-cell layouts, the LOCATION clause specifies that the field display starts at the next line,
and the same column. You cannot default a location in a window or PRINTER layout.

FONT Declaration

188

Chapter 1. Independent Form Description Language

For character-cell layouts,the character set defaults to PRIVATE_USER_PREFERENCE and the font
size defaults to SINGLE.

For Motif layouts, the character set and font defaults are supplied by the Motif toolkit. For PRINTER
layouts, the character set and font default is FONT FAMILY COURIER STYLE ROMAN WEIGHT
MEDIUM SIZE 12.

BACKGROUND COLOR UNCHANGED

The background color remains as set by the user.

FOREGROUND COLOR UNCHANGED

The foreground color remains as set by the user.

OUTPUT PICTURE

Output-picture and input-picture are inferred in one of the following ways:

● If the output picture is present, the input picture is inferred from the output picture.

● If the input picture is present, the output picture is inferred from the input picture.

● If neither picture appears, the default picture is inferred from the data type of the associated form
data item.

Table 1.8, "Default Pictures According to Data Type" shows default pictures according to data type.
The characters in the right column are picture characters that make up input and output pictures.

Table 1.8. Default Pictures According to Data Type

Data Type Default Picture1

DATE DD-AAA-YYYY
TIME GG:II
ADT DD-AAA-YYYY ’ ’GG:II:SS.CC
CHARACTER (integer-n) X(integer-n)
CHARACTER (integer-n) VARYING X(integer-n)
CHARACTER (integer-n) NULL
TERMINATED

X(integer-n*–*1)

DATETIME (integer-n) DD-AAA-YYYY ’ ’GG:II2

INTEGER (integer-n) S9(integer-n)
DECIMAL (integer-n, integer-y) S9(integer-n).9(integer-y)
FLOAT (integer-n) S.9(integer-n)ES99
FLOAT (integer-n, integer-y) S.9(integer-n)ES9(integer-y)
UNSIGNED BYTE 9(3)
BYTE INTEGER S9(3)
UNSIGNED WORD 9(5)
WORD INTEGER S9(5)

189

Chapter 1. Independent Form Description Language

Data Type Default Picture1

UNSIGNED LONGWORD 9(10)
LONGWORD INTEGER S9(10)
QUADWORD INTEGER S9(19)
FFLOATING S9.9(7)ES99
GFLOATING S9.9(15)ES999
DFLOATING S9.9(16)ES99
HFLOATING S9.9(33)ES9999
SFLOATING S9.9(6)ES99
TFLOATING S9.9(17)ES999
XFLOATING S9.9(33)ES9999
SHORT FLOAT S9.9(6)ES99
LONG FLOAT S9.9(17)ES999

1In these picture strings, a comma replaces the period character whenever DECIMAL POINT IS COMMA is specified except in the case of the
ADT data type.
2In these picture strings, precision is relative to integer-n. For more information, see the DATETIME DATA clause.

Examples

1. Field CITY
 Same Line Column 16
 Output Picture X(20)
 Display Underlined
End Field

This example specifies a picture field named CITY. The picture field is displayed on the same line as
the previously declared field, literal, or icon at column 16, and the picture field is underlined.

2. Field STATE
 Line 10 Column 16
 Output Picture X(2)
 Display Underlined
 Uppercase
 Minimum Length 2
 Message "State field must be two letters"
 Search STATE_LIST
 Message "Must be one of the fifty states or DC"
End Field

This example specifies a picture field named STATE. The picture field is displayed on line 10, at
column 16, and the picture field is underlined. Input to the picture field must match an item on a
list called STATE_LIST, with a minimum length of two characters. Input to the field is converted to
uppercase.

3. Field SHOWY_FIELD
 Line 2
 Column 1
 Active Highlight Bold
 Output "Oops, you definitely messed up!"
 When a > b
End Field

190

Chapter 1. Independent Form Description Language

SHOWY_FIELD is bolded when the operator is allowed to enter input to this field. The string
“Oops, you definitely messed up!”is displayed when a > b (a is greater than b).

4. Field PICTURE_FIELD
 Line 6
 Column 1
 Output Picture aa'-'aa'/'cccccc
End Field

Field PICTURE_FIELD specifies a Format 1 picture string.

PICTURE STRING
PICTURE STRING — The Picture String provides the format by which a form data item value is edited
to create a picture field's image value. It also provides the format by which the picture field's image value
is edited (the editing characters are removed from the data item) to create the form data item.

picture-string

Format

Format 1

Format 2

integer-part

decimal-part

Format 3

191

Chapter 1. Independent Form Description Language

Format 4

date-punc

Where you specify this clause:

Syntax Rules: Formats 1, 2, and 3
A

Represents a character position that contains only alphabetic characters (a to z, A to Z, accented letters
for those character sets that support them, and space/blank) characters from the device's character
set. Each A is counted in the size of the picture. An A can be followed by a positive integer within
parentheses, specifying that the A occurs that many times in the string.

192

Chapter 1. Independent Form Description Language

The Form Manager assumes that the character in form data that corresponds to A is a printable
character.

C

Represents a character position that contains only alphanumeric characters (a to z, A to Z, accented
letters for those character sets that support them, the numbers 0 to 9, and space/blank) from the device's
character set. Each C is counted in the size of the picture. A C can be followed by a positive integer
within parentheses, specifying that the C occurs that many times in the string.

The Form Manager assumes that the character in form data that corresponds to C is a printable character.

R

Indicates the location of leading or trailing zeros and where insertion literals are replaced. If the R
appears before the V, replacement occurs before the R; if the R appears after the V, replacement occurs
after the R. If no V is present, replacement occurs before the R. The R does not represent a character
position and, therefore, is not counted in the size of the picture. Although only one R is allowed in
Format 1 picture strings, it can appear anywhere in the string.

If the picture string specifies an R and there is no applicable REPLACE LEADING or REPLACE
TRAILING clause, a space character is used.

All zeros and insertion literals to the left or right of R are replaced by the replacement literal character.

string

A string that is enclosed in quotation marks.

X

Represents a character position that contains any allowable character from the device's character
set. Each X is counted in the size of the picture. An X can be followed by a positive integer within
parentheses, specifying that the X occurs that many times in the string.

The Form Manager assumes that the character in form data that corresponds to X is a printable
character.

9

Represents a digit position that contains a numeric character and is counted in the size of the picture. A 9
can be followed by a positive integer within parentheses, specifying that the 9 occurs that many times in
the string.

integer-part

Specifies how the integer portion of the data item will be represented.

S

Indicates that a sign indicator should be present in the edited string. The actual position of the sign is
specified by the location of the S with respect to the other characters in the picture string, and can be
either leading or trailing, fixed or floating, as specified under the OUTPUT PICTURE clause.

The S represents a number of character positions in the size of the item depending on the size of the
applicable SIGN clause. You can have only one S in the picture string, unless you are using parentheses
in the sign.

193

Chapter 1. Independent Form Description Language

W

Indicates that a currency symbol should be present in the edited string. The actual position of the
currency symbol is specified by the location of the W with respect to the other characters in the picture
string, and can be leading or trailing, fixed or floating, as specified under the OUTPUT PICTURE
clause. The W represents a number of character positions in the size of the picture depending on the size
of the applicable CURRENCY clause.

If the picture string specifies a W and there is no applicable CURRENCY clause, CURRENCY IS $ is
assumed.

If a W is to the left of all 9s and insertion literals, the currency sign is said to be fixed on the left.

If a W is to the right of all 9s and insertion literals and at the right of the decimal point (explicit or
implied), the currency sign is said to be fixed on the right.

If a W appears in any other position, the currency sign is said to float:the currency sign replaces any
leading zeros and insertion literals to the outside of the W (the side away from the V character).

After insertion of a floating sign or currency symbol, lead or repeating replacement editing is performed
at the location of the inserted sign/currency characters. If no R character appears, the replacement
character used is space, regardless of what the applicable REPLACE clause specifies.

decimal-part

Specifies the part of the picture string containing the decimal point.

V

Indicates the location of the assumed decimal point. The V does not represent a character position and,
therefore, is not counted in the size of the item. When the assumed decimal point is to the right of the
rightmost symbol in the string representing a digit position, the V is redundant.

dec

Indicates the character used as decimal point. If the applicable decimal sign phrase is a period, this
character is a period and is equivalent to V ’. ’.If the applicable decimal sign clause is a comma, this
character is a comma and is equivalent to V ’, ’.

’

The single quotation mark delimits literals that are contained within the character string. Each character
in the literal is counted in the size of the picture, but the quotation marks are not counted.

()

The parentheses symbols enclose a positive integer representing the number of consecutive occurrences
of the preceding symbol (either 9, X, C, or A) contained in the character string. The parentheses are not
counted in the size of the picture.

E

The E indicates that the symbols that follow to the right in the character string represent the exponent of
a floating-point numeric data item. When used in the character string of a floating-point numeric data
item, the E represents the character position into which the character E is inserted and is counted in the
size of the picture.

194

Chapter 1. Independent Form Description Language

Syntax Rules: Format 4
D

Marks the position of the day of month of the date. The digits of the day are displayed in this portion
of the date field. If the day value contains only one digit (for example, the fifth day of the month), the
day portion of the date field is filled with zeros by default. You can use the R picture character to specify
blank fill or the Q picture character to specify no fill characters.

R

Specifies the replace-leading designator,as in Format 1 and 2 picture strings. For date/time picture
strings, the replace-leading character can be either zero (0) or blank ().

Q

Used in a substring to indicate that all blanks that are not explicit date punctuators should be removed
from the substring. The remaining characters are then left-justified. Because the Q does not represent a
character position, it is not counted in the size of the picture.

When the Q character is used in any substring of the picture string, the operator is responsible for
reentering any insertion literals that have been deleted from the original string.

If you specify a Q on input, the user must enter all insertion literals to the right of the first Q character.
The Form Manager does not validate the date when you exit the field.

U

Causes all characters in the substring that are to the right of the U character to be displayed in uppercase,
if the specified language allows. Because U does not represent a character position, it is not counted in
the size of the picture.

Input validation is not case sensitive, regardless of the U characters in the picture string.

When no L or U is used, the defaults are capitalized month: UML{M} … or abbreviated month:
UAL{A} … and uppercase meridian indicator U{P} … .

L

Causes all characters in the substring that are to the right of the L character to be displayed in lowercase,
if the language specified allows. Because L does not represent a character position, it is not counted in
the size of the picture.

Input validation is not case sensitive, regardless of the L characters in the picture string.

When no L or U is used, the defaults are capitalized month: UML{M} … or abbreviated month
UAL{A} ... and uppercase meridian indicator U{P} … .

M

Marks the position of the name of the month. The characters of the name of the month are displayed in
this portion of the date field. If the number of positions in the name of the month portion is insufficient,
the leftmost characters are displayed and an informational message is output to the trace file.

Any unique designation of the month is accepted in the M substring on input. You must enter enough
letters to identify the month uniquely for the given language, but you need not enter as many characters
as the picture designates.

195

Chapter 1. Independent Form Description Language

An M can be followed by a positive integer within parentheses specifying that the M occurs that many
times in the string.

On OpenVMS systems, you can specify foreign language month names. At run time the Form Manager
uses OpenVMS date/time logical names to get language-specific month names for input and output.

A

Designates the location and number of character positions reserved for the abbreviated month name
string. If the number of picture characters of the abbreviated month is not sufficient to contain the
abbreviated month at run time, the leftmost characters are displayed and an informational message is
output to the trace file.

Any unique designation of the abbreviated month is accepted in the A substring on input. You must enter
enough letters to identify the abbreviated month uniquely for the given language, but you need not enter
as many characters as the picture designates.

An A can be followed by a positive integer within parentheses specifying that the A occurs that many
times in the string.

On OpenVMS systems, you can specify abbreviated foreign language month names. At run time the
Form Manager uses OpenVMS date/time logical names to get language-specific abbreviated month
names for input and output.

N

Marks the position of the number of the month. The digits of the number of the month are displayed
in this portion of the date field. If the value contains only one digit (for example, the sixth month), the
number of the month portion of the date field is filled with zeros by default. You can use the R picture
character to specify blank fill or the Q picture character to specify no fill characters.

Y

This picture character marks the position of the year. The digits of the year are displayed in this portion
of the date field. If the number of positions in the year portion is insufficient, the least significant digits
are displayed. Y(4) is recommended.

H

Marks the position of the hour of a 12-hour clock. The digits of the hour are displayed in this portion
of the time field. If the hour value contains only one digit (for example, the fourth hour of the day),
the hour portion of the time field is filled with zeros by default. You can use the R picture character to
specify blank fill or the Q picture character to specify no fill characters.

G

Marks the position of the hour of a 24-hour clock. The digits of the hour are displayed in this portion
of the time field. If the hour value contains only one digit (for example, the fourth hour of the day),
the hour portion of the time field is filled with zeros by default. You can use the R picture character to
specify blank fill or the Q picture character to specify no fill characters.

I

Marks the position of the minute of the time. The digits of the minute are displayed in this portion of the
time field. This field is filled with zeros when necessary.

S

196

Chapter 1. Independent Form Description Language

This picture character marks the position of the seconds of the time. The digits of the seconds are
displayed in this portion of the time field. This field is filled with zeros when necessary.

C

Marks the position of the fractions of the seconds of the time. The digits of the fractions of seconds are
displayed in this portion of the time field. If the number of positions in the fractions of seconds portion
is insufficient, the most significant fractions of seconds digits are displayed. This field is filled with zeros
when necessary.

P

Marks the position of the meridian (for example, AM/PM) portion of the time. If the number of
positions in the meridian portion is insufficient, only the leftmost characters are displayed. If this picture
character is used, the 12-hour clock character, H, must be used.

A P can be followed by a positive integer within parentheses specifying that the P occurs that many
times in the string.

On OpenVMS systems, you can specify foreign language meridian names. At run time the Form
Manager uses OpenVMS date/time logical names to get language-specific meridian names for input and
output.

’

The single quotation mark delimits literals that are contained within the character string. Each character
in the literal is counted in the size of the picture, but the quotation marks are not counted.

()

The parentheses symbols enclose a positive integer representing the number of consecutive occurrences
of the preceding symbol (either M, A, or P) contained in the character string. The parentheses are not
counted in the size of the picture.

General Rules: All Formats
A picture string must be complete on a single source line; it cannot be continued on a subsequent source
line.

Default output and input pictures for fields according to data type are listed in Table 1.8, "Default
Pictures According to Data Type" in the PICTURE FIELD declaration syntax section. If you specify both
an INPUT PICTURE clause and an OUTPUTPICTURE clause and they are not identical, they must
satisfy the following restrictions:

● The total length of the field defined by each picture string must be the same.

● Insertion characters in the INPUT PICTURE picture string must be aligned with insertion characters
in the OUTPUT PICTURE picture string.

● Data characters in the INPUT PICTURE picture string must have the same position as data
characters in the OUTPUT PICTURE picture string.

● W and S must be the same in both picture strings and must appear on the same side of a decimal
point, if one exists. Currency symbols and signs are permitted to float in one picture string and be
fixed in the other picture string.

197

Chapter 1. Independent Form Description Language

The intent of these restrictions is that picture characters corresponding to data entry characters are the
only characters that can differ in corresponding input and output pictures.

You cannot use double quotation marks to delimit strings in pictures.

The length of the input picture string must equal the length of the output picture string after insertion
literals, currency, and sign characters are added. This length, which is the number of characters displayed
for the picture field, is calculated by adding:

a. The number of 9, X, A, C, and E characters for Formats 1, 2, and 3 picture strings.

b. The number of D, M, A, N, Y, H, G, I, S, C, and P characters for Format 4 picture strings.

c. The size of the insertion literals in the picture string.

d. The size of the applicable currency and sign phrases that are invoked by W and S characters for
Format 2 picture strings.

Picture strings cannot include form feeds or comments. Picture strings can contain spaces and tabs if
they are included as nonnumeric literals.

General Rules: Format 1
A picture string is Format 1 if it contains any of the picture characters X, A, or C. You must have at least
one X, 9, A, or C picture character. You can have only one R.

General Rules: Format 2
At least one symbol 9 must be specified.

Only one W character can appear in a picture string.

The symbols R and S may appear twice only if a decimal point or V character appears between them.

Two S characters can appear in a picture string only if SIGN PARENTHESES is used.

The contents of strings are restricted based on the applicable editing clauses as follows:

● If the character S appears in the picture string, string cannot contain the characters plus (+), minus
(–), left parenthesis ((), or right parenthesis ()). A string cannot contain a SIGN POSITIVE,
NEGATIVE, or ZERO strings, but space characters are allowed.

● String cannot contain digits.

● String cannot contain the current CURRENCY literal if the picture string contains a W character. A
string may not contain the replacement character if the picture string contains an R character.

General Rules: Format 3
You must specify at least one symbol 9 in the fraction.

The contents of strings are restricted based on the applicable editing clauses as follows:

● String cannot contain the characters plus (+), minus (-), left parenthesis ((), or right parenthesis
()), if the character S appears in the picture string. A string cannot contain the applicable SIGN
POSITIVE, NEGATIVE, or ZERO strings, with the exception that the space character is allowed.

● String cannot contain digits.

198

Chapter 1. Independent Form Description Language

● String cannot contain the exponentiation character e or E.

General Rules: Format 4
Date/time pictures allow you to leave date/time validation to the Form Manager. You can use date/time
pictures to input or output dates and times in a variety of formats and languages.

You can associate a date/time picture with any of the following form data types:

ADT
CHARACTER(n)
DATE
DATETIME(n)
INTEGER(n)
INTEGER PACKED(n)
TIME

Fields with data type DATE, TIME, ADT, and DATETIME can use picture string Format 4 only.

You can use all possible Format 4 picture combinations for input or output pictures with ADT and
DATETIME data types. You can use all possible Format 4 picture combinations for input pictures with
CHARACTER data types.

You can use only the numeric picture characters (D, N, Y, H, G, I, S, C) plus any desired insertion
literals (for either the output or input picture) when they are associated with the form data in INTEGER
or INTEGER PACKED format. If the INTEGER or INTEGER PACKED data type is not large enough
to contain the converted date, a nonfatal run-time error is generated.

On input, characters for the A, M, and P picture characters must have the correct diacritical marks. For
example, if the chosen language is French, the string “février ” would be accepted as the second month,
but “fevrier” would not.

Note

If languages other than English are desired on OpenVMS systems, the system manager must
create the appropriate logical name definitions. For further information on defining system logical
names, see the OpenVMS documentation on date and time manipulation in the Run-Time Library
documentation. DECforms uses the language defined by the logical name SYS$LANGUAGE or English
if SYS$LANGUAGE is undefined.

Table 1.9, "Format 4 Picture Characters" summarizes the Format 4 picture characters.

Table 1.9. Format 4 Picture Characters

Date Picture
Character

Description

A Characters in abbreviated month name
C Digits of fractions of seconds
D Digits of day of month
G Digits of 24-hour clock
H Digits of 12-hour clock
I Digits of minutes

199

Chapter 1. Independent Form Description Language

Date Picture
Character

Description

L Lowercase designator
M Characters of month name
N Digits of month number
P Characters of meridian (a.m./p.m.)
Q Remove blanks
R Replace leading zeros
S Digits of seconds (not hundredths)
U Uppercase designator
Y Digits of year
- Special insertion literal hyphen

no quotation marks necessary
/ Special insertion literal slash

no quotation marks necessary
: Special insertion literal colon

no quotation marks necessary
, Special insertion literal comma

no quotation marks necessary
. Special insertion literal period

no quotation marks necessary

Examples
1. HH:II:SS:CC' 'PP

Specifies a picture string for ADT, DATETIME, TIME, or CHARACTER input pictures. This
picture string is not permissible for DATE, INTEGER, or INTEGER PACKED input pictures.

2. DD-AAA-YYYY

Specifies a picture string for ADT, DATETIME, DATE, or CHARACTER input pictures. This
picture string is not permissible for TIME, INTEGER, or INTEGER PACKED input pictures.

3. GG:II

Specifies a picture string for ADT, DATETIME, TIME, CHARACTER, INTEGER, or INTEGER
PACKED input pictures. This picture string is not permissible for DATE input pictures.

4. M(9)Q' 'DDQ,' 'YYYY

Specifies a picture string for ADT, DATE, DATETIME, or CHARACTER input pictures. This
picture string is not permissible for TIME, INTEGER, or INTEGER PACKED input pictures.

POSITION Response Step
POSITION Response Step — The POSITION response step specifies the next activation item to be
processed when processing for the current activation item is complete.

200

Chapter 1. Independent Form Description Language

position-response-step
Format

Where you specify this clause:

Syntax Rules
POSITION [IMMEDIATE] TO

Specifies the activation item to be accessed after the current activation item has successfully completed
all processing. If the IMMEDIATE clause is specified, no further validation is done on the original
current activation item, and the item specified by the POSITION clause unconditionally becomes the
current activation item.

If the IMMEDIATE clause is not specified, the item specified becomes the current activation item only
if the current activation item passes validation.

When no item on the activation list corresponds to the target specified by the POSITION response step,
no processing takes place (that is, the previously specified next activation item remains the same). Any
items that are PROTECTED or PROTECTED WHEN are treated as if they are not on the activation list.

POSITION response steps are ignored in PRINTER layouts.

201

Chapter 1. Independent Form Description Language

Otherwise, the targets of the POSITION response step are as follows:

BUTTON button ON panel-name-1 (window layouts)

Specifies that button on panel-name-1 becomes the next activation item.

You cannot specify buttons for character-cell layouts.

CURRENT ITEM

Specifies the currently active field, icon, or button. Positioning to CURRENT ITEM restarts input
processing for the item, after processing for the current item is complete.

DOWN ITEM

Specifies the active item geographically below and closest to the current item on the current panel.

DOWN OCCURRENCE

Specifies an occurrence of the item with a subscript at least one greater than the current subscript. If the
item so specified is not currently displayed (in the case of a scrolled group), the Form Manager scrolls
the group so that the item is displayed.

DOWN OCCURRENCE is meaningful only when the active item is part of a vertically occurring
group. If the current activation item is not in a multiply occurring group, the POSITION response step is
ignored.

If UNSEEN appears, it is equivalent to specifying the next active occurrence of the item not yet displayed
on the display device.

If there are no remaining occurrences of the item on the activation list in the direction specified, no new
active item is specified.

If there is at least one occurrence of the item,but none are unseen, the Form Manager selects the furthest
such occurrence on the activation list—the occurrence closest to the end.

EXIT GROUP NEXT

Specifies the first item on the activation list that does not belong to the group that contains the currently
active item. The Form Manager scans the list forward for EXIT GROUP NEXT, starting at the current
activation item.

EXIT GROUP PREVIOUS

Specifies the first item on the activation list that does not belong to the group that does not contain the
currently active item. The Form Manager scans the list backward for EXIT GROUP PREVIOUS starting
at the current activation item.

FIELD field ON panel-name-2

Specifies that field on panel-name-2 becomes the next activation item.

FIRST ITEM

Specifies the first field, icon, button,or wait on the activation list.

FIRST PANEL

202

Chapter 1. Independent Form Description Language

Specifies the first active item of the first panel on the activation list. If that item is a wait, the wait is the
new activation item. If that item is a field, icon, or button,the new activation item is that field, icon, or
button.

FOCUS CHANGE (window layouts)

Specifies the field or button where the locator is,if the locator caused the focus change, or if the item that
receives focus is the result of a window navigational operation. POSITION [IMMEDIATE] TO FOCUS
CHANGE is allowed only in the FOCUS CHANGE function response.

GROUP group ON panel-name-3

Specifies the first active item in the named group on the activation list.

ICON icon ON panel-name-4 (character-cell layouts)

Specifies that icon on panel-name-4 becomes the next activation item.

LAST ITEM

Specifies the last field, icon, button, or wait on the activation list.

LAST PANEL

Specifies the last active item of the last panel on the activation list. If that item is a wait, the wait is the
new activation item. If that item is a field, icon, or button, the new activation item is the field, icon, or
button on that panel.

LEFT ITEM

Specifies the active item geographically to the left and closest to the current item on the current panel.

LEFT OCCURRENCE

Specifies an occurrence of an item with a subscript at least one less than the current subscript. LEFT
OCCURRENCE is meaningful only when the active item is part of a horizontally occurring group. If the
current activation item is not in a multiply occurring group, the POSITION response step is ignored.

If UNSEEN appears, it is equivalent to specifying the next active occurrence of the item not yet displayed
on the display device.

If there are no remaining occurrences of the item on the activation list in the direction specified, no new
active item is specified.

If there is at least one occurrence of the item,but none is unseen, the Form Manager positions itself to
the furthest such occurrence on the activation list—the occurrence closest to the left.

NEXT ITEM

Specifies the next field,icon, button,or wait on the activation list,relative to the current activation item.

NEXT PANEL

Specifies the first active item of the first panel on the activation list that belongs to a panel different from
the panel of the currently active item. The Form Manager scans the list forward to determine the next
panel, starting at the current activation item.

203

Chapter 1. Independent Form Description Language

PANEL panel-name-5

Specifies the first item of panel-name-5 that is on the activation list.

PREVIOUS ITEM

Specifies the previous field, icon, button, or wait on the activation list, relative to the current activation
item.

PREVIOUS PANEL

Specifies the first active item of the first panel on the activation list that belongs to a panel different
from the panel of the currently active item. The Form Manager scans the list backward to determine the
previous panel, starting at the current activation item.

RIGHT ITEM

Specifies the active item to the right and closest to the current item on the current panel.

RIGHT OCCURRENCE

Specifies an occurrence of an item with a subscript at least one more than the current subscript. RIGHT
OCCURRENCE is meaningful only when the active item is part of a horizontally occurring group. If the
current activation item is not in a multiply occurring group, the POSITION response step is ignored.

If UNSEEN appears, it is equivalent to specifying the next active occurrence of the item not yet displayed
on the display device.

If there are no remaining occurrences of the item on the activation list in the direction specified, no new
active item is specified.

If there is at least one occurrence of the item,but none is unseen, the Form Manager selects the furthest
such occurrence on the activation list—the occurrence closest to the right.

UP ITEM

Specifies the active item geographically above and closest to the current item on the current panel.

UP OCCURRENCE

Specifies an occurrence of the item with a subscript at least one less than the current subscript. If the
item so specified is not currently displayed (in the case of a scrolled group), the Form Manager scrolls
the group so that the item is displayed.

UP OCCURRENCE is meaningful only when the active item is part of a vertically occurring group. If
the current activation item is not in a multiply occurring group, the POSITION response step is ignored.

If UNSEEN appears, it is equivalent to specifying the next active occurrence of the item not yet displayed
on the display device.

If there are no remaining occurrences of the item on the activation list in the direction specified, no new
activeitem is specified.

If there is at least one occurrence of the item,but none is unseen, the Form Manager selects the furthest
such occurrence on the activation list—the occurrence closest to the front.

WAIT (character-cell layouts)

204

Chapter 1. Independent Form Description Language

Specifies a wait item not associated with any panel.

WAIT ON panel-name-6 (character-cell layouts)

Specifies the wait item on panel-name-6.

General Rules
A POSITION response step changes the next activation item so that the designated item becomes
available for input. The most a POSITION response step can do is change what will be next on the
activation list: successive POSITION response steps are not additive. Each POSITION response step
replaces the result of any previous POSITION response step.

Once a POSITION IMMEDIATE response step is executed, however, succeeding POSITION response
steps without IMMEDIATE are ignored. Succeeding POSITION IMMEDIATE response steps replace
any previous POSITION IMMEDIATE response steps. An INVALID response step performs an implicit
POSITION IMMEDIATE response step to the current item.

The POSITION response step is not equivalent to a GOTO in other languages. It merely sets up the next
activation item to receive focus when processing for the current activation item is complete, including
validation, entry, and exit responses.

Example
Position To FIRST PANEL

This example specifies the first item on the first panel as the current activation item.

POSTDISPLAY Clause
POSTDISPLAY Clause — The POSTDISPLAY clause declares the action that occurs regarding the
viewport when the Form Manager exits the panel.

postdisplay-clause

Format

Where you specify this clause:

Syntax Rules
REMOVE

Specifies that the viewport and its contents are cleared from the display device and that the contents of
any viewports beneath it are restored to their original state.

RETAIN

205

Chapter 1. Independent Form Description Language

Specifies that the viewport and its contents are left as is .RETAIN is the default.

Examples
1. Panel P1

 Remove
 Field F1
 End Field
End Panel

The viewport is cleared of its contents and removed from the display device, restoring the display of
any other viewport beneath it.

2. Panel P1
 Retain
 Field A
 End Field
End Panel

The viewport and its contents are left as is even after the panel is exited.

PRINT Response Step
PRINT Response Step — The PRINT response step specifies that zero or more panels in the layout of
the current session are output to a file or a printer.

print-response-step

Format

Where you specify this clause:

Syntax Rules
PRINT

If panel-name is not specified, the current display is output to a file for subsequent printing. Each PRINT
response step produces a new page. If you specify panel-name, the Form Manager outputs the specified
panels to a file.

If you have multiple sessions running simultaneously on the same display, only the panels from the
current session are output, on character-cell layouts.

IMMEDIATE

Specifies that the Form Manager closes the print file at the completion of the current PRINT response
step. If the IMMEDIATE keyword is not present in the current PRINT response step, the Form Manager
does not close the print file, and the output of subsequent PRINT response steps is appended to the
current file.

206

Chapter 1. Independent Form Description Language

In Motif layouts, PRINT IMMEDIATE generates a copy of the screen's current appearance and sends it
to the print file. The entire display, even panels not in the current session, are printed.

panel-name

Specifies that the Form Manager outputs panel-name to a file. If more than one panel is specified, the
panels are printed in the order specified.

ON viewport-name

If you specify ON viewport-name for the panel,the panel is printed in the specified viewport; otherwise
it is printed in the viewport specified in the panel declaration. If there is no viewport specified for the
panel, the default viewport is used. When you specify a viewport name, the size of the panel implicitly
defined by the position and length of the panel fields and literals must not exceed the limits for the
viewport.

The ON viewport-name clause is ignored in window layouts.

General Rules
When executed in a character-cell layout,the background color default for the PRINT response step is
white, and line literals are converted to plus signs (+), vertical bars (|), and minus signs (-) for output to
character-cell terminals. Output is limited to line-oriented characters:no display attributes are used in the
PRINT response step—no BOLD, BLINKING, or UNDERLINE attributes.

When the PRINT response step is executed in a window layout,a screen image of that panel is created
and placed in a PRINTER output file. To print a panel in a window layout, that panel must be displayed
on the device when the PRINT response step is invoked. When the PRINT response step is invoked in a
Motif layout, the entire display, even panels not in the current session, are printed.

If the panel is not displayed when the PRINT response step is invoked, the PRINT step is ignored and an
error message is written to the trace file.

The PRINT response step with the IMMEDIATE clause specifies that the currently open output file
be closed after the panels are downloaded to the print file. By default, the file is written to your current
default node, device, and directory. You can specify that the file be written to a different directory by
using the FORMS$PRINT_FILE logical name to point to a node, device, directory, file name, and
file type of your choice. You can also do this with the FORMS$K_PRINTFILE request option in
the OpenVMS API and forms_c_opt_printin the portable API. See the VSI DECforms Programmer's
Reference Manual for more information on FORMS$PRINT_FILE and FORMS$K_PRINTFILE.

The PRINT response step is ignored in PRINTER layouts. Use the DISPLAY response step to generate
PRINTER output.

Example
Send Response HAPPY_BDAY
 Display BDAY_PANEL
 Print BDAY_PANEL
End Response

This example specifies that the DISPLAY response steps puts BDAY_PANEL on the display device, and
a PRINT response step is performed when the application sends the HAPPY_BDAY record to the form.
The PRINT response step prints out BDAY_PANEL.

207

Chapter 1. Independent Form Description Language

PROTECTED Clause
PROTECTED Clause — The PROTECTED clause specifies whether a field, icon, or button cannot be
solicited for input.

protected-clause
Format

Where you specify this clause:

Syntax Rules
PROTECTED [WHEN conditional-expression]

Specifies the conditions under which the Form Manager cannot solicit an item for input. When
conditional-expression is true, the Form Manager may not solicit input from the current field, icon, or
button. For more information on conditional expressions, see the CONDITIONAL EXPRESSION
syntax section.

NOT PROTECTED

Specifies that the field, icon, or button is available for input from the operator if the item is placed on the
activation list.

General Rules
PROTECTED without WHEN specifies that the field, icon, or button is not available for input from the
operator.

If conditional-expression is true, PROTECTED with WHEN and PROTECTED without WHEN are
equivalent.

If conditional-expression is false, PROTECTED with WHEN and NOT PROTECTED are equivalent.

If any form data item in conditional-expression changes, the effect of the WHEN clause is immediately
recalculated.

Examples
1. Icon CHOICE_CASH_100

 Active Highlight Reverse
 Concealed When CHECKING_BALANCE < 10000
 Protected When CHECKING_BALANCE < 10000
 .
 .
 .
End Icon

This example specifies that the icon CHOICE_CASH_100 is unavailable for input when the checking
account balance is less than 10 000 (this is $100.00 when the layout units are pennies).

208

Chapter 1. Independent Form Description Language

2. Icon CHOICE_CHECK
 Protected When ROOM_IN_REG = 0
 Concealed When ROOM_IN_REG = 0
 .
 .
 .
End Icon

This PROTECTED WHEN clause specifies that the CHOICE_CHECK icon is unavailable for input
when there is no room left in the checkbook register.

PUSH BUTTON Declaration
PUSH BUTTON Declaration — The PUSH BUTTON declaration specifies a push button:an item that
contains either a label or an arrow. Push buttons do not accept data input but they do accept function key
input. Push buttons are allowed only in window layouts. Icons can be used in character-cell layouts to
perform the same function. Icons are not allowed in PRINTER or window layouts.

pushbutton-declaration

Format

Where you specify this clause:

Syntax Rules
button-name

209

Chapter 1. Independent Form Description Language

Specifies the name of the button. This name must not match a form data item.

full-location-clause

Specifies the vertical and horizontal position of the push button. For more information, see the
LOCATION clause syntax section.

partial-extent-clause

Specifies the size of the push button. For more information, see the EXTENT clause syntax section.

field-default-application

Specifies the application of a previously defined field default. For more information, see the FIELD
DEFAULT application syntax section.

item-description-entry

Specifies the display and processing attributes for the push button. For more information, see the ITEM
DESCRIPTION entry syntax section.

ARROW UP

Specifies the push button as a button containing an arrow pointing up.

ARROW DOWN

Specifies the push button as a button containing an arrow pointing down.

ARROW LEFT

Specifies the push button as a button containing an arrow pointing left.

ARROW RIGHT

Specifies the push button as a button containing an arrow pointing right.

LABEL

Specifies the push button as a button containing a text label.

string

Specifies a string as the label for the push button. String is a static label—it cannot be changed.

data

Specifies a form data item as the label for the push button. Data is a dynamic label. If the value of data
changes, the label changes.

General Rules
When a push button is pushed, the TRIGGER OBJECT function response is invoked. If there is no
TRIGGER OBJECT function response defined for the push button, nothing happens when the push
button is pushed. The default TRIGGER OBJECT function response is to do nothing.

210

Chapter 1. Independent Form Description Language

If a push button is declared inside a help panel, you cannot use USE HELP PANEL or USE HELP
MESSAGE clauses.

Push buttons can be included in a panel group without associated data items in the corresponding data
group. Push buttons within a panel group can be referenced with a subscript defined by the DISPLAYS
clause for the group.

The current field default characteristics determine push button characteristics.

Example
Push Button OK_BUTTON
 Line 100 Column 100
 Function Response TRIGGER OBJECT
 Return
 End Response
 Label "OK"
End Button

This example specifies a push button named OK_BUTTON. The push button is displayed at line 100,
column 100, with the label"OK". When the push button is pushed using the mouse or the keyboard, the
TRIGGER OBJECT function response, containing a RETURN response step, is executed.

RECEIVE RESPONSE Declaration
RECEIVE RESPONSE Declaration — A RECEIVE RESPONSE declaration specifies what actions
occur when the form receives a particular record message, or several record messages defined by a
record list from the program.

receive-response-declaration
Format

Where you specify this clause:

Syntax Rules
record-identifier

Specifies the name of the record or record list that the application receives.

response-step

Specifies the actions to be performed during the receive response. For more information, see the
RESPONSE STEP clause syntax section.

211

Chapter 1. Independent Form Description Language

REQUEST validation-response-declaration

Establishes the validation response as the response to be interpreted after the operator has signaled
completion of input during accept phase. For more information, see the VALIDATION RESPONSE
syntax section.

REQUEST exit-response-declaration

Establishes a response to be executed after the completion of accept phase. For more information, see the
EXIT RESPONSE syntax section.

General Rules
There can be only one receive response declared in a layout for each form record or record list.

The default receive response is to execute an ACTIVATE CORRESPONDING RECEIVE ALL response
step.

Example
Receive Response GET_CHECK
 Reset CHECK_PAYTO CHECK_AMOUNT CHECK_MEMO
 Activate Field CHECK_PAYTO On CHECK_PANEL
 Field CHECK_AMOUNT On CHECK_PANEL
 Field CHECK_MEMO On CHECK_PANEL
End Response

Specifies that a RESET response step is performed when the GET_CHECK record is received by
the form.

The form data items CHECK_PAYTO, CHECK_AMOUNT, and CHECK_MEMO are restored to
their initial values (the values they had at form enable time).

After the reset is performed, an ACTIVATE response step activates the fields that have had their
form data items reset (CHECK_PAYTO, CHECK_AMOUNT, CHECK_MEMO).

RECORD IDENTIFIER Declaration
RECORD IDENTIFIER Declaration — The RECORD IDENTIFIER declaration allows you to specify
the name of a record, or a list of records, to transfer single or multiple records between an application
program and a form.

record-identifier

Format

Where you specify this clause:

212

Chapter 1. Independent Form Description Language

Syntax Rules
record-name

Specifies the name of a record to be transferred.

record-list-name

Specifies a name for the record list. Record-list-name cannot duplicate a record-name. For more
information, see the RECORD LIST declaration syntax section.

Example
Form Record R1
 ITEMA character(10)
 ITEMB character(10)
End Record
 .
 .
 .
 Record List RL1
 R1
End List
 .
 .
 .
Layout L1
 .
 .
 .
Receive Response RL1
 .
 .
 .
End Response

In this example, RL1 is the record identifier of a record list. RL1 consists of a single record, R1.

RECORD LIST Declaration
RECORD LIST Declaration — The RECORD LIST declaration allows you to specify a list of records to
be combined for the transfer of multiple records between an application program and a form.

record-list-declaration
Format

Where you specify this clause:

213

Chapter 1. Independent Form Description Language

Syntax Rules
record-list-name

Specifies a name for the record list. Record-list-name and record-name cannot have the same names.

record-name

Specifies the name of a record to be transferred.

General Rules
The order in which records are named in the RECORD LIST declaration is the order in which they are
associated with the parameters in calls made to the Form Manager at run time.

The order in which records are named is also the order in which they are processed in data distribution
and collection.

If no record names appear within the record list, the record list can be named only in a send response
with no associated record messages.

Example
Form Record R1
 ITEMA character(10)
 ITEMB character(10)
End Record
 .
 .
 .
Record List RL1
 R1
End List

In this example, record list RL1 is specified. RL1 consists of a single record, R1.

REFRESH Response Step
REFRESH Response Step — The REFRESH response step redisplays viewports on your display.

refresh-response-step

Format

Where you specify this clause:

Syntax Rules
REFRESH

214

Chapter 1. Independent Form Description Language

Requests that viewports and their contents are redisplayed to clear a corrupted screen. If you do not
specify a viewport,the default viewport is refreshed. If you specify a viewport or a list of viewports, any
of those viewports that are currently displayed are refreshed.

viewport-name

Specifies the viewport to be refreshed.

ALL

Specifies that all displayed viewports are refreshed in all sessions on the device of the session.

General Rules
The REFRESH response step does not alter occlusion order of viewports.

The REFRESH response step is ignored in PRINTER layouts.

Example
REFRESH BDAY_VP

This example specifies that BDAY_VP is redisplayed.

REMOVE Response Step
REMOVE Response Step — The REMOVE response step removes one or more viewports from a
display device.

remove-response-step

Format

Where you specify this clause:

Syntax Rules
REMOVE

Specifies that viewports and their contents are removed from the display. The contents of any viewports
obstructed by those removed are redisplayed. REMOVE without a qualifier removes the default
viewport.

The REMOVE response step is ignored in PRINTER layouts.

viewport-name

Specifies the viewports to be removed.

215

Chapter 1. Independent Form Description Language

HELP

Specifies the removal of the viewports that currently display help panels.

ALL

Specifies the removal of all viewports for this session.

Example
REMOVE ALL

This example specifies that all viewports be removed.

RESET Response Step
RESET Response Step — The RESET response step restores form data items to their values at form
enable time.

reset-response-step

Format

Where you specify this clause:

Syntax Rules
RESET

Specifies that some or all of the form data is restored to its initial value. Resetting a current date/time
item sets the value of the data item to the current date and time.

data

Resets the value of data to its value at the time the form was enabled.

data-array

Resets the value of each element of data-array to its value at the time the form was enabled.

data-group

Resets the values of all data items within data-group to their values at the time the form was enabled.

data-group-array

216

Chapter 1. Independent Form Description Language

Resets the values of all data items within data-group-array to their values at the time the form was
enabled.

ALL

Resets the values of all form data items to their values at the time the form was enabled.

General Rules
Initial values for form data items are specified in the VALUE clause of the FORM DATA declaration.
For information on default values for initial values of form data items, see the FORM DATA declaration
syntax section.

Example
RESET A.B

This example specifies that the value in A.B is restored to its value at form enable time.

RESPONSE STEP Clause
RESPONSE STEP Clause — The RESPONSE STEP clause describes actions to be performed that can
change the value of form data items, the screen appearance, or the activation list, as well as call escape
routines, process help, signal the operator, conditionally determine a course of action, and validate and
terminate form processing. Using the RESPONSE STEP clause allows you to create special display
effects and change the order of field processing.

response-step-clause
Format

217

Chapter 1. Independent Form Description Language

Where you specify this clause:

Syntax Rules
activate-response-step

Puts the specified items on the activation list. The activation item can be a panel field, an icon, a button,
or a request to wait until the operator enters a function. Once the items are on the activation list they can
receive operator input. For more information, see the ACTIVATE response step syntax section.

call-response-step

Issues a subroutine call to the application program. For more information, see the CALL response step
syntax section.

deactivate-response-step

Removes items from the activation list. For more information, see the DEACTIVATE response step
syntax section.

display-response-step

Shows panels in a viewport. For more information, see the DISPLAY response step syntax section.

enter-help-response-step

Sets the HELP ACTIVE condition to true,and switches to the HELP activation list.For more
information, see the ENTER HELP response step syntax section.

exit-help-response-step

Sets the HELP ACTIVE condition to false,and switches to the main activation list. EXIT HELP does
not change the current position on the main activation list. For more information, see the EXIT HELP
response step syntax section.

if-response-step

Allows optional response steps to be executed based on the result of the evaluation of a conditional
expression. For more information, see the IF response step syntax section.

218

Chapter 1. Independent Form Description Language

include-response-step

Specifies another response to be performed as part of the processing for the current response. The other
response must have been previously declared as an internal response. For more information, see the
INCLUDE response step syntax section.

invalid-response-step

Specifies that the current activation item is considered invalid during input validation. Also executes an
implicit POSITION IMMEDIATE CURRENT response step. For more information, see the INVALID
response step syntax section.

let-response-step

Assigns a value to a form data item. For more information, see the LET response step syntax section.

message-response-step

Outputs a string of values to the message panel, formatted in a word-wrapped manner. For more
information, see the MESSAGE response step syntax section.

position-response-step

Specifies which activation item will be processed after processing of the current activation item is
complete. For more information, see the POSITION response step syntax section.

print-response-step

Specifies that one or more panels are output to a file. For more information, see the PRINT response
step syntax section.

refresh-response-step

Requests that currently displayed viewports and their contents are redisplayed to clear a corrupted screen.
For more information, see the REFRESH response step syntax section.

remove-response-step

Specifies that viewports and their contents are removed from the display. For more information, see the
REMOVE response step syntax section.

reset-response-step

Specifies that some or all of the form data is restored to its initial value. For more information, see the
RESET response step syntax section.

return-response-step

Specifies that accept phase (input from the operator) should end. For more information, see the
RETURN response step syntax section.

signal-response-step

Specifies that an audible or a visible signal is given to the operator. For more information, see the
SIGNAL response step syntax section.

validate-response-step

219

Chapter 1. Independent Form Description Language

Specifies that the Form Manager should validate items on the activation list. For more information, see
the VALIDATE response step syntax section.

General Rules
Response steps permit you to control form processing at the field, group, and panel level. The Form
Manager interprets a response at predetermined points while processing a request. The interpretation
is sequential (from the beginning of the response to the end), and does not interact directly with the
process of asking the operator for input. Any special actions concerning input are performed only after
the interpretation of the response that specifies the actions. A CALL response step may affect input
before a given response is completed if that CALL response step has a recursive request within it.

A response is procedural insofar as its steps are executed sequentially and the branching of the IF
step may depend on the action of previous steps. However, there is no way to loop. You must use
the procedural escape mechanism of the CALL response step to perform any iteration in another
programming language. You also can manipulate form data that is not displayed.

The Form Manager interprets a response sequentially from the beginning, departing from linear order
only to select the choice specified in the IF control step or to include other response steps in the
INCLUDE step. The Form Manager sends output images to the display in the order in which they
occur in the response. The Form Manager adjusts the activation list by interpreting the ACTIVATE
and DEACTIVATE steps in the order in which they occur in the response. The activation list is empty
at the start of a request. Each response invoked thereafter may add or delete activation items from the
activation list.

Examples
1. Include MY_RESPONSE

This example specifies that MY_RESPONSE is performed.

2. Signal %BELL

This example specifies the bell as the signal.

RETURN Response Step
RETURN Response Step — The RETURN response step specifies that accept phase should end
unconditionally or conditionally after validation.

return-response-step
Format

Where you specify this clause:

Syntax Rules
RETURN [IMMEDIATE]

220

Chapter 1. Independent Form Description Language

Specifies that accept phase(input from the operator)should end.

If you do not specify IMMEDIATE, the Form Manager performs field validation, validation responses,
and request validation responses for all items on the activation list.

If validation is successful, accept phase is completed.

If validation is not successful, the Form Manager performs a POSITION IMMEDIATE TO CURRENT
ITEM response step.

If you specify IMMEDIATE,the Form Manager performs no further validation and control is returned to
the application program as soon as processing of the current activation item is finished.

Exit responses are executed regardless of whether IMMEDIATE appears or not. For RECEIVE or
TRANSCEIVE requests, the record is returned to the application program whether IMMEDIATE is
specified or not.

string

Specifies that the string is returned to the application program in the receive control text message; string
must be in control text format.

Control text format specifies that you must specify string as follows:

● It must be a 3- to 5-character string.

● If you specify RETURN IMMEDIATE, the first character must be an E. If you do not specify
RETURN IMMEDIATE, the first character must be a blank.

● The second character must be an F.

● The third through fifth characters may contain any printable characters, at least one of which must be
a nonspace character. Nonprintable characters are not allowed.

Example
Return Immediate "EFQUT"

This example returns control immediately to the application program, bypassing validation, and returns
the receive control text string EFQUT to the program.

SCROLL BAR Clause
SCROLL BAR Clause — The SCROLL BAR clause allows you to specify scroll bars in window layouts.

scroll-bar-clause
Format

221

Chapter 1. Independent Form Description Language

dynamic-clause

Where you specify this clause:

Syntax Rules
NO SCROLLBARS

Specifies no scroll bars on the object.

SCROLLBAR TOP [dynamic-clause-1]

Specifies that a scroll bar be put on the top side of the object.

SCROLLBAR BOTTOM [dynamic-clause-2]

Specifies that a scroll bar be put on the bottom side of the object.

SCROLLBAR RIGHT [dynamic-clause-3]

Specifies that a scroll bar be put on the right side of the object.

SCROLLBAR LEFT [dynamic-clause-4]

Specifies that a scroll bar be put on the left side of the object.

dynamic-clause

Specifies that the scroll bar is either dynamic or static.

DYNAMIC

A dynamic scroll bar is one that appears only if necessary to view the entire object. If either scroll bar on
an object is dynamic, both scroll bars on the object are dynamic.

STATIC

A static scroll bar is always present and scroll bars are static in text fields.

For information on scroll bar defaults, see the scroll bar information in the appropriate object (panel,
panel group, and text field).

Example
TextField EMPLOYEE_ADDRESS
 Line 10 Column 10
 Rows 5 Columns 40
 SCROLLBAR RIGHT

222

Chapter 1. Independent Form Description Language

End TextField

This example specifies that the field EMPLOYEE_ADDRESS, which is located at line 10 and column
10, and which contains 5 rows and 40 columns, has a vertical scroll bar on the right side of the field. The
scroll bar is static, as scroll bars are static in text fields.

SEND RESPONSE Declaration
SEND RESPONSE Declaration — The SEND RESPONSE declaration specifies what actions occur
when the Form Manager sends a record message or a list of record messages from the application to the
form.

send-response-declaration

Format

Where you specify this clause:

Syntax Rules
record-identifier

The name of the record or record list sent from the application to the form.

response-step

Specifies the response steps to be performed during the send response. For more information, see the
RESPONSE STEP clause syntax section.

REQUEST validation-response-declaration

Establishes the validation response as the response to be interpreted after the operator has signaled
completion of input during accept phase.

REQUEST exit-response-declaration

Establishes a response to be executed after the completion of accept phase.

General Rules
You can use a send response to show specific panels to the operator,and allow the operator to indicate
that the output has been seen.

There can be only one send response declared in a layout for each record or record list.

223

Chapter 1. Independent Form Description Language

The default is to do nothing.

Example
Send Response GO_HOME
 Display LATE_NIGHT_PANEL
 Message "Go home, it's late"
End Response

The GO_HOME send response specifies that actions that will occur when the application sends the
GO_HOME record to the form.

The LATE_NIGHT_PANEL is displayed.

The MESSAGE response step puts out the message “Go home, it's late”.

SIGNAL Response Step
SIGNAL Response Step — The SIGNAL response step gives a signal to the operator.

signal-response-step

Format

Where you specify this clause:

Syntax Rules

SIGNAL

Specifies that an audible or a visible signal is given to the operator.

The SIGNAL response step is ignored in PRINTER layouts.

%BELL

Specifies that an audio signal (a terminal bell or beep) is sounded. This is the default.

%REVERSE

Reverses the background and foreground colors on the screen until the next character is input by the
operator. This applies only to character-cell devices.

Example
SIGNAL %BELL

This example specifies that a bell is sounded.

224

Chapter 1. Independent Form Description Language

SLIDER FIELD Declaration
SLIDER FIELD Declaration — The SLIDER FIELD declaration specifies an object that presents and
allows input of a numeric value within fixed limits. When the slider bar of the slider field is moved, the
slider's value is updated. The update takes place immediately and the VALUE CHANGED function
response is executed. Slider fields are allowed only in window layouts.

slider-field-declaration

Format

slider-field-description-entry

Where you specify this clause:

Syntax Rules
field-name

The name of the slider field. This name must match a form data item.

full-location-clause

225

Chapter 1. Independent Form Description Language

Specifies the vertical and horizontal position of the slider field. For more information, see the
LOCATION clause syntax section.

partial-extent-clause

Specifies the size of the slider field. For more information, see the EXTENT clause syntax section.

copy-statement-format-2

You use the COPY statement to copy information from a Oracle CDD/Repository field into a panel field
in your IFDL source file. For more information, see the COPY statement syntax section.

field-default-application

Specifies the application of a previously defined field default. For more information, see the FIELD
DEFAULT application syntax section.

slider-field-description-entry

Specifies the display, processing, and validation attributes for the slider field.

item-description-entry

Specifies the display and processing attributes for the slider field.

field-validation-entry

Specifies the validation attributes for the slider field. Range validation is independent of the LIMITS
clause.

MAXIMUM UP

Specifies that the slider field extends in a vertical direction with its maximum value at the top of the
slider. MAXIMUM UP is the default orientation.

MAXIMUM DOWN

Specifies that the slider field extends in a vertical direction with its maximum value at the bottom of the
slider.

MAXIMUM LEFT

Specifies that the slider field extends in a horizontal direction with its maximum value at the left of the
slider.

MAXIMUM RIGHT

Specifies that the slider field extends in a horizontal direction with its maximum value at the right of the
slider.

SHOW VALUE
NO SHOW VALUE

Specifies that the current value of the slider is displayed in text with the slider bar. NO SHOW VALUE
specifies that the current value is not displayed.

226

Chapter 1. Independent Form Description Language

SHOW VALUE is the default.

SCALE integer

Specifies the number of decimal points to shift the slider value when it is displayed. Integer must be zero
or negative. For example, if integer is –2 and the internal value of the slider is 2 350, the slider value is
displayed as 23.50.

SCALE 0 is the default.

LABEL string
LABEL data

Specifies a label for the slider field. If you specify LABEL string, the slider field label is a static string.

If you specify LABEL data, the slider field label is a form data item that is dynamic and changes when
the value of data-1 changes.

If you specify LABEL as a null string (“ ”), no label is displayed, for either LABEL data or LABEL
string.

LIMITS number-1 THROUGH number-2

Specifies the minimum and maximum values of the slider. If the data item is modified by a LET
response step, or by means other than the slider field to a value outside LIMTS number-2, the slider
is moved to the furthest possible point along the slider field in the direction of the value. Any value
displayed is limited to the field's specified limits and may not accurately reflect the data item value.
Number-1 must be less than number-2.

General Rules
A slider field is associated by name with a form data item. The form data item must be either a signed or
unsigned byte, word, or longword, or a text integer or text decimal data type.

The Form Manager executes the VALUE CHANGED function response when the slider bar in a slider
field is moved. This function response is executed when the slider field value changes even if the slider
field value is reset to its current value.

If a slider field is declared inside a help panel, you cannot specify USE HELP PANEL or USE HELP
MESSAGE.

If you do not specify a field description entry, the current field default characteristics determine field
characteristics.

Example
Form Data
 DISCOUNTVALUE longword integer
End Data
 .
 .
 .
Slider Field DISCOUNTVALUE
 Line 1 Column 1
 MAXIMUM RIGHT

227

Chapter 1. Independent Form Description Language

 Label "Percent Discount"
 Limits 0 Through 50
End Field

A form data item, DISCOUNTVALUE, is declared as a longword integer.

A slider field named DISCOUNTVALUE is associated with the DISCOUNTVALUE form data
item.

The slider field extends horizontally, with the maximum value at the right of the slider.

A string, “Percent Discount” is the slider field's label.

The minimum of value of the slider is specified as 0; the maximum is 50.

STRING EXPRESSION
STRING EXPRESSION — String expressions allow you to specify string values in conditional
expressions and LET response steps.

string-expression

Format

Where you specify this clause:

Syntax Rules
string

Specifies a character string in quotes.

data

Specifies a form data item that is one of the following types:

● CHARACTER(n)

● CHARACTER(n) VARYING

● CHARACTER(n) NULL TERMINATED

The value of data is the content of the form data item referenced by data. Data must be a scalar data
reference: a data item that is not in a multiply occurring group or a single occurrence of a data item in a
multiply occurring group.

228

Chapter 1. Independent Form Description Language

corresponding-data

Specifies a data item that fulfills all of the following conditions:

● Declared in at least one multiply occurring group.

● At least one of the multiply occurring groups has a corresponding subscript specified.

Corresponding-data must have one of the following data types:

● CHARACTER(n)

● CHARACTER(n) VARYING

● CHARACTER(n) NULL TERMINATED

Corresponding data references are allowed in a variety of item description and field validation clauses.
For more information on corresponding data references and their use in string expressions, see Appendix
A, "Using Arrays with DECforms Software".

string-expression

Specifies a string expression whose value is determined by evaluating the expression.

Example

1. Form Data
 A Character(20)
 B Character (20) Varying
End Data
 .
 .
 .
LET B = A

In this example, the value of A is copied to B. The length of B is set to 20.

2. Group G1
 Field B
 Entry Response
 Let G1(**).B = " "
 End Response
 End Field
End Group

In this example, when you move the cursor to B, it is reset to blanks.

TEXT DATA Clause
TEXT DATA Clause — TEXT DATA clauses specify text data items. Text data items consist of text
strings, interpreted by the Form Manager according to the text data type. There are four text data types:
CHARACTER, INTEGER, DECIMAL, FLOAT. The data types of text data items are similar to those of
text record items. The values are stored in the formats indicated.

229

Chapter 1. Independent Form Description Language

text-data-clause

Format

Where you specify this clause:

Syntax Rules
CHARACTER

Specifies that the form data item is a string of integer-1 characters.

integer-1

Specifies a value in the range 1 to 65 535, inclusive. If NULL TERMINATED is specified, integer-1 is a
value in the range 2 to 65 535.

VARYING

Specifies that the data item is a varying string,suitably formatted for use by Pascal or PL/I programs.
Integer-1 indicates the maximum number of characters in the string.

NULL TERMINATED

Specifies that the data item is a null-terminated string, suitably formatted for use by C programs.
Integer-1 indicates the maximum number of characters in the string, plus one additional character.

INTEGER

Specifies that there are integer-2 numeric characters in the form data item, plus an additional character
position that is always present for an explicit, leading-sign character.

integer-2

A numeric value in the range of 1 to 31, inclusive.

PACKED

Designates a packed decimal numeric string, with no decimal point (integers only). Integer-2 represents
the number of digits,not bytes, in the string. The sign occupies the four low-order bits of the last byte in
the string.

DECIMAL integer-3
DECIMAL integer-4

Specifies a form data item containing integer-3 digits that represent the whole part of a number and
integer-4 digits that represent the decimal part of the number. Integer-3 must be greater than or equal to

230

Chapter 1. Independent Form Description Language

zero; integer-4 must be greater than zero. The sum of integer-3 and integer-4 must be in the range 1 to
31, inclusive.

There are integer-3 plus integer-4 numeric characters in the form data item, plus one additional character
position that is always present for an explicit, leading-sign character, and one additional character
position that is always present for an explicit decimal point.

PACKED

Designates a PACKED DECIMAL numeric string. Integer-3 and integer-4 represent the number of digits,
not bytes, in the string. The sign occupies the four low-order bits of the last byte in the string.

FLOAT

Specifies a form data item containing integer-5 digits of fraction followed by the character E, and
integer-6 digits of exponent. For form data type FLOAT there are integer-5 plus integer-6 numeric
characters in the form data item, plus a number of additional characters. There are two additional
character positions that are always present for the explicit leading-sign characters (one each for the
fraction and the exponent), plus one other character position that holds a place for an explicit decimal
point in the fraction and one additional character position for the E character.

integer-5

Specifies the digits of the fraction. The allowed range for integer-5 is 1 to 33, inclusive.

integer-6

Specifies the digits of the exponent. The exponent is assumed to have an explicit sign, either plus (+)
or minus (-). If integer-6 is missing, it is assumed to be 2. The allowed range for integer-6 is 1 to 4,
inclusive.

Examples
1. ITEM_1 CHARACTER(10) VARYING

This example specifies a form data item, ITEM_1. ITEM_1 is a CHARACTER VARYING text
string with a maximum length of 10 characters.

2. ITEM_2 INTEGER(30) PACKED

This example specifies a form data item, ITEM_2.ITEM_2 is an INTEGER text string that is no
longer than 30 characters, with no decimal point.

TEXT FIELD Declaration
TEXT FIELD Declaration — The TEXT FIELD declaration specifies an object that presents and allows
input of a single- or multiline text value that scrolls.

text-field-declaration

Format

231

Chapter 1. Independent Form Description Language

text-field-description-entry

Where you specify this clause:

Syntax Rules

field-name

Specifies the name of the text field. This name must match a form data item that has one of the
CHARACTER data types.

location-clause

Specifies the vertical and horizontal position of the text field. In character-cell layouts, if you do not
specify the LOCATION clause for a text field, the LOCATION clause of the current field default is used.
If no field default is currently in effect, NEXT LINE,SAME COLUMN is used.

You must specify a LOCATION clause for window layouts. For more information, see the LOCATION
clause syntax section.

partial-extent-clause (PRINTER and window layouts)

Specifies the height and width of the text field.

The height and width specified in partial-extent-clause override the rows and columns specified in the
text field description entry. If height is not specified, the height of the field is determined by the ROWS

232

Chapter 1. Independent Form Description Language

clause. If width is not specified, the width of the field is determined by the COLUMNS clause. For more
information, see the EXTENT clause syntax section.

copy-statement-format-2

Copies information from a Oracle CDD/Repository field into a text field in your IFDL source file. For
more information, see the COPY statement syntax section.

field-default-application

Specifies the application of a previously defined field default. For more information, see the FIELD
DEFAULT application syntax section.

text-field-description-entry

Specifies the display, processing, and validation attributes for the field.

item-description-entry

Specifies the display and processing attributes for the text field.

field-validation-entry

Specifies the validation attributes for the text field.

AUTOSKIP (character-cell layouts)

Specifies that a keystroke resulting in a full field also causes an automatic NEXT ITEM function
response.

NO AUTOSKIP (character-cell layouts)

Specifies that no automatic NEXT ITEM function response is to be performed.

NO AUTOSKIP is the default.

UPPERCASE

Changes operator input to uppercase. In character-cell layouts, the conversion is done as the input is
typed. In window layouts, the conversion is done when the operator leaves the field.

MIXED CASE

Displays operator input as entered.

MIXED CASE is the default.

scroll-bar-clause (window layouts)

Specifies the scroll bars for the text field. If scroll bars are specified for the text field, they will be static,
regardless of whether a dynamic clause is specified. For more information, see the SCROLL BAR clause
syntax section.

NO SCROLLBARS is the default.

233

Chapter 1. Independent Form Description Language

ROWS integer-1

Specifies the number of visible lines in the text field. Integer-1 must be positive.

ROWS 1 specifies a single-line text field that pans left to right if the width of the field is too short to
display the entire data item value.

COLUMNS integer-2

Specifies the number of visible columns in the text field. Integer-2 must be positive.

COLUMNS 20 is the default.

[NO] WORD WRAP (window layouts)

Specifies whether word wrapping is used in the text field. Word wrap is the automatic dropping to the
next line of any word a user types if it extends past the right margin of the text. Word wrap disables
horizontal panning.

NO WORD WRAP is the default.

General Rules
The TEXT FIELD declaration specifies an object that presents and allows input of a single or multiline
text value that scrolls horizontally or vertically. A text field, unlike a picture field, considers the line feed
character (ASCII 10) to be a special new-line character, which indicates that the remaining text should be
put on the next line.

The new-line character (and word wrap, if the WORD WRAP clause is used) causes multiple lines of
text in the text field. Each new-line character takes up space in the data item and is counted towards the
length of the field's value. The operator can use the INSERT LINE built-in function to insert new-line
characters into the text field as long as the field is not already full.

A text field does not use picture strings, editing clauses, or justification clauses. The operator is simply
allowed to enter data until the data item is full. Because the width of the field can be less than the length
of the data displayed, data may extend beyond the right edge of the field. In this case, you can use
horizontal scrolling to allow the operator to access characters off the right edge of the field if WORD
WRAP is not used.

If WORDWRAP is used, words are wrapped (at word breaks if possible) before the right edge of the
field, so horizontal scrolling is not needed. A new-line character (ASCII 10) in the data (or a word wrap
if the WORD WRAP clause is used) causes remaining data to be put on the next line.

Because the height of the field can be less than the number of rows of data, vertical scrolling is used
to allow the operator to access characters off the bottom edge of the field. The Form Manager uses
horizontal and vertical scrolling to keep the cursor visible.

The Form Manager keeps track of how many characters are in each text field. When the operator
enters data into a text field associated with a CHARACTERVARYING or CHARACTER NULL
TERMINATED data item, the Form Manager sets the current length of the data item to the actual length
of the data entered into the text field.

Because the Form Manager keeps track of each character entered into the text field, it is able to set the
length of the data item rather than pad the data item with spaces as it does for picture fields. Because
CHARACTER data items do not store the current length of data items, the Form Manager cannot store

234

Chapter 1. Independent Form Description Language

the actual length of the data entered into CHARACTER data items associated with text fields, and
padding occurs.

To match the padding that occurs when data is input into a text field with a CHARACTER data item, the
Form Manager trims spaces off the end of the field when the operator enters a text field associated with
a CHARACTER data item. In character-cell layouts, the Form Manager also allows spaces at the end of
a text field to be pushed off the end of the field if a character is inserted before the end of the field.

The Form Manager keeps track of the cursor row and column for text fields so that if the operator leaves
and then reenters the field, the cursor position is the same as when the field was left. In Motif layouts,
this information is stored for the entire form session.

In character-cell layouts, this information and also the insert/overstrike mode is stored as long as the
field is displayed; if the panel is removed or if the field is scrolled off the display (in a scrolled group),
the cursor row, cursor column, and insert/overstrike mode are reset to the defaults for that field.

The default cursor row is the first row. The default cursor column is the first column. The default insert/
overstrike mode is overstrike for character-cell layouts (Motif only supports insert mode).

The Form Manager uses a bound cursor for text fields. Each line of the text field can have a different
number of characters than on the next line. The Form Manager keeps the cursor within the characters
entered(not allowing the cursor to move outside of the data).

If the value of the field changes (such as by using a LET response step), the Form Manager attempts to
keep the cursor row and cursor column the same. If the cursor row and cursor column stored for that
field is no longer within the bounds of the field, the Form Manager puts the cursor on the nearest row
and column.

When the insert/overstrike mode is overstrike, characters that the operator enters overstrike characters
at the cursor position. However, if the cursor is at the end of a line, characters entered do not overstrike
anew-line character but are inserted at the end of the line. Similarly, the INSERT LINE function always
inserts a new line even if the insert/overstrike mode is overstrike.

The DELETE CHARACTER function in overstrike mode replaces the previous character with a space. If
the previous character is a new line, however, it deletes the new line but does not replace it with a space.
Overstrike mode is allowed only in character-cell layouts.

If a text field is declared inside a help panel, you cannot specify USE HELP PANEL or USE HELP
MESSAGE.

If you do not specify a text field description entry, the current field default characteristics determine field
characteristics.

Examples
1. TEXTFIELD employee_address

 Line 5 Column 5
 Rows 3 Columns 40E
ND FIELD

This example declares a text field named employee_address that is on line 5, column 5. This text
field is high enough for 3 rows of text and wide enough for 40 columns of text. The syntax is valid
for character-cell, window, and PRINTER layouts. If the employee_address data item had the
value"John Smith*25 Elm St.*Boston, MA 02130*USA" where "*" is actually a new-line character
(ASCII 10), the field would be displayed as:

235

Chapter 1. Independent Form Description Language

John Smith
25Elm St.
Boston, MA 02130

The line containing “USA” is in the text field but because only three rows were specified, the line
containing “USA” is not visible until the cursor is moved down in the field causing the text field to
scroll upwards.

If the length of the employee_address data item is 100 characters, then the operator will be allowed
to enter up to 100 characters in the field, including new-line characters.

2. TEXTFIELD comment1
 Line 5 Column 5
 Columns 30
END FIELD

LITERAL RECTANGLE
 Line 4 Column 4
 Line 6 Column 35
END LITERAL

This example declares a text field named comment1 on line 5, column 5. This text field is high
enough for 1 row of text and wide enough for 30 columns of text. The syntax is valid for character-
cell, window, and PRINTER layouts.

The rectangle is useful in character-cell and PRINTER layouts but should not be used in pixel
layouts. Fields in Motif layouts should have a shadow around them. If the comment1 data item had
the value “This is a comment*that takes*up 3 lines.” where “*” is actually a new-line character
(ASCII 10), the field would be displayed as:

The remaining two lines are displayed only if the cursor is moved down in the field causing the text
field to scroll upwards. If the comment1 data item had the value “This is a comment that takes up 1
line.”, the field would be displayed as:

The remaining nine characters will be displayed if the cursor is moved right in the field causing the
text field to scroll left. If you want to keep the user from inserting a new line into any text field, you
can define the INSERT LINE function to be associated with no keys:

Function INSERT LINE
 Is None
End Function

If you want to allow the user to insert new lines in some text fields but not in others, define a
function response for the text fields where you want inserting new lines to be disallowed:

Function try_inserting_line
 Is (%PF1 %CARRIAGE_RETURN)
End Function
 .
 .
 .

236

Chapter 1. Independent Form Description Language

TEXTFIELD comment1
 Line 5 Column 5
 Columns 30
 Function Response try_inserting_line
 Message "single-line textfield"
 End Response
END FIELD

%PF1 %CARRIAGE_RETURN is the key sequence currently associated with INSERT LINE for
character-cell terminals.

3. TEXTFIELD comment1
 Line 5 Column 5
 Rows 3
 Word Wrap
END FIELD

This example declares a text field named comment1 that is on line 5, column 5. This text field is high
enough for 3 rows of text and wide enough for 20 columns of text. The syntax is valid for window
and PRINTER layouts. If the comment1 data item had the value “This is the first paragraph.*Here is
the second.” where “*” is actually a new-line character (ASCII 10), the field would be displayed as:

This is the first
paragraph.
Here is the second.

“paragraph ” is on the line following “first” because “paragraph” did not fit on the previous line.
“Here” is on the line after “paragraph” because of the new-line character after the period.

TEXT RECORD FIELD Clause
TEXT RECORD FIELD Clause — TEXT RECORD FIELD clauses specify text record fields. Text
record fields are composed of text strings that the Form Manager interprets according to the text field
type. The four text record field types are CHARACTER, INTEGER, DECIMAL, and FLOAT.

text-record-field-clause
Format

record-sign-clause

237

Chapter 1. Independent Form Description Language

record-decimal-clause

Where you specify this clause:

Syntax Rules, text-record-field-clause
CHARACTER

Declares that the field is integer-1 characters long. Neither SIGN nor DECIMAL clauses are permitted
for character record fields.

REVERSED

Specifies that characters are stored in memory in the reverse of the order in which they are intended to
be read. This data type is used for Hebrew strings stored in physical order: the last (leftmost) character
on the screen is the first character in the program buffer.

integer-1

Specifies an integer that must be in the range 1 to 65 535, inclusive. If CHARACTER is specified as
NULL TERMINATED, integer-1 must be in the range 2 to 65 535, inclusive.

VARYING

Specifies that the field is a varying string, suitable for use with Pascal or PL/I programs. If VARYING is
chosen, integer-1 indicates the maximum number of characters in the field, rather than the actual number
of characters present. There are always integer-1 plus two character positions allocated in the record for
this field. The additional two character positions contain the current length of the field.

NULL TERMINATED

Specifies that the field is a null-terminated string,suitable for use with C programs. If NULL
TERMINATED is chosen, integer-1 specifies the maximum number of characters in the field plus 1
character, rather than the actual number of characters present. There are always integer-1 character
positions allocated in the record for this field.

INTEGER

Specifies a field containing integer-2characters, all of which are digits. Unless PACKED is specified,
each digit in this field uses 1 byte of space in the record field, and 1 byte of space for the sign, for a total
of integer-2 plus 1 byte. The default is EXPLICIT SIGN.

integer-2

Specifies the number of digits in an INTEGER field. Integer-2 must be in the range of 1 to 31, inclusive.

If you specify EXPLICIT SIGN with the SEPARATE clause (or if you do not specify a sign positioning
clause on the EXPLICIT SIGN clause), the field occupies integer-2 plus 1 byte in the form record.

INTEGER PACKED

238

Chapter 1. Independent Form Description Language

Specifies that the integer string is formatted like a PACKED DECIMAL string except that it does not
contain a decimal point. If the PACKED clause is present, integer-2 represents the number of digits (not
bytes) in the string.

To compute the number of character positions allocated in the record,take the number of digits, add one
for the sign, add one if necessary to make the number even, and divide by two.

An EXPLICIT SIGN clause is allowed, but is not necessary with INTEGER PACKED; a sign occupies
the four low-order bits of the last byte in the character string. The IMPLICIT SIGN clause is not allowed.
The sign positioning clause (LEFT, RIGHT, or ZONED) is not allowed with PACKED.

record-sign-clause-1

Specifies the sign character and its position in the record field. The default is EXPLICIT SIGN.

DECIMAL

Specifies a field of integer-3 digits that represent the whole part of a number, and integer-4 digits that
represent the fractional part of the number.

If PACKED is not specified, the number of character positions allocated in the record for this field is
integer-3 plus integer-4, plus possible positions for the sign and decimal point.

If no other clauses are specified, two additional positions are allocated for the left separate sign and the
decimal point, for a total of integer-3 plus integer-4 plus two character positions.

You can specify record sign clauses and record decimal clauses in either order when you declare a
DECIMAL text record field.

integer-3
integer-4

Specifies values that must be present in a decimal string. Integer-3 must be greater than or equal to zero.
Integer 4 must be greater than zero. The sum of integer-3 and integer-4 must be in the range 1 to 31,
inclusive.

You can choose the SIGN and DECIMAL clauses. If the IMPLICIT DECIMAL point and IMPLICIT
SIGN clause are present, a decimal number occupies an integer-3 plus integer-4 byte field in the record.

If no SIGN clause or DECIMAL POINT clause is present, or an EXPLICIT DECIMAL point or
EXPLICIT SIGN clause is present, an additional byte for each (decimal point, sign) is present in the
record field.

DECIMAL PACKED

Designates a PACKED DECIMAL numeric string. To compute the number of character positions
allocated in the record, take the number of digits, add one for the sign, add one if necessary to make the
number even, and divide by two.

Integer-3 and integer-4 represent the number of digits (not bytes) in the string.

record-sign-clause-2

Specifies the sign character and its position in the clause. If the PACKED clause is present,an EXPLICIT
SIGN clause is allowed, but is not necessary;a sign occupies the four low-order bits of the last byte in the
character string. The IMPLICIT SIGN clause is not allowed. The sign positioning clause (LEFT, RIGHT,
or ZONED) is not allowed with the EXPLICIT SIGN clause.

239

Chapter 1. Independent Form Description Language

record-decimal-clause-1

Specifies the decimal symbol and its position in the record field.

If you specify the EXPLICIT DECIMAL clause, an additional decimal point character appears between
the integer and decimal parts of the number in the numeric string. The decimal point character can be
either a period or a comma. The default decimal point character is PERIOD.

If you specify the IMPLICIT DECIMAL clause, no decimal point appears in the number string. The
decimal point is assumed to be to the right of the integer-3 digit. The EXPLICIT DECIMAL clause
is not allowed with the PACKED clause; the IMPLICIT DECIMAL clause is allowed, but it is not
necessary.

FLOAT

Specifies a record field containing integer-5 digits of fraction followed by the character E, and integer-6
digits of exponent.

The number of character positions allocated in the record for this field is integer-5 plus integer-6, plus
two for the E and its sign, plus a possible position for the sign of the fraction, plus a possible position for
the decimal point, depending on other clauses. If no other clauses are specified, two additional positions
are allocated for the sign and the decimal point, for a total of integer-5 plus integer-6 plus four character
positions.

You cannot specify LEFT, RIGHT, SEPARATE, OVERPUNCHED,and ZONED with FLOAT.

integer-5
integer-6

Specifies values in a FLOAT record field. The exponent is assumed to have an explicit sign, either plus
(+) or minus (-). If integer-6 is missing, it is assumed to be 2. The allowed range for integer-5 is 1 to 33,
inclusive; the allowed range for integer-6 is 1 to 4, inclusive. Integer-6 is assumed to have an explicit sign,
either plus (+) or minus (–).

record-sign-clause-3

Specifies the sign character. The SIGN clauses can appear, but the sign positioning clauses (LEFT,
RIGHT, or ZONED) are not allowed.

record-decimal-clause-2

Specifies the decimal symbol and its position in the record field. The SIGN and DECIMAL POINT
clauses can appear, but the sign positioning clauses, (LEFT, RIGHT, or ZONED) are not allowed.

Syntax Rules, record-sign-clause
EXPLICIT SIGN

Indicates that a character position in the field contains a sign character, either plus (+), minus (–), or
blank (meaning plus). The sign positioning clause (LEFT, RIGHT, or ZONED) indicates where and how
the sign is stored.

If no sign positioning clauses are included with the EXPLICIT SIGN clause, the sign occupies the first
character position in the field by itself; effectively, this makes the default sign LEFT SEPARATE.

LEFT SEPARATE

240

Chapter 1. Independent Form Description Language

Indicates that the sign occupies an additional character position at the high-order end of the numeric
string. An additional character position is allocated in the record for this sign.

RIGHT SEPARATE

Indicates that the sign occupies an additional character position at the low-order end of the numeric
string. An additional character position is allocated in the record for this sign.

LEFT OVERPUNCHED

Indicates that the sign is associated with the leading digit position in the numeric string. The character in
the leading digit position represents both a numeric digit and its sign. The overpunched sign codes are in
Table 1.10, "Overpunched and Zoned Sign Codes".

Table 1.10. Overpunched and Zoned Sign Codes

Sign Digit Overpunched Sign
Code

Zoned Sign Code

Positive 0 { 0
Positive 1 A 1
Positive 2 B 2
Positive 3 C 3
Positive 4 D 4
Positive 5 E 5
Positive 6 F 6
Positive 7 G 7
Positive 8 H 8
Positive 9 I 9
Negative 0 } p
Negative 1 J q
Negative 2 K r
Negative 3 L s
Negative 4 M t
Negative 5 N u
Negative 6 O v
Negative 7 P w
Negative 8 Q x
Negative 9 R y

Syntax Rules, record-decimal-clause
EXPLICIT DECIMAL

Specifies the character and position of the decimal symbol. In a FLOAT record field, this clause specifies
that the character immediately to the left of the most significant digit is a decimal point (either comma
or period). The decimal point appears to the right of the sign, if any. In a DECIMAL record field, the
decimal point is between the whole number and the fraction.

241

Chapter 1. Independent Form Description Language

PERIOD

Specifies that the decimal point character is a period.

COMMA

Specifies that the decimal point character is a comma.

IMPLICIT DECIMAL

Specifies that the number has no explicit decimal point. In a FLOAT record field, this clause specifies
that the decimal point is assumed to be to the left of the most significant digit.

Examples
The following examples show how text record fields are formatted in records,and how the SIGN and
DECIMAL clauses affect that storage. Although the field length specification in IFDL indicates the
number of characters or digits stored in the field, the actual length of the field within the record can be
longer or shorter,depending upon the presence or absence of the PACKED, VARYING, DECIMAL, and
SIGN clauses.

1. CHARACTER(3)

The string abc is three characters long and is stored in a CHARACTER field that is three bytes long,
as is shown by the following figure:

2. CHARACTER (5) VARYING

The string abc is three characters long and is stored in a CHARACTER VARYING field. This field
is made up of two bytes that contain the actual length (3) of the string, and five bytes that can contain
a string of up to the maximum length (5) characters, stored one character per byte. The string is
stored in the following manner:

3. INTEGER (4) EXPLICIT SIGN RIGHT SEPARATE

The numeric string integer –4321 contains four digits and a sign character located in a separate
position. Therefore, the entire string (digits plus sign) is stored infive contiguous bytes. If the number
were 4321 (positive), a plus sign would be in the byte in which there is a minus sign. The string is
stored in the following manner:

4. INTEGER (4) PACKED EXPLICIT SIGN

The numeric string integer 1234 contains four digits and a sign character. (Because the number is
positive, the sign character is coded as decimal 12.) The digits are packed two digits per byte; the

242

Chapter 1. Independent Form Description Language

sign character is stored in the left half of the last byte. (The sign positioning clause is not allowed
with the PACKED keyword.)

If the numeric string were three characters in length, the third byte would not be necessary; the sign
character would be stored in the left half of the second byte. The values in the figure are binary.
Becausethe number of characters plus the sign equals an odd number (5), a zero (0) is put at the
beginning of the string to fill the extra 1/2 byte.

The following figure illustrates this:

5. DECIMAL (2,3) IMPLICIT DECIMAL EXPLICIT SIGN LEFT OVERPUNCHED

The numeric string–12.045 has two digits to the left of the decimal point and three to the right of it,
as expressed by the length description of (2,3). Because the IMPLICIT DECIMAL clause is present,
no character position is reserved for the decimal point.

The EXPLICIT SIGN LEFT OVERPUNCHED clause indicates that the sign is stored in the same
character position as the digit at the left end of the numeric string. J is the code for minus 1 (–1), as
the following figure illustrates:

6. DECIMAL (2,3) PACKED

The numeric string 12.045 has two digits to the left of the decimal point and three to the right of the
decimal point, as expressed in the length description (2,3). The characters in the string are stored two
per byte. The implied sign is positive, coded as 12, as the following figure illustrates:

TIMEOUT Clause
TIMEOUT Clause — The TIMEOUT clause specifies the amount of time allowed for operator input.

timeout-clause
Format

Where you specify this clause:

243

Chapter 1. Independent Form Description Language

Syntax Rules
TIMEOUT integer

Specifies the number of seconds allowed for operator input. (The timer is reset after any input is
entered.) Integer specifies the time, in seconds, that the operator has to enter input to the field, icon,
button, or wait activation item to which the input applies before timeout.

If the operator does not enter input during this time, the request terminates (times out). The Form
Manager terminates accept phase and returns an error message to the application program.

Integer must be greater than or equal to zero. If integer is zero, it is equivalent to no timeout being used.

NO TIMEOUT

Specifies that the operator has an indefinite period of time in which to enter input. NO TIMEOUT
cannot be specified as part of an ACTIVATE response step.

General Rules
If you do not specify a TIMEOUT clause for a field, icon, or button,the operator has an indefinite
amount of time to enter input,unless an ACTIVATE response step with a TIMEOUT clause places the
item on the activation list, or the external request has specified a timeout value for completion of the
request.

Higher level TIMEOUT clauses override TIMEOUT clauses specified at lower levels in the form. A
TIMEOUT clause in an ACTIVATE response step overrides a TIMEOUT or NO TIMEOUT clause in
an item description entry. A TIMEOUT clause in an external request overrides a TIMEOUT clause in an
ACTIVATE response step and a TIMEOUT or NO TIMEOUT clause in an item description entry.

Examples
1. TIMEOUT 3

This example specifies that the operator must enter input within 3 seconds.

2. TIMEOUT 300

This example specifies that the operator must enter input within 5 minutes.

TRANSCEIVE RESPONSE Declaration
TRANSCEIVE RESPONSE Declaration — The TRANSCEIVE RESPONSE declaration specifies what
actions occur when the application transceives (sends and receives) a record message or messages.

transceive-response-declaration

Format

244

Chapter 1. Independent Form Description Language

Where you specify this clause:

Syntax Rules
record-identifier-1

The name of the record or record list sent.

record-identifier-2

The name of the record or record list received.

response-step

Specifies the response steps to be performed during the transceive response. For more information, see
the RESPONSE STEP clause syntax section.

REQUEST validation-response-declaration

Establishes the validation response as the response to be interpreted after the operator has signaled
completion of input during accept phase. For more information, see the VALIDATION RESPONSE
declaration syntax section.

REQUEST exit-response-declaration

Establishes a response to be executed after the completion of accept phase. For more information, see the
EXIT RESPONSE declaration syntax section.

General Rules
No more than one transceive response can appear for a given record identifier pair in each layout.

The default transceive response is to execute a receive response with a matching receive record name.
If no matching receive record name is found, the default receive response that contains an ACTIVATE
CORRESPONDING RECEIVE ALL response step is executed.

Example
Transceive Response BADGE_NO NAME
 Activate Panel EMPLOY_HIST_PANEL
End Response

In this example, record BADGE_NO is sent to the form and record NAME is received. Panel
EMPLOY_HISTORY_PANEL is activated.

TRANSFER Clause
TRANSFER Clause — The TRANSFER clause allows you to specify source and destination mappings
between record fields and form data items.

245

Chapter 1. Independent Form Description Language

transfer-clause
Format

Where you specify this clause:

Syntax Rules
record-field

Specifies the name of the record field. Record-field must not be subscripted. A TRANSFER clause
applies to all occurrences of a multiply occurring record field.

When multiple record fields map to the same form data item, each record field is mapped to the data
item in the order in which it occurs. The result after data distribution is that the contents of the last
record field mapped to the data item are left in the data item.

If no explicit data transfer clause is associated with record-field, the data transfer characteristics of the
record field function as if USING record-field appears. However, this implicit data transfer takes place
only if the qualified record-field name in a record matches a qualified data name in form data.

You can also specify a quoted string as record-field. This allows you to specify data transfer for data
items that are DECforms reserved words specified in the Oracle CDD/Repository.

data-transfer-clause

Specifies the mapping between record fields and form data items.

SOURCE

Specifies that the value or values of a record field are to be set from data-1 or data-array-1 when the
application program receives the record from the Form Manager.

data-1
data-array-1

Specifies a form data item, data-1, or a data array expression, data-array-1, to be transferred to the
record field.

DESTINATION

Specifies a data item or a data array to receive the value of the record field when the record is sent to the
Form Manager from the application program. You cannot specify a record field as a destination.

If more than one DESTINATION clause is specified, each specified data item or data array receives the
designated value.

data-2
data-array-2

246

Chapter 1. Independent Form Description Language

Specifies a data item, data-2, or data array expression, data-array-2, to receive the value of the record
field specified in the DESTINATION clause.

USING

Specifies that the record field is to be processed as if it had both SOURCE and DESTINATION clauses,
with ach clause referencing the same data item.

data-3
data-array-3

Specifies a data item, data-3, or data array expression, data-array-3, to serve as both source and
destination in a USING clause.

General Rules
When the destination of a data transfer is a CHARACTER VARYING record field or data item, and the
source data item or record field is shorter than the length of the destination, the destination record field
or data item is not padded with spaces.

Example

Form FORM_NODE

Form Data
 DEF_FIELD_1 CHARACTER(10)
 DEF_FIELD_2 CHARACTER(10)
 DEF_FIELD_3 CHARACTER(10)
 DEF_FIELD_4 CHARACTER(10)
 DEF_FIELD_5 CHARACTER(10)

 DATA_ITEM_A CHARACTER(10)
 DATA_ITEM_B1 CHARACTER(10)
 DATA_ITEM_B2 CHARACTER(10)
 DATA_ITEM_B3 CHARACTER(10)
 DATA_ITEM_A CHARACTER(10)
 DATA_ITEM_D CHARACTER(10)
 DATA_ITEM_E CHARACTER(10)
 DATA_ITEM_F1 CHARACTER(10)
 DATA_ITEM_F2 CHARACTER(10)
 DATA_ITEM_F3 CHARACTER(10)
 DATA_ITEM_G CHARACTER(10)
 DATA_ITEM_H1 CHARACTER(10)
 DATA_ITEM_H2 CHARACTER(10)
 DATA_ITEM_I CHARACTER(10)
 DATA_ITEM_J1 CHARACTER(10)
 DATA_ITEM_J2 CHARACTER(10)

 DEF_FIELD_K CHARACTER(10)
 DATA_ITEM_K CHARACTER(10)
 DEF_FIELD_L CHARACTER(10)
 DATA_ITEM_L CHARACTER(10)

 DATA_ITEM_M1 CHARACTER(10)
 DATA_ITEM_M2 CHARACTER(10)
 DATA_ITEM_M3 CHARACTER(10)

247

Chapter 1. Independent Form Description Language

 DATA_ITEM_N1 CHARACTER(10)
 DATA_ITEM_N2 CHARACTER(10)
End Data

Form Record REC_1

 DEF_FIELD_1 CHARACTER(10)
 DEF_FIELD_3 CHARACTER(10)
 DEF_FIELD_7 CHARACTER(10)
 DEF_FIELD_5 CHARACTER(10)
 DEF_FIELD_9 CHARACTER(10)
 REC_FIELD_A CHARACTER(10) Destination DATA_ITEM_A
 REC_FIELD_B CHARACTER(10) Destination DATA_ITEM_B1
 Destination DATA_ITEM_B2
 Destination DATA_ITEM_B3
 REC_FIELD_C CHARACTER(10) Source DATA_ITEM_A
 REC_FIELD_D CHARACTER(10) Using DATA_ITEM_D
 REC_FIELD_E CHARACTER(10)
 REC_FIELD_F CHARACTER(10)
 REC_FIELD_G CHARACTER(10)
 REC_FIELD_H CHARACTER(10)
 REC_FIELD_I CHARACTER(10)

 Transfer REC_FIELD_E Destination DATA_ITEM_E
End Record
 .
 .
 .

Form FORM_NODE is declared.

A series of form data items is declared.

The form record REC_1 is declared, and a series of record fields is declared.

DATA_ITEM_A receives the value of REC_FIELD_A when the application program sends form
record REC_1 to the Form Manager.

The form data items, DATA_ITEM_B1, DATA_ITEM_B2, and DATA_ITEM_B3, each receive
the value in REC_FIELD_B when the application program sends form record REC_1 to the Form
Manager.

The value of REC_FIELD_C is set to the value in DATA_ITEM_A when the application program
receives the form record REC_1 from the Form Manager.

The value of REC_FIELD_D is set to the value of DATA_ITEM_D when the application
program receives the form record from the Form Manager. DATA_ITEM_D receives the value of
REC_FIELD_D when the application program sends the form record to the Form Manager.

DATA_ITEM_E receives the value of REC_FIELD_E when the application program sends REC_1
to the Form Manager.

VALIDATE Response Step
VALIDATE Response Step — The VALIDATE response step validates the specified items on the
activation list. If the item named is not on the activation list, or is protected, the Form Manager ignores

248

Chapter 1. Independent Form Description Language

it. If an item is protected, VALIDATE has no effect for that item. The VALIDATE response step is
ignored in PRINTER layouts.

validate-response-step

Format

Where you specify this clause:

Syntax Rules
ALL

Validates each item on the activation list in order, beginning with the first item. VALIDATE ALL is
equivalent to the termination check that occurs when the Form Manager executes a RETURN response
step.

BUTTON button ON panel-name-1 (window layouts)

Validates button on the activation list. Panel-name-1 specifies the panel on which button occurs.

BUTTON button-array ON panel-name-2 (window layouts)

Validates all the buttons in the array reference on the activation list.

FIELD field ON panel-name-3

Validates field on the activation list. Panel-name-3 specifies the panel on which field occurs.

FIELD field-array ON panel-name-4

Validates all the panel fields in the array reference on the activation list. Panel-name-4 specifies the panel
on which field-array occurs.

GROUP panel-group ON panel-name-5

Validates each item from the group in panel-group on the activation list. Panel-name-5 specifies the
panel on which panel-group occurs.

249

Chapter 1. Independent Form Description Language

GROUP panel-group-array ON panel-name-6

Validates all the fields, buttons, and icons in the array reference on the activation list. Panel-name-6
specifies the panel on which panel-group-array occurs.

ICON icon ON panel-name-7 (character-cell layouts)

Validates icon on the activation list. Panel-name-7 specifies the panel on which icon occurs.

ICON icon-array ON panel-name-8 (character-cell layouts)

Validates all the icons in the array reference on the activation list. Panel-name-5 specifies the panel on
which icon-array occurs.

PANEL panel-name-9

Validates all fields, buttons, and icons on panel panel-name-9.

WAIT ON panel-name-10 (character-cell layouts)

Validates a wait activation item on the activation list. Panel-name-10 specifies the panel on which the
wait occurs.

General Rules
The Form Manager performs validation for items in exactly the same manner as if it were actually
visiting successive items on the activation list during accept phase. The activation list is searched in
order, beginning with the first item. For each activation item found that is within the specification in the
VALIDATE response step, the Form Manager performs the following steps:

1. Sets certain data items to temporary values. These values are the ones that the data items would
hold if the Form Manager were conducting validation while visiting the item. The data items that the
Form Manager sets are the CURRENT data items associated with the occurrence of this activation
item (if any such CURRENT data items exist) and the following built-in data items:

CURRENTITEM
CURRENTPANEL
LOCATORITEM
LOCATORPANEL
FIELDVALUE
FIELDIMAGE

2. Executes the field property validations for the activation item that is being validated. For fields, these
property validations are INPUT REQUIRED,MINIMUM LENGTH (picture fields only), RANGE,
REQUIRE, and SEARCH. Other activation items (icons, buttons, and waits) have no field property
validations.

3. Executes the validation response for the activation item that is being validated. For fields, icons,
and buttons, this is the field validation response. For waits, this is the panel validation response.
VALIDATE response steps encountered while executing a VALIDATE response step (recursive
VALIDATE response steps)are ignored.

4. Executes validation responses for groups or panels if necessary. Before the search continues with the
next activation item, the Form Manager first determines the next unprotected activation item. If a
group or a panel is exited in moving from the activation item being validated to the next unprotected

250

Chapter 1. Independent Form Description Language

activation item, group or panel validation responses are executed. These validation responses are
executed first for inner groups, then for outer groups, and finally for the panel.

However, if the VALIDATE response step does not specify an entire group or panel to validate, then
the validation response for the group or panel is not executed (because the entire group or panel
has not been validated first). Because an entire group or panel must be specified for group or panel
validation to occur, this group and panel validation does not apply to VALIDATE response steps
specifying afield, field array, button, button array, icon, icon array, or wait.

At any time during validation, if the Form Manager detects a validation failure or a POSITION
IMMEDIATE at the end of a field validation,or at the end of any validation response, it stops further
validation. A response can determine that validation failed if the elementary condition IMMEDIATE is
true.

Inactive items are not validated, just as they are not visited. Because a later validation can execute a
validation response that changes a data item, a previously inactive, skipped item can become active. Such
an item is then not subject to validation; no rescanning of the activation list is performed.

If an item is added to the activation list after the item currently being validated, that new item is
validated when the pseudo-visitation reaches it.

The VALIDATE response step is ignored if one of the following response steps has been executed in the
current context:

POSITION IMMEDIATE
RETURN IMMEDIATE
EXIT IMMEDIATE
INVALID

These response steps turn off validation.

Examples
1. Validate All

This example validates all fields, icons, groups, buttons, and panels on the activation list. Assume an
activation list with a multiply occurring group G1 and a singly occurring group G2 inside of group
G1, as follows:

Field G1(1).G2.F1 on Panel P
Field G1(1).G2.F2 on Panel P
Field G1(2).G2.F1 on Panel P
Field G1(2).G2.F2 on Panel P
Icon I1 on Panel P

The response step performs the following:

a. Validates G1(1).G2.F1 (field properties and validation response).

b. Validates G1(1).G2.F2 (field properties and validation response).

c. Executes validation response for G1(1).G2.

d. Validates G1(2).G2.F1 (field properties and validation response).

e. Validates G1(2).G2.F2 (field properties and validation response).

251

Chapter 1. Independent Form Description Language

f. Executes validation response for G1(2).G2.

g. Executes validation response for G1.

h. Validates I1 (validation response).

i. Executes validation response for P.

When the Form Manager moves from Field G1(1).G2.F2 to Field G1(2).G2.F1, the validation
response for Group G1(1).G2 is executed because the Group G1(1).G2 is considered to be a
different group from G1(2).G2. Moving from Field G1(1).G2.F2 to Field G1(2).G2.F1 means
exiting Group G1(1).G2, so the validation response for G1(1).G2 is executed.

2. Validate Group G3.G4 On P

This example validates all fields, icons, buttons, and groups on the activation list that are within the
panel group G3.G4 on Panel P. Because the VALIDATE response step specifies the whole of group
G3.G4, validation responses for group G3.G4 can also be executed. Validation responses for Group
G3 or Panel P are not executed because the VALIDATE response step specifies only a part of G3
and Panel P.

Assume an activation list with a singly occurring group G3 and a multiply occurring Group G4 inside
of Group G3, as follows

Field G3.X on Panel P
Field G3.G4(1).F1 on Panel P
Field G3.G4(1).F2 on Panel P
Field G3.G4(2).F1 on Panel P
Field G3.G4(2).F2 on Panel P
Icon I1 on Panel P

The response step performs the following:

a. Skips G3.X because it is not in Group G3.G4.

b. Validates G3.G4(1).F1 (field properties and validation response).

c. Validates G3.G4(1).F2 (field properties and validation response).

d. Validates G3.G4(2).F1 (field properties and validation response).

e. Validates G3.G4(2).F2 (field properties and validation response).

f. Executes validation response for G3.G4.

g. Skips I1 because it is not in Group G3.G4.

However, if G3.G4(1).F1 and G3.G4(1).F2 were separated on the activation list by Y, a field not in
G3.G4, the activation list would be as follows:

Field G3.X on Panel P
Field G3.G4(1).F1 on Panel P
Field Y on Panel P
Field G3.G4(1).F2 on Panel P
Field G3.G4(2).F1 on Panel P

252

Chapter 1. Independent Form Description Language

Field G3.G4(2).F2 on Panel P
Icon I1 on Panel P

The response step performs the following:

a. Skips G3.X because it is not in Group G3.G4.

b. Validates G3.G4(1).F1 (field properties and validation response).

c. Executes the validation response for G3.G4.

d. Skips Y because it is not in the group G3.G4.

e. Validates G3.G4(1).F2 (field properties and validation response).

f. Validates G3.G4(2).F1 (field properties and validation response).

g. Validates G3.G4(2).F2 (field properties and validation response).

h. Executes the validation response for G3.G4.

i. Skips I1 because it is not in the Group G3.G4.

3. Validate Group G3.G4(2:4) On P

This example validates all fields, icons, buttons, and groups on the activation list that are within the
panel group occurrences G3.G4(2), G3.G4(3), and G3.G4(4) on Panel P. Validation responses for
group G3 or Panel P are not executed because the VALIDATE response step specifies only a part of
G3 and P.

If the index range 2:4 comprises the entire range of subscripts for group G3.G4 (if G3.G4 occurs
3 times with a base of 2), then the validation response for G3.G4 can be executed. Otherwise, the
VALIDATE response step did not specify the whole of group G3.G4, so no validation for Group
G3.G4 occurs.

VALIDATION RESPONSE Declaration
VALIDATION RESPONSE Declaration — The VALIDATION RESPONSE declaration defines what
action the Form Manager takes during accept phase.

validation-response-declaration

Format

253

Chapter 1. Independent Form Description Language

Where you specify this clause:

Syntax Rules
response-step

Specifies the response steps to be performed during accept phase. For more information, see the
RESPONSE STEP clause syntax section.

General Rules
A validation response for a field, icon, or button is interpreted after the operator has terminated input; the
function response, if any, has been interpreted; and validation for the field, icon, or button is satisfied.

A validation response for a group is interpreted after the operator has terminated input; the function
response, if any, has been interpreted; validation of the field, icon, or button has been satisfied; and the
next activation item to be processed is not in the same group as the current activation item.

A validation response for a panel is interpreted after the operator has terminated input; the function
response, if any, has been interpreted; validation of the field, icon, or button has been satisfied and
validation of the group has been satisfied; and the next activation item to be processed is not on the same
panel as the current item.

A validation response for a request is interpreted after a RETURN response step (without IMMEDIATE)
has been executed and after all items on the activation list have been validated.

The VALIDATION RESPONSE declaration is particularly useful for cross-field validation.

There is no default response for the validation response.

Example
Panel P1
 Group G1
 Entry Response
 Message "Abandon hope all ye who enter here"
 End Response
 Field F1
 Exit Response
 If G1.F1 = 5 Then Position To Field F3 On P2
 End Response
 Validation Response
 If G1.F1 > 6 or G1.F1 <= 0 Then

254

Chapter 1. Independent Form Description Language

 Message "Please enter a number from 1 to 5"
 Invalid
 End If
 End Response
 End Field
 End Group
 .
 .
 .
End Panel

The validation response is interpreted after input to Field G1.F1 is completed. If G1.F1 is within the
specified range, the operator moves on to the next field or to field F3 on panel P2. If G1.F1 is not within
the range, the message “Please enter a number from 1 to 5” is displayed.

Assuming form data item G1.F1 has an integer value,this same validation can be performed using the
RANGE field description entry:

RANGE 1 THROUGH 5
 MESSAGE "Please enter a number from 1 to 5"

VIEWPORT Declaration
VIEWPORT Declaration — The VIEWPORT declaration specifies a rectangular portion of the display
device as the panel display area.

viewport-declaration

Format

Where you specify this clause:

Syntax Rules
viewport-name

Specifies the name of the viewport.

FOR PRINTING

255

Chapter 1. Independent Form Description Language

Specifies that the Form Manager not validate the viewport size against the SIZE clause in the LAYOUT
declaration. This allows you to define a viewport that is too large to be displayed on a display device, but
that can be printed using a PRINT response step. Any response step other than the PRINT response step
will be ignored.

LINES number-1 THROUGH number-2

Specifies a location and origin for the viewport. Number-1 and number-2 are expressed in layout units.
THROUGH and THRU are equivalent.

COLUMNS number-3 THROUGH number-4

Specifies a location and origin for the viewport. Number-3 and number-4 are expressed in layout units.
THROUGH and THRU are equivalent.

display-viewport-clause

Specifies viewport attributes at the layout, viewport, and panel levels. At run time, the Form Manager
merges display viewport attributes from each level, with panel-level attributes taking precedence
over viewport-level attributes, which, in turn,take precedence over layout-level attributes. For more
information, see the DISPLAY VIEWPORT clause syntax section.

General Rules
In character-cell layouts, the viewport must fit within the display size specified in the layout unless
the FOR PRINTING clause is specified. This means the line values must be less than or equal to the
corresponding line size in the SIZE clause for the layout, and both the column values must be less than
or equal to the corresponding column size in the SIZE clause.

All panels are displayed in viewports and the coordinates in panels are relative to the default viewport
in character-cell terminals. In window layouts, panel coordinates are relative to their parent object. The
upper-left corner of a viewport has position (1,1) for objects displayed in it for character-cell terminals;
and position (0,0) for window devices.

Once you have resized a viewport, that size should remain throughout your session. On window devices,
if the viewport is moved or resized, it retains its size and position when it is used again in the same
session. Viewports cannot be resized or moved on a character-cell device.

When designing a layout for monochrome character-cell terminals, it is recommended that form
designers do not specify black or white backgrounds, but allow operators to keep their own preference.
Because the operating system does not keep track of the current background color of the terminal and
the Form Manager cannot determine the current background color of character-cell terminals, DECforms
cannot return the background color to its original state after it is changed to a color specified in the form.

For the VT200- and VT300-series terminals, the operator can also lock the background color of the
terminal. This feature means that the operator can disable all background color changes, so that program
control of background color is ignored, no matter what the form specifies. In this case, the original color
of the terminal is available after the operator finishes input, but intermediate color changes specified in
the form are denied. VT400 terminals are monochrome terminals; specifying a background color other
than black or white does not affect display.

Examples
1. Viewport tiny_rectangle

 Lines 1 Thru 2

256

Chapter 1. Independent Form Description Language

 Columns 1 Thru 3
End Viewport

In this example, the viewport TINY_RECTANGLE is specified as being displayed on lines 1 through
2, and columns 1 through 3, a total of six character positions.

2. Viewport FIRST_VP
 Lines 1 Through 21
 Columns 1 Through 70
End Viewport

The FIRST_VP viewport is specified as being displayed on lines 1 through 21, and columns 1
through 70. (This is a wide viewport.)

257

Chapter 1. Independent Form Description Language

258

Appendix A. Using Arrays with
DECforms Software
This appendix contains information about qualified names, how to use arrays and subscripts with
DECforms, and how to use scalar and corresponding numeric expressions.

A.1. Qualified Names
Form data items can have the same name, as long as each form data item is in a different group. To refer
to these data items with unique names, a qualified name must be used.

A qualified name is composed of the name of each group, starting with the outermost group that the data
item is a member of, and the name of the data item. Each group name and data item name is separated
with a period. For example:

 GROUP firstgroup
 GROUP lastgroup
 item_a CHARACTER(10)
 END GROUP
 END GROUP

You must refer to the form data item item_a as "FIRSTGROUP.LASTGROUP.ITEM_A".When
referring to this data item, the order in which the qualifying group names are specified must match the
order in which the nested groups were declared. Intervening group names can never be omitted.

You can embed spaces in a qualified name. For example, another way to refer the data item in the
previous example would be:

"FIRSTGROUP . LASTGROUP . ITEM_A"

Furthermore, the components of a qualified name can be specified on successive lines. For example, yet
another way to refer to the item_a would be:

 "FIRSTGROUP .
LASTGROUP
. ITEM_A"

This capability is useful for long qualified names.

Each way of specifying a qualified name is considered equivalent by the IFDL Translator.

Name qualification of form data must be complete in every instance. All references to data items must be
fully qualified, even references where lack of qualification would not result in ambiguity.

A.2. Specifying Subscripts
When referencing a multiply occurring group or a panel field, form data item, icon, or button within a
multiply occurring group, the following types of subscripts can be specified:

● Numeric subscripts (numeric literals or numeric data references)

● Slice subscripts

259

Appendix A. Using Arrays with DECforms Software

● Range subscripts

● Corresponding subscripts (data items only)

A.2.1. Numeric Subscripts
Legal subscripts are numeric literals or numeric data references. Subscripts are truncated to an integer
before use. For the problem case of a negative number, truncation means using the integer algebraically
smaller than the decimal number; for example "A(–1.5)" means "A(–2)".

A.2.2. Slice Subscripts
Slice designations are represented with an asterisk ("*") in place of the subscript that is to vary. Consider
the following declaration:

 Form Data
 Group Classyear Occurs 12
 Group Student Occurs 2
 Student_Name Character(40) Varying
 Grades Character(5)
 End Group
 End Group
 End Data

 Layout L1
 ...
 Panel P1
 Group Classyear Vertical Displays 5
 Group Student Vertical
 Student_Name Character(40) Varying
 Grades Character(5)
 End Group
 End Group
 End Panel

If all occurrences of the GRADES panel field in the multiply occurring STUDENT group in the
eighth year only of the multiply occurring CLASSYEAR group are to be activated, the following slice
designation would be appropriate in the ACTIVATE response step:

ACTIVATE FIELD CLASSYEAR(8).STUDENT(*).GRADES ON PANEL P1

If a subscript is not present in the declaration, all occurrences of the item will be referenced as though a
slice designation was used.

For example, 'ACTIVATE FIELD CLASSYEAR.STUDENT(2).GRADES ON PANEL P1'
activates the GRADES field as though the subscript were
ACTIVATE CLASSYEAR(*).STUDENT(2).GRADES. All occurrences of CLASSYEAR activate the
GRADES field of the second student on the list.

CLASSYEAR.STUDENT.GRADES is considered to represent all occurrences of GRADES in every
group within which it is nested.

A.2.3. Range Subscripts
A subscript range can be used anywhere a slice designator can be used.

260

Appendix A. Using Arrays with DECforms Software

For example, A(3).B(4:5).C has a subscript range as its second subscript. This array expression identifies
two form data items: A(3).B(4).C and A(3).B(5).C. Other legal subscript ranges might be:

A(3).B(–4:5).C
A(3).B(X:6).C
A(3).B(X:Y).C
A(3).B(4:*).C
A(3).B(*:6).C
A(*).B(*:*).C
A(*:*).B(*:*).C

Each value of the pair must itself represent a legal value for the array. If the second of the pair has a
lower value than the first, a run-time error is reported.

The last two examples are equivalent and are the same as A.B.C, without explicit subscripts.
A(3).B(5:4).C is an illegal subscript range.

A.2.4. Corresponding Subscripts
Corresponding subscripts are designated by a double-asterisk ("**") and can be used in the following
item description and field validation:

● CONCEALED WHEN

● HIGHLIGHT WHEN

● PROTECTED WHEN

● OUTPUT WHEN

● RANGE

● REQUIRE

● Message clauses on the following item description and field validation:

○ NO DATA INPUT

○ INPUT REQUIRED

○ USE HELP MESSAGE

○ MINIMUM LENGTH

○ RANGE

○ REQUIRE

○ SEARCH

When a corresponding subscript is used in a form data array expression within one of the previous field
description entries, each occurrence of the data item in the expression is evaluated. The resulting value is
used on the same occurrence of the panel field in which the field description entry occurs. Consider the
following data group and panel group:

 Group G1 Occurs 10 { data group }

261

Appendix A. Using Arrays with DECforms Software

 Amount longword integer
 Limit longword integer
 End Group
 ...
 Group G1 Vertical { panel group }
 Displays 5
 Field Amount
 Input picture 999,999.99
 Protected when G1(**).Limit > 9999
 End field
 Field Limit
 Protected
 Output picture 999,999.99
 End Field
 End Group

In this example, each occurrence of G1. Amount is protected if the corresponding occurrence of G1.
Limit is greater than 9999, as follows:

● If G1(1).Limit > 9999, then G1(1).Amount is protected.

● If G1(2).Limit > 9999, then G1(2).Amount is protected.

Restrictions
Slice designators and subscript ranges can be used in the DATA TRANSFER clause and in the
ACTIVATE, DEACTIVATE, RESET, and VALIDATE response steps as any of the following:

data-array-references
data-group-array-references
field-array-references
panel-group-array-references
icon-array-references
button-array-references

Subscripted references are supported for up to two dimensions. A subscript must directly follow the
multiply occurring group to which it refers. A subscript must be a single numeric value; strings and array
slices are not allowed.

The following are examples of legal subscripts:

data_group_1(*).data_item_1
data_group_1(5).data_item_1
data_group_1(data_item_2).data_item_1
data_group_1(data_group_2(5).data_item_2).data_item_1
data_group_1(data_item_2+5).data_item_1

where data_group_2.data_item_2 has a numeric data type.

The following are examples of illegal subscripts:

data_group_1.data_item_1(3)
data_group_1("one").data_item_1
data_group_1(data_item_2).data_item_1
data_group_1(data_item_3(*)).data_item_1

where data_item_2 has a string data type.

262

Appendix A. Using Arrays with DECforms Software

A run-time error is reported if the subscript goes out of range.

A.3. Singular, Array, and Corresponding
References
The following sections discuss references to form data items, panel fields, icons, buttons, and data and
panel groups in the IFDL language. The following form data and layout definitions are used in these
sections:

 Form Data

 Item_1 Character(10)
 Group G1
 Item_1 Character(10)
 Group G2 Occurs 10
 Group G3 Occurs 2
 Item_1 Character(10)
 Item_2 Character(10)
 Item_3 Character(10)
 End Group
 End Group
 Group G4
 Item_1 Character(10)
 End Group
 End Group

 End Data

 Layout L1
 ...
 Panel P1
 Field Item_1
 End Field
 Group G1
 Field Item_1
 End Field
 Group G2 Vertical Displays 5
 Group G3 Horizontal
 Field Item_1
 End Field
 Icon I1
 Literal Text
 Value "Icon"
 End Literal
 End Icon
 Button B1
 End Button
 End Group
 End Group
 Group G4
 Field Item_1
 End Field
 End Group
 End Group

 End Panel

263

Appendix A. Using Arrays with DECforms Software

 End Layout

A.3.1. Singular References: Data, Field, Icon, and
Button References
A singular data reference, field reference, icon reference, or singular button reference is a reference to an
item that fits one of the following descriptions:

● Not declared inside a data group.

● Not declared inside in a multiply occurring data group, and not declared inside a group that is nested
within a multiply occurring group.

● Fully subscripted: any multiply occurring groups that are part of the reference contain subscripts that
evaluate to a single occurrence.

For example, assuming the form data and layout definitions at the beginning of Section A.3, "Singular,
Array, and Corresponding References", the following are valid singular references:

Reset Item_1
Let G1.Item_1 = " "
Let G1.G2(3).G3(1).Item_1 = "xxx"
Activate Field Item_1 on P1
Position To Field G1.Item_1 on P1
Deactivate Icon G1.G2(3).G3(1).I1 on P1
Activate Button G1.G2(7).G3(1).B1 on P1

These conditions apply to any IFDL syntactic entity defined as data-n, field-n, icon-n, or button-n.

A.3.2. Data, Field, Icon, and Button Array References
A data array reference, field array reference, icon array reference, or button array reference is a reference
to an item that fulfills all of the following conditions:

● It is declared inside a data group.

● At least one of groups where the item is nested is multiply occurring.

● The subscript for at least one of the multiply occurring groups specifies either multiple occurrences
of that group or all occurrences of that group (the reference is not fully subscripted).

For example, assuming the form data and layout definitions at the beginning of Section A.3, "Singular,
Array, and Corresponding References", the following are valid array references:

Reset G1.G2(*).G3(1).Item_1
Reset G1.G2(3:5).G3(1).Item_1
Reset G1.G2(2).G3.Item_1
Reset G1.G2.G3.Item_1
Activate Icon G1.G2(3:5).G3(1).I1 on P1
Deactivate Button G1.G2(1:4).G3(1).B1 on P1
Deactivate Field G1.G2(2).G3.Item_1 on P1
Activate Field G1.G2(*).G3(*).I1 on P1

Even if data group G3 was defined as "Occurs 1", it would still be considered a multiply occurring
group, because an OCCURS clause is specified. The reference to "G1.G2(2).G3.Item_1" would be

264

Appendix A. Using Arrays with DECforms Software

classified as a data array reference rather than as a singular data reference. However, a reference to
"G1.G2(2).G3(1).Item_1" would be classified as a singular data reference because the reference is fully
subscripted.

These conditions apply to any IFDL syntactic entity defined as data-array-n, field-array-n, icon-array-n,
or button-array-n.

A.3.3. Singular Group References: Data Group and
Panel Group References
A singular data group reference or singular panel group reference is a reference to a group that does not
have an OCCURS clause and fulfills one of the following conditions:

● The group is not nested inside a data group.

● The group is not nested inside in a multiply occurring data group.

● The group is fully subscripted: any multiply occurring groups that are part of the group reference
contain subscripts that evaluate to a single occurrence.

For example, assuming the same form data and layout definitions at the beginning of Section A.3,
"Singular, Array, and Corresponding References", the following are valid singular data and panel group
references:

Reset G1
Reset G1.G4
Reset G1.G2(3).G3(1)
Activate Group G1 Item_1 on P1
Position To Group G1.G4 on P1
Deactivate Group G1.G2(3).G3(1) on P1

These conditions apply to any IFDL syntactic entity that is defined as data-group-n, or panel-group-n.

A.3.4. Data Group and Panel Group Array References
A data group array reference or panel group array reference is a reference to an array that fulfills each of
the following conditions:

● The array group is declared with an OCCURS clause, or is nested inside a group that is declared with
an OCCURS clause.

● The subscript for at least one of the multiply occurring groups in the array group reference specifies
either multiple occurrences of that group, or all occurrences of that group (the reference is not fully
subscripted).

For example, assuming the same form data and layout definitions at the beginning of Section A.3,
"Singular, Array, and Corresponding References", the following are valid data and panel group array
references:

Reset G1.G2(*).G3(1)
Reset G1.G2(3:5).G3(1)
Reset G1.G2(2).G3
Reset G1.G2.G3
Activate Group G1.G2(3:5).G3(1) on P1
Deactivate Group G1.G2(2).G3 on P1

265

Appendix A. Using Arrays with DECforms Software

Activate Group G1.G2(*).G3(*) on P1

Even if data group G3 were defined as "Occurs 1", it would still be considered a multiply occurring
group, because an OCCURS clause was specified. This means that the reference to "G1.G2(2).G3"
would be classified as a data group array reference rather than a data group singular reference. However,
a reference to "G1.G2(2).G3(1)" would be classified as a data group singular reference, because the
reference is fully subscripted.

These conditions apply to any IFDL syntactic entity defined as data-group-array-n or panel-group-array-
n.

A.3.5. Corresponding Data References
A corresponding data reference is a reference to a data item that fulfills all of the following conditions:

● The data item is declared inside a data group.

● At least one of groups where the data item is nested is multiply occurring.

● At least one of the multiply occurring groups in the corresponding data reference, there is a
corresponding subscript ("**") specified.

For example, assuming the same form data and layout definitions at the beginning of Section A.3,
"Singular, Array, and Corresponding References", the following are valid corresponding data references
for panel field G1.G2.G3.Item_1:

Range G1.G2(**).G3(1).Item_2 Thru G1.G2(**).G3(1).Item_3
Require G1.G2(**).G3(**).Item_2 > G1.G2(**).G3(**).Item_3
Input Required
 Message G1.G2(3).G3(**).Item_3
 Protected When
 G1.G2(**).G3(**).Item_2 = G1.G2(**).G3(**).Item_3

These conditions apply to any IFDL syntactic entity that is defined as corresponding-data-n. The
semantics of corresponding data references is described in Section A.2, "Specifying Subscripts".

A.4. Scalar Numeric Expressions
A scalar numeric expression does not specify corresponding data.

Scalar numeric expressions are permitted in the following contexts:

● The right operand of a LET response step. In addition to being a data item or a constant, the right
operand of a LET response step can be a scalar numeric expression.

● Subscripts: in addition to being a data item or a number, a subscript can also be a scalar numeric
expression. The value of the expression is truncated to an integer, in the same way as the value of the
data item.

● Subscript bound: same as subscript.

The following are examples of scalar numeric expressions that assume the following form data
definitions:

 Form Data

266

Appendix A. Using Arrays with DECforms Software

 A Unsigned Word
 B Integer(10)
 C Byte Integer
 Group G1 Occurs 10
 F1 Integer(5)
 D Longword Integer
 E Word Integer
 End Group
 End Data

These are examples of scalar numeric expressions:

● Let A = (B + G1(3).D) / C

● Protected When G1(G1(B).D-A).F1 > A * C

● Activate field G1(1:B-C).F1 on P1

A.5. Corresponding Numeric Expressions
A corresponding numeric expression is a numeric expression in which at least one corresponding data
array is specified. Corresponding-data-1 is a corresponding data reference, designated by a double-
asterisk ("**"). For more information on corresponding data references, refer to Section A.3, "Singular,
Array, and Corresponding References".

Corresponding numeric expressions are permitted in conditional expressions within the following
contexts:

● CONCEALED WHEN

● HIGHLIGHT WHEN

● PROTECTED WHEN

● OUTPUT WHEN

● REQUIRE

The following examples of corresponding numeric expressions assume the form data definitions from the
previous section:

● Protected When G1(**).D > A * C / G1(**).E

● Require G1(**).D + 100 > G1(**).E * C

A corresponding data reference in a numeric expression in a relation must obey all of the current rules
for a corresponding data reference in a relation. For example, "A(**).D + B(**).C" is valid only if
"A(**).D"and "B(**).C" are both valid in that context under current rules.

267

Appendix A. Using Arrays with DECforms Software

268

Appendix B. DECforms Data
Types
This appendix contains information about DECforms data types and their equivalents.

Table B.1, "DECforms Data Types and Corresponding Oracle CDD/Repository and VAX Data Types"
lists the DECforms data types and the equivalent Oracle CDD/Repository and VAX data types.
Table B.2, "IFDL Data Types and Supported OpenVMS Data Types"lists the OpenVMS data types
supported by DECforms and the equivalent IFDL data types. Table B.3, " DECforms Data Types and
Corresponding COBOL Data Types" lists the DECforms data types and equivalent COBOL data types.

In Table B.1, "DECforms Data Types and Corresponding Oracle CDD/Repository and VAX Data Types",
if there is a blank in a column, there is no equivalent data type. If a data type is listed as unsupported by
DECforms software, the IFDL Translator generates an error,and no form is output.

Table B.1. DECforms Data Types and Corresponding Oracle CDD/Repository and VAX
Data Types

DECforms Data Type Oracle CDD/Repository Data
Type

VAX Data Type

ADT ADT ADT
Byte Integer B B
Character(x) T T
Character Varying(x) VT VT
Date ADT1

Decimal(x,y) explicit sign

left overpunched
explicit decimal

NLO4

Decimal(x,y) explicit sign

left overpunched
implicit decimal

NLO3 6 7 NLO3

Decimal(x,y) explicit sign

left separate
explicit decimal

NL4

Decimal(x,y) explicit sign

left separate
implicit decimal

NL 27 NL2

Decimal(x,y) explicit sign

right overpunched
explicit decimal

NRO4

Decimal(x,y) explicit sign

right overpunched

NRO3 6 7 NRO3

269

Appendix B. DECforms Data Types

DECforms Data Type Oracle CDD/Repository Data
Type

VAX Data Type

implicit decimal
Decimal(x,y) explicit sign

right separate
explicit decimal

NR4

Decimal(x,y) explicit sign

right separate
implicit decimal

NR3 6 7 NR3

Decimal(x,y) explicit sign

zoned
explicit decimal

NZ4

Decimal(x,y) explicit sign

zoned
implicit decimal

NZ3 6 7 NZ3

Decimal(x,y) implicit sign

explicit decimal

NU4

Decimal(x,y) implicit sign

implicit decimal

NU3 7 NU3

Decimal(x,y) packed

explicit sign
implicit decimal

P2 7 P2

Dfloating D D
Ffloating F F
Float(x,y) explicit sign

explicit decimal

T5

Float(x,y) explicit sign

implicit decimal

T5

Float(x,y) implicit sign

explicit decimal

T5

Float(x,y) implicit sign

implicit decimal

T5

Gfloating G G
Hfloating H H
Integer(x) explicit sign

left overpunched

NLO3 6 NLO3

270

Appendix B. DECforms Data Types

DECforms Data Type Oracle CDD/Repository Data
Type

VAX Data Type

Integer(x) explicit sign

left separate

NL2 NL2

Integer(x) explicit sign

right overpunched

NRO3 6 NRO3

Integer(x) explicit sign

right separate

NR3 6 NR3

Integer(x) explicit sign

zoned

NZ3 6 NZ3

Integer(x) implicit sign NU3 NU3

Integer(x) packed

explicit sign

P2 P2

Longword Integer L L
Quadword Integer Q Q
Time ADT 1

Unsigned Byte BU BU
Unsigned Longword LU LU
Unsigned Word WU WU
Unsupported BPV BPV
Unsupported DC DC
Unsupported DSC DSC
Unsupported FC FC
Unsupported GC GC
Unsupported HC HC
Unsupported O O
Unsupported OU OU
Unsupported QU QU
Unsupported V V
Unsupported VU VU
Unsupported ZI ZI
Unsupported ZEM ZEM
Word Integer W W

1The DECforms DATE and TIME data types represent an ADT field of 64 bits (a quadword); however, for the DATE data type, only the date
portion of the field is significant: the time portion is ignored. Similarly, for the TIME data type, only the time portion of the field is significant:
the date portion is ignored.
4Indicates DECforms data types that do not directly correspond to VAX data types. The data conversion process removes the explicit decimal
point when the record is received from the application program (in a send or transceive request).The explicit decimal is reinserted when the
record is returned to the application program (in a receive or transceive request). These data types are available for form record fields but not for
form data items.
3Indicates DECforms data types that are available for form record fields but not for form data items.

271

Appendix B. DECforms Data Types

6Specifies that the data type is converted to NL when it is used to define form data items.
7Specifies that the SCALE clause has been used to define the data item.
2These DECforms data types are valid for record fields and form data items; however, when these data types are used to define form data items,
sign and decimal clauses are neither necessary nor valid.
5The DECforms float data type is implemented as a text string that represents a floating-point number formatted according to the clauses in the
declaration.

Table B.2, "IFDL Data Types and Supported OpenVMS Data Types" lists the OpenVMS data types
supported by DECforms and the equivalent IFDL data types.

If there is a ’yes’ in a column, the data type is supported in both form data and form records. If there is a
’record’, the data type is supported only in form records; ’data’ means that the data type is supported only
in form data. If there is a blank in a column, the data type is not supported on that platform.

Table B.2. IFDL Data Types and Supported OpenVMS Data Types

IFDL Data Type OpenVMS Data Type

ADT Yes
ADT Current Data
Byte Integer Yes
Character Reversed(x) Record
Character Reversed(x) Null
Terminated

Record

Character Reversed(x) Varying Record
Character(x) Yes
Character(x) Null Terminated Yes
Character(x) Varying Yes
Date Yes
Date Current Data
Datetime(x) Yes
Decimal(x,y) explicit sign

left overpunched
explicit decimal comma

Record

Decimal(x,y) explicit sign

left overpunched
explicit decimal period

Record

Decimal(x,y) explicit sign

left overpunched
implicit decimal

Record

Decimal(x,y) explicit sign

left separate
explicit decimal comma

Record

Decimal(x,y) explicit sign

left separate
explicit decimal period

Yes

272

Appendix B. DECforms Data Types

IFDL Data Type OpenVMS Data Type

Decimal(x,y) explicit sign

left separate
implicit decimal

Record

Decimal(x,y) explicit sign

right overpunched
explicit decimal comma

Record

Decimal(x,y) explicit sign

right overpunched
explicit decimal period

Record

Decimal(x,y) explicit sign

right overpunched
implicit decimal

Record

Decimal(x,y) explicit sign

right separate
explicit decimal comma

Record

Decimal(x,y) explicit sign

right separate
explicit decimal period

Record

Decimal(x,y) explicit sign

right separate
implicit decimal

Record

Decimal(x,y) explicit sign

zoned
explicit decimal comma

Record

Decimal(x,y) explicit sign

zoned
explicit decimal period

Record

Decimal(x,y) explicit sign

zoned
implicit decimal

Record

Decimal(x,y) implicit sign

explicit decimal comma

Record

Decimal(x,y) implicit sign

explicit decimal period

Record

Decimal(x,y) implicit sign

implicit decimal

Record

273

Appendix B. DECforms Data Types

IFDL Data Type OpenVMS Data Type

Decimal(x,y) packed Yes
Dfloating Yes
Ffloating Yes
Float(x,y) explicit sign

explicit decimal comma

Record

Float(x,y) explicit sign

explicit decimal period

Yes

Float(x,y) explicit sign

implicit decimal

Record

Float(x,y) implicit sign

explicit decimal comma

Record

Float(x,y) implicit sign

explicit decimal period

Record

Float(x,y) implicit sign

implicit decimal

Record

Gfloating Yes
Hfloating Yes
Integer(x) explicit sign

left overpunched

Record

Integer(x) explicit sign

left separate

Yes

Integer(x) explicit sign

right overpunched

Record

Integer(x) explicit sign

right separate

Record

Integer(x) explicit sign

zoned

Record

Integer(x) implicit sign Record
Integer(x) packed Yes
Long Float Yes
Longword Integer Yes
Quadword Integer Yes
Short Float Yes
Time Yes

274

Appendix B. DECforms Data Types

IFDL Data Type OpenVMS Data Type

Time Current Data
Datetime(x) Yes
Unsigned Byte Yes
Unsigned Longword Yes
Unsigned Word Yes
Word Integer Yes

Table B.3, " DECforms Data Types and Corresponding COBOL Data Types" lists the DECforms data
types and the equivalent COBOL data types.

Table B.3. DECforms Data Types and Corresponding COBOL Data Types

DECforms Data Type COBOL Data Type

Integer(18) Explicit Sign Right Overpunched PIC S9(18) USAGE IS DISPLAY
Integer(18) Explicit Sign Right Overpunched PIC S9(18) USAGE IS DISPLAY SIGN IS TRAILING
Integer(18) Explicit Sign Left Overpunched PIC S9(18) USAGE IS DISPLAY SIGN IS LEADING
Integer(18) Explicit Sign Right Separate PIC S9(18) USAGE IS DISPLAY IS TRAILING

SEPARATE
Integer(18) Explicit Sign Left Separate PIC S9(18) USAGE IS DISPLAY IS LEADING

SEPARATE
Integer(18) Implicit Sign PIC 9(18) USAGE IS DISPLAY
Character(10) PIC X(10) USAGE IS DISPLAY
Character(10) PIC A(10) USAGE IS DISPLAY
Decimal (9,9) Explicit Sign Right
Overpunched Implicit Decimal

PIC S9(9)V9(9) USAGE IS DISPLAY

Decimal (9,9) Explicit Sign Right
Overpunched Implicit Decimal

PIC S9(9)V9(9) USAGE IS DISPLAY SIGN IS
TRAILING

Decimal (9,9) Explicit Sign Left
Overpunched Implicit Decimal

PIC S9(9)V9(9) USAGE IS DISPLAY SIGN IS
LEADING

Decimal (9,9) Explicit Sign Right Separate
Implicit Decimal

PIC S9(9)V9(9) USAGE IS DISPLAY SIGN IS
TRAILING SEPARATE

Decimal (9,9) Explicit Sign Left Separate
Implicit Decimal

PIC S9(9)V9(9) USAGE IS DISPLAY SIGN IS
LEADING SEPARATE

Decimal (9,9) Implicit Sign Implicit Decimal PIC S9(9)V9(9) USAGE IS DISPLAY

275

Appendix B. DECforms Data Types

276

Appendix C. IFDL Reserved
Words
Table C.1, "IFDL Reserved Words" lists the DECforms Independent Form Description Language
reserved words. These words may be used in IFDL source programs, but they must not appear in the
source programs as identifiers.

Table C.1. IFDL Reserved Words

ACTIVATE ACTIVE ALL ATTRIBUTE
AUTOSKIP BACKGROUND BY CALL
CHARACTER CHARACTERS COLUMN COLUMNS
CONCEALED CONSTANT COPY CURRENCY
DATA DEACTIVATE DECIMAL DEFAULT
DELETE DEVICE DISABLE DISPLAY
DISPLAYS ELSE ENABLE END
ENTER ENTRY EXIT FIELD
FIELDS FOREGROUND FORM FUNCTION
GROUP HELP HIGHLIGHT ICON
IF INCLUDE INITIAL INPUT
INSERT INTEGER INTERNAL INVALID
IS JUSTIFICATION LABEL LAYOUT
LENGTH LET LINE LINES
LIST LITERAL LOCATOR LOWERCASE
MESSAGE MINIMUM MIXED NEXT
NO NOT OCCURS OF
ON OUTPUT PANEL PIC
PICTURE POSITION PREVIOUS PRINT
PROTECTED RANGE RECEIVE RECORD
RECORDS REFRESH REMOVE REPLACE
REPLACING REQUEST REQUIRE REQUIRED
RESET RESPONSE RETAIN RETURN
SCALE SEARCH SEND SIGN
SIGNAL TABLE TEXT THEN
THROUGH THRU TIMEOUT TRANSCEIVE
TRANSLATE TRANSMIT UNTIL UPPERCASE
USE USING VALIDATE VALIDATION
VALUE VIEWPORT WAIT

277

Appendix C. IFDL Reserved Words

278

Appendix D. DECforms Function
Key Names
This appendix lists the DECforms key names that you use in function declarations. These key names
correspond to the following:

● Keys that generate the characters in the DEC Multinational Character Set

● Top row function keys and keypad keys on the LK201 keyboard

The following sections list the key names.

D.1. Function Key Names for the DEC
Multinational Character Set
Table D.1, "DEC Multinational Character Set Key Names" lists DECforms function names for the
keys that generate the characters in the DEC Multinational Character Set. For information on the keys
associated with the DEC Multinational Character set, see the documentation for your terminal keyboard.

Keys that produce printable characters are not allowed as function keys in DECforms, except as the
second key of a two-key sequence. The letter P in the third column of Table D.1, "DEC Multinational
Character Set Key Names" indicates a printable key.

The keys with a key value from 0 to 31 in Table D.1, "DEC Multinational Character Set Key Names"
are valid only on character-cell devices, except for the Backspace and Escape keys. If you want
to use control keys on window devices, use %CONTROL + %SMALL/CAPITAL-X, instead of
%CONTROL_X.

Table D.1. DEC Multinational Character Set Key Names

IFDL Function Key Name Key Value (DEC
Multinational)

Print Status

%NULL 0
%START_HEADING or %CONTROL_A 1
%START_TEXT or %CONTROL_B 2
%END_TEXT or %CONTROL_C 3
%END_TRANSMISSION or %CONTROL_D 4
%ENQUIRE or %CONTROL_E 5
%ACKNOWLEDGE or %CONTROL_F 6
%BELL or %CONTROL_G 7
%BACKSPACE1 or %CONTROL_H 8
%HORIZONTAL_TAB2 or %CONTROL_I 9
%LINE_FEED or %CONTROL_J 10
%VERTICAL_TAB or %CONTROL_K 11
%FORM_FEED or %CONTROL_L 12
%CARRIAGE_RETURN3 or %CONTROL_M 13

279

Appendix D. DECforms Function Key Names

IFDL Function Key Name Key Value (DEC
Multinational)

Print Status

%SHIFT_OUT or %CONTROL_N 14
%SHIFT_IN or %CONTROL_O 15
%DATA_LINK_ESCAPE or %CONTROL_P 16
%XON or %CONTROL_Q 17
%DEVICE_CTRL_2 or %CONTROL_R 18
%XOFF or %CONTROL_S 19
%DEVICE_CTRL_4 or %CONTROL_T 20
%NEGATIVE_ACKNOWLEDGE or %CONTROL_U 21
%SYNCHRONOUS_IDLE or %CONTROL_V 22
%END_TRANSMISSION_BLOCK or
%CONTROL_W

23

%CANCEL or %CONTROL_X 24
%END_MEDIUM or %CONTROL_Y 25
%SUBSTITUTE or %CONTROL_Z 26
%ESCAPE4 27
%FILE_SEPARATOR 28
%GROUP_SEPARATOR 29
%RECORD_SEPARATOR 30
%UNIT_SEPARATOR 31
%SPACE 32 P
%EXCLAMATION_POINT 33 P
%QUOTATION_MARK 34 P
%NUMBER_SIGN 35 P
%DOLLAR_SIGN 36 P
%PERCENT_SIGN 37 P
%AMPERSAND 38 P
%APOSTROPHE 39 P
%OPENING_PARENTHESIS 40 P
%CLOSING_PARENTHESIS 41 P
%ASTERISK 42 P
%PLUS_SIGN 43 P
%COMMA 44 P
%MINUS_SIGN 45 P
%PERIOD 46 P
%SLASH 47 P
%DIGIT_ZERO 48 P
%DIGIT_ONE 49 P

280

Appendix D. DECforms Function Key Names

IFDL Function Key Name Key Value (DEC
Multinational)

Print Status

%DIGIT_TWO 50 P
%DIGIT_THREE 51 P
%DIGIT_FOUR 52 P
%DIGIT_FIVE 53 P
%DIGIT_SIX 54 P
%DIGIT_SEVEN 55 P
%DIGIT_EIGHT 56 P
%DIGIT_NINE 57 P
%COLON 58 P
%SEMICOLON 59 P
%LESS_THAN_SIGN 60 P
%EQUALS_SIGN 61 P
%GREATER_THAN_SIGN 62 P
%QUESTION_MARK 63 P
%COMMERCIAL_AT 64 P
%CAPITAL_A 65 P
%CAPITAL_B 66 P
%CAPITAL_C 67 P
%CAPITAL_D 68 P
%CAPITAL_E 69 P
%CAPITAL_F 70 P
%CAPITAL_G 71 P
%CAPITAL_H 72 P
%CAPITAL_I 73 P
%CAPITAL_J 74 P
%CAPITAL_K 75 P
%CAPITAL_L 76 P
%CAPITAL_M 77 P
%CAPITAL_N 78 P
%CAPITAL_O 79 P
%CAPITAL_P 80 P
%CAPITAL_Q 81 P
%CAPITAL_R 82 P
%CAPITAL_S 83 P
%CAPITAL_T 84 P
%CAPITAL_U 85 P
%CAPITAL_V 86 P

281

Appendix D. DECforms Function Key Names

IFDL Function Key Name Key Value (DEC
Multinational)

Print Status

%CAPITAL_W 87 P
%CAPITAL_X 88 P
%CAPITAL_Y 89 P
%CAPITAL_Z 90 P
%OPENING_SQUARE_BRACKET 91 P
%BACK_SLASH 92 P
%CLOSING_SQUARE_BRACKET 93 P
%CIRCUMFLEX_ACCENT 94 P
%LOW_LINE 95 P
%LEFT_SINGLE_QUOTATION_MARK 96 P
%SMALL_A 97 P
%SMALL_B 98 P
%SMALL_C 99 P
%SMALL_D 100 P
%SMALL_E 101 P
%SMALL_F 102 P
%SMALL_G 103 P
%SMALL_H 104 P
%SMALL_I 105 P
%SMALL_J 106 P
%SMALL_K 107 P
%SMALL_L 108 P
%SMALL_M 109 P
%SMALL_N 110 P
%SMALL_O 111 P
%SMALL_P 112 P
%SMALL_Q 113 P
%SMALL_R 114 P
%SMALL_S 115 P
%SMALL_T 116 P
%SMALL_U 117 P
%SMALL_V 118 P
%SMALL_W 119 P
%SMALL_X 120 P
%SMALL_Y 121 P
%SMALL_Z 122 P
%OPENING_CURLY_BRACKET 123 P

282

Appendix D. DECforms Function Key Names

IFDL Function Key Name Key Value (DEC
Multinational)

Print Status

%VERTICAL_LINE 124 P
%CLOSING_CURLY_BRACKET 125 P
%TILDE 126 P
%DELETE5 127
RESERVED 128
RESERVED 129
RESERVED 130
RESERVED 131
RESERVED 132
RESERVED 133
RESERVED 134
RESERVED 135
RESERVED 136
RESERVED 137
RESERVED 138
RESERVED 139
RESERVED 140
RESERVED 141
RESERVED 142
RESERVED 143
RESERVED 144
RESERVED 145
RESERVED 146
RESERVED 147
RESERVED 148
RESERVED 149
RESERVED 150
RESERVED 151
RESERVED 152
RESERVED 153
RESERVED 154
RESERVED 155
RESERVED 156
RESERVED 157
RESERVED 158
RESERVED 159
%NO_BREAK_SPACE 160 P

283

Appendix D. DECforms Function Key Names

IFDL Function Key Name Key Value (DEC
Multinational)

Print Status

%INVERTED_EXCLAMATION_MARK 161 P
%CENT_SIGN 162 P
%POUND_SIGN 163 P
%CURRENCY_SIGN 164 P
%YEN_SIGN 165 P
%BROKEN_BAR 166 P
%SECTION_SIGN 167 P
%DIAERESIS 168 P
%COPYRIGHT_SIGN 169 P
%FEMININE_ORDINAL_INDICATOR 170 P
%LEFT_ANGLE_QUOTATION_MARK 171 P
%NOT_SIGN 172 P
%SOFT_HYPHEN 173 P
%REGISTERED_TRADE_MARK_SIGN 174 P
%MACRON 175 P
%DEGREE_SIGN 176 P
%PLUS_MINUS_SIGN 177 P
%SUPERSCRIPT_TWO 178 P
%SUPERSCRIPT_THREE 179 P
%ACUTE_ACCENT 180 P
%MICRO_SIGN 181 P
%PARAGRAPH 182 P
%MIDDLE_DOT 183 P
%CEDILLA 184 P
%SUPERSCRIPT_ONE 185 P
%MASCULINE_ORDINAL_INDICATOR 186 P
%RIGHT_ANGLE_QUOTATION_MARK 187 P
%VULGAR_FRACTION_ONE_QUARTER 188 P
%VULGAR_FRACTION_ONE_HALF 189 P
%VULGAR_FRACTION_THREE_QUARTERS 190 P
%INVERTED_QUESTION_MARK 191 P
%CAPITAL_A_WITH_GRAVE_ACCENT 192 P
%CAPITAL_A_WITH_ACUTE_ACCENT 193 P
%CAPITAL_A_WITH_CIRCUMFLEX_ACCENT 194 P
%CAPITAL_A_WITH_TILDE 195 P
%CAPITAL_A_WITH_DIAERESIS 196 P
%CAPITAL_A_WITH_RING_ABOVE 197 P

284

Appendix D. DECforms Function Key Names

IFDL Function Key Name Key Value (DEC
Multinational)

Print Status

%CAPITAL_DIPTHONG_AE 198 P
%CAPITAL_C_WITH_CEDILLA 199 P
%CAPITAL_E_WITH_GRAVE_ACCENT 200 P
%CAPITAL_E_WITH_ACUTE_ACCENT 201 P
%CAPITAL_E_WITH_CIRCUMFLEX_ACCENT 202 P
%CAPITAL_E_WITH_DIAERESIS 203 P
%CAPITAL_I_WITH_GRAVE_ACCENT 204 P
%CAPITAL_I_WITH_ACUTE_ACCENT 205 P
%CAPITAL_I_WITH_CIRCUMFLEX_ACCENT 206 P
%CAPITAL_I_WITH_DIAERESIS 207 P
%CAPITAL_ICELANDIC_LETTER_ETH 208 P
%CAPITAL_N_WITH_TILDE 209 P
%CAPITAL_O_WITH_GRAVE_ACCENT 210 P
%CAPITAL_O_WITH_ACUTE_ACCENT 211 P
%CAPITAL_O_WITH_CIRCUMFLEX_ACCENT 212 P
%CAPITAL_O_WITH_TILDE 213 P
%CAPITAL_O_WITH_DIAERESIS 214 P
%MULTIPLICATION_SIGN 215 P
%CAPITAL_O_WITH_OBLIQUE_STROKE 216 P
%CAPITAL_U_WITH_GRAVE_ACCENT 217 P
%CAPITAL_U_WITH_ACUTE_ACCENT 218 P
%CAPITAL_U_WITH_CIRCUMFLEX 219 P
%CAPITAL_U_WITH_DIAERESIS 220 P
%CAPITAL_Y_WITH_ACUTE_ACCENT 221 P
%CAPITAL_ICELANDIC_LETTER_THORN 222 P
%SMALL_GERMAN_LETTER_SHARP_S 223 P
%SMALL_A_WITH_GRAVE_ACCENT 224 P
%SMALL_A_WITH_ACUTE_ACCENT 225 P
%SMALL_A_WITH_CIRCUMFLEX_ACCENT 226 P
%SMALL_A_WITH_TILDE 227 P
%SMALL_A_WITH_DIAERESIS 228 P
%SMALL_A_WITH_RING_ABOVE 229 P
%SMALL_DIPHTHONG_AE 230 P
%SMALL_C_WITH_CEDILLA 231 P
%SMALL_E_WITH_GRAVE_ACCENT 232 P
%SMALL_E_WITH_ACUTE_ACCENT 233 P
%SMALL_E_WITH_CIRCUMFLEX_ACCENT 234 P

285

Appendix D. DECforms Function Key Names

IFDL Function Key Name Key Value (DEC
Multinational)

Print Status

%SMALL_E_WITH_DIAERESIS 235 P
%SMALL_I_WITH_GRAVE_ACCENT 236 P
%SMALL_I_WITH_ACUTE_ACCENT 237 P
%SMALL_I_WITH_CIRCUMFLEX_ACCENT 238 P
%SMALL_I_WITH_DIAERESIS 239 P
%SMALL_ICELANDIC_LETTER_ETH 240 P
%SMALL_N_WITH_TILDE 241 P
%SMALL_O_WITH_GRAVE_ACCENT 242 P
%SMALL_O_WITH_ACUTE_ACCENT 243 P
%SMALL_O_WITH_CIRCUMFLEX_ACCENT 244 P
%SMALL_O_WITH_TILDE 245 P
%SMALL_O_WITH_DIAERESIS 246 P
%DIVISION_SIGN 247 P
%SMALL_O_WITH_OBLIQUE_STROKE 248 P
%SMALL_U_WITH_GRAVE_ACCENT 249 P
%SMALL_U_WITH_ACUTE_ACCENT 250 P
%SMALL_U_WITH_CIRCUMFLEX_ACCENT 251 P
%SMALL_U_WITH_DIAERESIS 252 P
%SMALL_Y_WITH_ACUTE_ACCENT 253 P
%SMALL_ICELANDIC_LETTER_THORN 254 P
%SMALL_Y_WITH_DIAERESIS 255 P

1See %BACKSPACE in Table D.2, "Keypad and Function Key Names".
2See %TAB in Table D.2, "Keypad and Function Key Names".
3See %RETURN in Table D.2, "Keypad and Function Key Names".
4See %ESCAPE in Table D.2, "Keypad and Function Key Names".
5See %DELETE in Table D.2, "Keypad and Function Key Names".

D.2. Key Names for the Keypads and Top Row
Function Keys
Table D.2, "Keypad and Function Key Names" lists the names of the keys on the editing keypad and the
auxiliary keypad, which are located to the right of the main keypad on the LK201 keyboard. It also lists
the names of the top row function keys.

It is recommended that you use both SMALL_ and CAPITAL_ when you define sequences that use
letters. If you use both small and capital letters, the user will not need to be concerned as to whether the
caps lock key is on.

In Table D.2, "Keypad and Function Key Names", if there is a blank in the table row, the key is not
available on the specified platform and is ignored by the IFDL Translator. If there is a comma between
two IFDL key names, they are synonyms. You cannot use synonyms in the same layout.

286

Appendix D. DECforms Function Key Names

Table D.2. Keypad and Function Key Names

IFDL Key Name Character-Cell Key Name Window Key Name

%ALT1 Alt Compose Character
%SHIFT Shift Shift
%CONTROL Ctrl Ctrl
%PF1 PF1 PF1
%PF2 PF2 PF2
%PF3 PF3 PF3
%PF4 PF4 PF4
%KP_0 Keypad 0 Keypad 0
%KP_1 Keypad 1 Keypad 1
%KP_2 Keypad 2 Keypad 2
%KP_3 Keypad 3 Keypad 3
%KP_4 Keypad 4 Keypad 4
%KP_5 Keypad 5 Keypad 5
%KP_6 Keypad 6 Keypad 6
%KP_7 Keypad 7 Keypad 7
%KP_8 Keypad 8 Keypad 8
%KP_9 Keypad 9 Keypad 9
%KP_MINUS Keypad minus Keypad minus
%KP_COMMA Keypad comma Keypad comma
%KP_PERIOD Keypad decimal Keypad decimal
%ENTER,
%KP_ENTER

Keypad Enter Keypad Enter

%RETURN,
%CARRIAGE_RETURN

Return Return

%TAB
%HORIZONTAL_TAB

Tab Tab

%BACKSPACE Ctrl/H Ctrl/H
%DELETE2 Delete key Delete key
%UP Up arrow Up arrow
%DOWN Down arrow Down arrow
%LEFT Left arrow Left arrow
%RIGHT Right arrow Right arrow
%F1 F13 F13

%F2 F23 F23

%F3 F33 F33

%F4 F43 F43

%F5 F53 F53

%F6 F64 F64

287

Appendix D. DECforms Function Key Names

IFDL Key Name Character-Cell Key Name Window Key Name

%F7 F7 F7
%F8 F8 F8
%F9 F9 F9
%F10 F10 F10
%F11 F11 F11
%F12 F12 F12
%F13 F13 F13
%F14 F14 F14
%F15,
%HELP

F15,
Help

F15,
Help

%F16,
%DO

F16,
Do

F16,
Do

%F17 F17 F17
%F18 F18 F18
%F19 F19 F19
%F20 F20 F20
%FIND,
%E1

Find Find

%INSERT,
%INSERT_HERE,
%E2

Insert,
Insert Here

Insert,
Insert Here

%REMOVE,
%E3

Remove Remove

%SELECT,
%E4

Select Select

%PREV_SCREEN,
%PREV_PAGE,
%PAGE_UP,
%E5

Prev Screen,
Prev Page,
Prev

Prev Screen,
Prev Page,
Prev

%NEXT_SCREEN,
%NEXT_PAGE,
%PAGE_DOWN,
%E6

Next Screen,
Next Page,
Next

Next Screen,
Next Page, Next

1This key can be used in window layouts only.
2The Delete key deletes the character to the left of the cursor.
3The F1 to F5 keys are not always available on character-cell and Motif devices. They are often used to perform local terminal functions.
4F6 is often equivalent to ^Y (interrupt) on OpenVMS. To use F6 in your application, you must disable advanced line editing. To do this, use the
SET TERM/NOLINE command.

The editing keypad names are the same as the names printed on the keys; the key with the word Find
printed on it is named %FIND.

The Find key is also named %E1, the Insert Here key is also named %E2, and so on. %PF and %KP
precede the auxiliary keypad names.

288

Appendix D. DECforms Function Key Names

The top row function keys are named by %F and a number. Starting from the left side of the keyboard,
the %F6 key is the first key in the second group of function keys of an LK201 keyboard.

These keys are often tied to functions. In character-cell layouts, you can create either two-key sequences,
or single-function keys. For example,

(%PF1 %SMALL_A) PF1, "a"
(%PF1 %CAPITAL_A) PF1, "A"
%CARRIAGE_RETURN Return or Ctrl + "M"
%HELP Help key

The first key in a two-key sequence of a character-cell device must be from Table D.2, "Keypad and
Function Key Names" or a key from Table D.1, "DEC Multinational Character Set Key Names" that is not
printable.

For window layouts, you can create chords, or key combinations using %ALT, %CONTROL, and
%SHIFT. For example, the following are valid key chords:

%ALT + %SMALL_A Alt "a"
%ALT + %CAPITAL_A Alt "A"
%CONTROL + %SMALL_A Ctrl "a"
%CONTROL + %CAPITAL_A Ctrl "A"
%SHIFT + %F1 Shift F1
%F1 F1 key

If %SHIFT is used in the chord, the second key must be from Table D.2, "Keypad and Function Key
Names". For example, %SHIFT+ %SMALL_A is not allowed, but %SHIFT + %TAB is allowed. If
%ALT or %CONTROL is used without%SHIFT, then the other key can be any key from Table D.1,
"DEC Multinational Character Set Key Names"that is a printable key.

289

Appendix D. DECforms Function Key Names

290

Appendix E. DECforms Hebrew
User's Guide
DECforms software provides you with the option of specifying Hebrew forms. This appendix tells you
how to specify Hebrew forms using Hebrew terminals and DECforms software.

E.1. Hebrew Terminals
DECforms uses Hebrew terminal capabilities to process Hebrew text.

The DEVICE declaration in the LAYOUT declaration of the Independent Form Description Language
(IFDL) has been expanded. The following additional terminal types now support Hebrew text entities:

%VT100_HEBREW
%VT200_HEBREW
%VT300_HEBREW
%VT400_HEBREW

As with other terminal types, specifying %VT100_HEBREW as your device type enables a form for a
Hebrew VT100, or higher VT terminal type.

Do not specify both Hebrew and non-Hebrew terminals within the same layout. A layout intended to
run on a Hebrew terminal can specify only Hebrew terminal types. However, DECforms does not check
whether the terminal is an actual Hebrew terminal. You must ensure that a Hebrew form is used on a
Hebrew terminal. Running a form that contains Hebrew fields on a non-Hebrew terminal may cause
unexpected results.

The default terminal type used by the Form Development Environment (FDE) for a newly created layout
is %VT100. Hebrew users need to set the Layout Type in the Modify Layout FDE screen to Hebrew
Terminals. Then DECforms software considers the selected terminals for the current layout to be Hebrew
terminals.

The Hebrew VT terminal types replace the non-Hebrew VT terminal types wherever a device type is
specified in a Hebrew form;for example, in the optional /DEVICE qualifier of the FORMS EXTRACT
OBJECT utility command.

E.1.1. Information for DECforms/Hebrew Version 1.0
Users
There is a slight incompatibility with Hebrew forms created in DECforms/Hebrew Version 1.0 (local
version). The Hebrew terminal types were not available in DECforms Version 1.0, and the LANGUAGE
clause was used to specify a Hebrew form. DECforms/Hebrew Version 1.0 forms should be modified
to include the new Hebrew terminal definitions. The features previously based on the Hebrew language
definition are currently based on the Hebrew terminal definition. The LANGUAGE clause is used now
only for layout selection.

E.2. Hebrew Fields and Literals
Hebrew fields are character fields that accept and display Hebrew data in a right-to-left direction.
Hebrew literals are background text objects that contain Hebrew text.

291

Appendix E. DECforms Hebrew User's Guide

Hebrew fields and literals are characterized by three different attributes:

● Direction—Text Path

● Language—Character Set

● Data representation—Logical/Physical order

E.2.1. Text Path
The text path attribute controls the input/output direction. Hebrew objects, fields and literals, must
specify their text path attributes as Hebrew. English and numeric objects should have text path right.

Text path is one of the elementary attributes (such as line width, character set, or video attributes). As
such, it is a part of the DISPLAY clause and its syntax is:

Display Text Path { Hebrew | Right }

In this example, the { Hebrew | Right } notation means Hebrew or Right. For example, a double-size
Hebrew field definition may look like:

Field HEBREW_FIELD
 Line 7
 Column 1
 Display
 Text Path Hebrew
 Font Size Double High
 Output Picture X(35)
End Field

The default text path is right. You can use the LITERAL DEFAULT application or the FIELD
DEFAULT application to change the default to Hebrew as follows:

Apply { Field | Literal } Default of
 Display
 Text Path Hebrew
End default

In the Panel Editor, use the Display Attributes menu to set or modify the Text Path attribute. A Text
Path pull-down menu has been added for this purpose.

You can also use command line syntax for the Modify and Set operations:

Set Text Path { Hebrew | Right }

Modify Selected [Objects] Text Path { Hebrew | Right }

A new Text Path field indicator is defined in the status line, showing the current text path as either
Hebrew or Right. If the cursor is positioned on a text object, the indicator shows the object's text Path.
Otherwise, it shows the default text path for newly created text objects.

When the cursor is located on the adjacent position of a text object(that is, one position to the left
of a Hebrew literal or to the right of a non-Hebrew literal), the indicator shows the default text path.
However, if a character is typed in, it becomes a part of that object and inherits the object's text path.

When the Text Path indicator indicates Hebrew,characters are entered from right to left. Therefore,
Hebrew background text should always be created with the Text Path Hebrew attribute. Entry Mode is
automatically set to Hebrew Insert, because Hebrew Overstrike is not implemented.

292

Appendix E. DECforms Hebrew User's Guide

The initial Text Path default is Right. You can change the default by setting an initialization command
script that performs ’Set Text Path Hebrew’ whenever the Panel Editor is invoked. The logical name
FORMS$EDIT_INIT points to this script file, as described in the VSI DECforms Guide to Commands
and Utilities.

E.2.2. Character Set
The DECforms default character set for a text object is User Preference. For a Hebrew terminal, User
Preference is interpreted as follows:

● Hebrew 7-bit NRC for VT100/Hebrew terminals

● DEC Hebrew 8-bit for VT200/Hebrew and VT320/Hebrew terminals

● DEC Hebrew 8-bit or ISO_Hebrew for VT330-340/Hebrew and terminal emulators that support
ISO_Hebrew

● DEC Hebrew 8-bit or ISO_Hebrew for VT400/Hebrew and terminal emulators that support
ISO_Hebrew

Hebrew 7-bit is supported on VT100-class or on other terminals, under VT100 mode only. That is, to
work in a 7-bit Hebrew environment,VT200-, VT300-, and VT400-type terminals must be defined as
VT100 in the OpenVMS operating system by the DCL command SET TERM, as well as in the terminal
setup.

The same layout can run on VT100-, VT200-, VT300- VT400-type Hebrew terminals. In this case, to
ensure that the layout is properly displayed on both 7-bit and 8-bit terminals,all Hebrew text items such
as background text and messages must be 8-bit Hebrew character strings.

When 8-bit Hebrew text items are used for purposes other than display, they are not converted into 7-
bit Hebrew when running on VT100-type terminals. For example, you cannot compare range values for
field validation specified in 8-bit Hebrew with 7-bit Hebrew input. In this case you must define separate
layouts for 7-bit and 8-bit devices.

You can also explicitly specify the Hebrew character set for fields and literals, as you can
specify any other character set supported by DECforms software. The character set name
PRIVATE_DEC_HEBREW has been added to the IFDL syntax and to the Panel Editor (PED)
Character Set menu. This character set is interpreted as Hebrew 7-bit or Hebrew 8-bit according to the
actual terminal, as described above for User Preference.

E.2.3. Logical/Physical Order
Data can be stored in a Hebrew field in logical or physical order.

Logical order means that the first (rightmost) character on the screen is the first character in the program
buffer (lowest memory address). Physical order means that the last (leftmost) character on the screen is
the first character in the program buffer.

Hebrew field on screen: LATIGID /* where "LATIGID" is "HP" in Hebrew */
Field picture is X(8): XXXXXXXX

Table E.1, "Data Representation in Hebrew Fields" shows data representation in Hebrew fields.

293

Appendix E. DECforms Hebrew User's Guide

Table E.1. Data Representation in Hebrew Fields

Memory Offsets Logical Order
Buffer

Physical Order
Buffer

0000: D
0001: I L
0002: G A
0003: I T
0004: T I
0005: A G
0006: L I
0007: D

The default order for a Hebrew field is logical order. Logical order is required for search, sort, and
compare data manipulations.

To store data in physical order, the Hebrew record field should have a CHARACTER REVERSED data
type. This data type may be specified for record fields only, within the record definition in the IFDL file.
It may not be specified for form data items.

When the application calls the form with a record, the physical order data that corresponds to a character
reversed record field is inverted into logical order. The form sees the data in logical order only, and
manipulates it in the same manner as logical order fields.

Within the form, the developer always refers to record field data as logical order data, and can implement
data operations supported by the IFDL regardless of the order needed for the application.

When the form calls back the application with the record, an inversion takes place again, from logical
into physical order.

The reverse operation takes place in the Data Distribution phase. The form data field associated with the
character reversed record field must be a character field, and the reverse operation may occur between
CHARACTER REVERSED and CHARACTER data types only.

The syntax for the new data type is similar to the CHARACTER data type, with the addition of the
keyword REVERSED. The syntax is as follows:

Character Reversed(n) [VARYING | NULL TERMINATED]

Oracle CDD/Repository software does not support this data type. Therefore, you cannot store or fetch a
record definition that contains Character Reversed fields from Oracle CDD/Repository software.

E.3. Hebrew Icons
A Hebrew icon is an icon that uses the Text Path Hebrew attribute. The cursor is positioned on the right
lower corner of a Hebrew icon at run time. In an icon on a non-Hebrew terminal, the cursor is positioned
on the left lower corner of the icon.

The Text Path Hebrew attribute should be associated with the icon itself,regardless of the text path
assigned to the literals of the icon. In the IFDL, the attribute is specified in a DISPLAY clause specific to
the icon, as follows:

294

Appendix E. DECforms Hebrew User's Guide

Icon OK
 Display
 Text Path Hebrew
 Literal Text
 Line 11 Column 10
 Value "Hebrew-text"
 Display
 Text Path Hebrew
 Bold
 End Literal
 Literal Rectangle
 Line 9 Column 3
 Line 13 Column 19
 End Literal
End Icon

In the Panel Editor, an icon is created with the default Text Path as a field or a text literal. To modify
an icon's text path, you must first select the icon. You cannot select an icon by moving the cursor and
pressing the Select key: you can select an icon using only a Select All, Select [Marked] Area, or Select
Named command.

Select All and Select [Marked] Area select only the icons, not the literal objects within the icons. In this
case,the Modify Text Path command affects only the icon, not the literals that belong to the icon. Text
Path differs from other elementary attributes in this regard. For example, when you select an icon and
modify the video attributes,the literals, not the icon, are modified.

When creating a Hebrew icon in the Panel Editor, the text literals selected for the icon must be of Text
Path Hebrew. If non-Hebrew literals are required within a Hebrew icon, you must define those in the
IFDL, with a Text Path Right attribute explicitly assigned to them. Otherwise the literals inherit the Text
Path Hebrew attribute from the icon.

Neither Hebrew text in a non-Hebrew icon nor a non-Hebrew literal in a Hebrew icon can be edited
interactively. When the cursor is positioned on a literal that belongs to an icon, the status line shows the
Text Path of the icon, together with the icon name, and not the Text Path of the literal. The Entry Mode
is determined according to the icon Text Path.

The Text Path attribute can also be inherited from a higher level object,as can any other elementary
attribute. The DISPLAY TEXT PATH HEBREW clause specified at the panel level sets the default text
path to Hebrew for all lower level objects within the panel. This may be helpful, especially for using
icons.

E.4. Hebrew Values in Fields
A value specified in an IFDL file may be assigned to a form data item as a default value, or dynamically,
during execution, as in any other high-level programming language.

A value assigned to a Hebrew data item should be specified in logical order value. This is also true for
values that are compared to Hebrew data items, or have any other relation to the content of a Hebrew
data item.

Logical order Hebrew values specified in the IFDL file are Hebrew strings written from left to right. The
first Hebrew character of the value is the leftmost one, and the last Hebrew character is the rightmost
one. Hebrew background text and Hebrew messages, however, are written in a readable Hebrew format
in the IFDL.

295

Appendix E. DECforms Hebrew User's Guide

To avoid this inconvenience of logical order, the syntax of the LET response step has been expanded to
include a reverse option. The reverse option allows you to specify a Hebrew string in physical order, as a
source for a LET response step, and to store the value in logical order within a destination variable. The
variable can then be used in data manipulations.

The LET response step syntax for the reverse option is as follows:

LET
 Variable = %REV ('Readable_Hebrew_string')

The LET response step can be used to assign default values to data items,to create search lists, and in
most instances, to specify a character string.

Data items can also store physical order Hebrew data for other purposes. To store data items used in a
Hebrew message in physical order, do not use the reverse option of the LET statement.

The reverse option can also be useful for converting from logical into physical order, for example, when
the content of a Hebrew data item is to be displayed in a message. (Section E.7, "Hebrew Messages"
contains an example.)

In general, the %REV function is required only when dealing with data item values. All other Hebrew
items, such as text literals, messages, field pictures,should be specified in physical order, that is, as they
are displayed at run time.

E.5. Hebrew Fields and Literals Column
Clause
The column specified for fields and literals is always the leftmost column,regardless of the object's text
path. The column indicates the starting position of the field in the panel definition environment, which is
left-to-right oriented.

The {Next}, {+n}, and {-n} expressions in the COLUMN clause are always implemented in the left-to-
right direction.

In the following example, the HEBREW_FIELD is created on line 7, between columns 41 and 80.

Field ENGLISH_FIELD
 Line 7 Column 1
 Output Picture X(40)
End Field

Field HEBREW_FIELD
 Same Line
 Next Column
 Display
 Text Path Hebrew
 Output Picture X(40)
End Field

E.6. Hebrew Pictures and Justification
The picture of a Hebrew field is always specified in a physical order,that is, as it is displayed on the
screen. For example, to have two digits at the beginning of a Hebrew field, the picture definition should
be as follows:

296

Appendix E. DECforms Hebrew User's Guide

Output Picture XXXX99

In a COBOL-like language, the picture represents the program buffer, not the display, and the picture for
such a field would be as follows:

PIC 99XXXX

Hebrew text fields are right justified by default. The option of specifying a nondefault justification to a
Text Path Hebrew field is disabled. Such an attempt results in an error message. Symmetrically, a Text
Path Hebrew default is not applied to a field that has specified justification explicitly.

E.7. Hebrew Messages
Hebrew messages should be displayed in a Hebrew message panel, which is a panel that uses the Text
Path Hebrew attribute. In a Hebrew panel, the line wrapping is done from left to right and the message
is right justified. For example, in a Hebrew message panel the leftmost word of a line is wrapped to the
rightmost position of the next line.

You can define a Hebrew message panel as follows:

Message Panel MESSAGE_PN
 Viewport MESSAGE_VP
 Display
 Text Path Hebrew
End Panel

If you do not define your own message panel, DECforms creates a default message panel, one per layout.
For a layout intended to run on a Hebrew terminal, the default message panel is created with a Text Path
Hebrew attribute. Changing from a non-Hebrew terminal to a Hebrew terminal (or conversely) with the
FDE updates the Text Path attribute of the default message panel (if one exists).

Messages are composed of text literals and data items. The Hebrew literals are written in physical order,
that is, in a normal readable Hebrew format.

Hebrew data items used for messages should also contain physical order text. To display a data item
containing logical order Hebrew text, a Hebrew field for instance, in a Hebrew message, you can use the
%REV function described in Section E.4, "Hebrew Values in Fields". For example:

Let
 Customer_Name_Msg = %REV(Customer_Name_Field)

Message
 Customer_Name_Msg ":Hebrew-text"

Hebrew messages can also contain non-Hebrew items; however,wrapping is not language sensitive and
all text items in a Hebrew message panel are wrapped in the left-to-right direction.

E.8. Bidirectional Editing in a Panel Field
Bidirectional input in a field is implemented by a Push mode. This mode enables you to enter English or
numeric text in a Hebrew field, and Hebrew text in an English field.

A new built-in function has been defined for this purpose, INSERT PUSH. The function works in
exactly the same way as the INSERT OVERSTRIKE function, and toggles Insert mode and Push mode.

297

Appendix E. DECforms Hebrew User's Guide

The function is assigned to the Ctrl~ key by default. (The DECforms key name for this key is
%RECORD_SEPARATOR.) It may be assigned to a different key, as specified in a function declaration,
for example:

Function INSERT PUSH
 IS %F17
End Function

Pressing F17 in a textual field, Hebrew or non-Hebrew, sets the entry mode to Push mode. Characters
entered in Push mode are pushed against the field direction (Text Path). Pressing this key a second time
terminates Push mode. The entry mode is switched to Insert and the cursor is moved to the end of field.

The mix of languages does not affect the logical/physical order of data or any other field attribute. The
form treats the data as it appears on the screen, regardless of the typing order of characters.

An example of typing Hebrew and numeric characters in a Hebrew field follows:

Hebrew field picture: XXXXX
Two characters entered into a Hebrew field: eH
Cursor location: -
Push mode key is pressed, cursor does not move: -
Three digits entered in push mode: 902eH
Cursor location: -

Table E.2, "Typing Characters in Hebrew Fields" shows the memory offsets, logical order buffer,and
physical order buffer of the characters typed in the previous example.

Table E.2. Typing Characters in Hebrew Fields

Memory Offsets Logical Order
Buffer

Physical Order
Buffer

0000: H 9
0001: e 0
0002: 2 2
0003: 0 e
0004: 9 H

This function is available also in the FDE and should help you enter Hebrew values, such as comments
and messages, interactively.

E.9. Activation Order in a Hebrew Form
The activation order of fields in a panel is the order in which the fields are created, unless you change it.

To modify the activation order of fields using the Panel Editor, first select the objects in the required
order, then enter an Order Selected Objects command.

For a non-Hebrew panel, the default order should be left to right, top to bottom. For a Hebrew panel,
the default order should be right to left, top to bottom. To set the appropriate default, a new Panel Editor
command has been implemented.

The command line syntax is as follows:

Set Origin [Mode] { Left | Right }

298

Appendix E. DECforms Hebrew User's Guide

Left is intended for non-Hebrew and Right is for Hebrew.

Because the Origin Mode affects selection order, determine the Origin Mode before you select the
objects. Then enter the Order command.

Setting the Origin Mode does not affect the internal order of horizontal group occurrences. The Select
command treats these occurrences as one group. To process the horizontal occurrences from right to
left,use an activation list. For information on activating panel groups for input, see the VSI DECforms
Guide to Commands and Utilities.

The Origin Mode also affects the visitation order during panel editing. The following commands depend
on the Origin Mode:

Position Next { Object | Word }

Position Previous { Object | Word }

When the Origin Mode is Right, the objects and words are scanned in the right-to-left, top-to-bottom
direction for Next, and in the left-to-right, bottom-to-top direction for Previous.

In addition, the Return key function determines the next line starting position according to the Origin
Mode. For Origin Mode Right, the cursor is in the rightmost position.

Columns in the Panel Editor are always numbered from left to right, regardless of the Origin Mode. You
should make all references to column numbers, such as the starting position of an object, the Position
Horizontal command, the plus (+) and minus (–) operators, in the same manner for Origin Mode Left
and Right.

E.10. LSE Support
The Language-Sensitive Editor (LSE) supports the new IFDL syntax described in this document. This
syntax includes the following:

● Text Path attribute

● CHARACTER REVERSED data type

● INSERT PUSH built-in function

● LET response step %Reverse declaration

● PRIVATE_DEC_HEBREW character set

E.11. DEC FMS to DECforms Forms
Conversion
You can convert DEC FMS (Forms Management System) Hebrew screen layouts to DECforms forms,
but FMS Hebrew field attributes are not converted. You must assign the Text Path Hebrew attribute to
Hebrew fields and text literals manually. In FMS, Hebrew background text does not use any Hebrew
attributes; in DECforms it does.

FMS Hebrew fields are physical order fields by default. DECforms default order for Hebrew record fields
is logical order. Also, in FMS, order is a field attribute. In DECforms, order is a record field data type.

299

Appendix E. DECforms Hebrew User's Guide

You should also specify the Hebrew terminal in the DEVICE declaration.

When converting from FMS Version 2.2 or previous versions, FMS Hebrew fields are converted to
Concealed (Noecho) fields. It is recommended that you upgrade from FMS Version 2.2/Hebrew to FMS
Version 2.3/Hebrew before converting to DECforms/Hebrew.

For more information on how to upgrade Hebrew forms, see the FMS Version 2.3 Hebrew User's Guide.

E.12. Hebrew Installation Notes
The DECforms installation process on OpenVMS systems places the Hebrew run-time message file in
SYS$MESSAGE:FORMS$MSGMGRSHR_HEBREW.EXE.

The English run-time message file is found in SYS$MESSAGE:FORMS$MSGMGRSHR.EXE.

DECforms uses the English message file by default. To use the Hebrew messages, the system manager
should physically replace the English file with the Hebrew file, and then reinstall the image by
performing @FORMS$STARTUP.

The user can also use the logical name FORMS$MSGMGRSHR to point to the desired language-
specific message file.

300

Appendix F. Built-In Functions
DECforms supplies many functions that are predefined (or built-in) in the IFDL. This appendix
describes:

● Built-in functions and their default key bindings

● Default response syntax for the built-in functions

● Contextual, or special-case, built-in functions

● Character-cell considerations for function key bindings

● System reserved keys

For more information about built-in functions, including a description and syntactical use, see the
description of the BUILTIN FUNCTION clause.

F.1. Default Key Bindings for Built-in
Functions
Table F.1, "Default Key Bindings for Built-In Functions" lists, in alphabetical order, each built-in function
name for which DECforms provides at least one default key binding, followed by the key binding.

Key bindings enclosed in parentheses (()) indicate character-cell key sequences.

Key bindings containing a plus sign (+) indicate chorded key bindings for window devices.

Key bindings separated by commas (,) indicate that there is more than one default binding for the
function on that particular system.

Unless a key binding is marked Not Available or Not Rebindable, you can override the default binding by
assigning a new key using the FUNCTION declaration. Be careful that the new binding does not conflict
with existing or reserved bindings.

Table F.1. Default Key Bindings for Built-In Functions

Key BindingFunction Name

Character-Cell Function Window Function

CURSOR DOWN 1 %DOWN %DOWN
CURSOR LEFT1 %LEFT %LEFT
CURSOR RIGHT1 %RIGHT %RIGHT
CURSOR UP1 %UP %UP
DELETE CHARACTER1 %DELETE %DELETE
DOWN ITEM (%PF1 %DOWN) %CONTROL + %SHIFT + %PF4
DOWN OCCURRENCE (%PF4 %DOWN) %CONTROL + %PF4
ERASE FIELD %LINE_FEED,%F132 Not Available
EXIT GROUP NEXT (%PF4 %HORIZONTAL_TAB), %SHIFT + %PF2

301

Appendix F. Built-In Functions

Key BindingFunction Name

Character-Cell Function Window Function
(%PF4 %CARRIAGE_RETURN),
(%PF4 %KP_ENTER)

EXIT GROUP PREVIOUS (%PF4 %BACKSPACE) %SHIFT + %PF1
INSERT LINE1 (%PF1 %CARRIAGE_RETURN) %RETURN

%CONTROL + %RETURN
INSERT OVERSTRIKE1 %CONTROL_A,

%F142
Not Available

INSERT PUSH (%RECORD_SEPARATOR) %F17
LEFT ITEM (%PF1 %LEFT) %CONTROL + %SHIFT + %PF1
LEFT OCCURRENCE (%PF4 %LEFT) %CONTROL + %PF1
NEXT HELP %PF2,

%HELP2
%HELP

NEXT ITEM %HORIZONTAL_TAB,
%CARRIAGE_RETURN,
%KP_ENTER

%PF4

NEXT PANEL (%PF1 %PF4),
%NEXT_SCREEN2

%SHIFT + %PF4

PREVIOUS ITEM %BACKSPACE,
%F122

%PF3

PREVIOUS PANEL (%PF1 %PF3),
%PREV_SCREEN 2

%SHIFT + %PF3

REFRESH DISPLAY %CONTROL_R,
%CONTROL_W

Not Available

RIGHT ITEM (%PF1 %RIGHT) %CONTROL + %SHIFT +%PF2
RIGHT OCCURRENCE (%PF4 %RIGHT) %CONTROL + %PF2
TERMINATE HELP (%PF1 %PF2),

(%PF1 %HELP)2
%CONTROL + %HELP

TRANSMIT %CONTROL_Z,
%CONTROL_D,
%F102

%CONTROL + %SMALL_D,
%CONTROL + %CAPITAL_D,
%CONTROL + %SMALL_Z,
%CONTROL + %CAPITAL_Z

UP ITEM (%PF1 %UP) %CONTROL + %SHIFT + %PF3
UP OCCURRENCE (%PF4 %UP) %CONTROL + %PF3

1You cannot assign new keys to this function. However,you can assign these key names to other functions. For example, you cannot redefine
CURSOR DOWN, but you may use%DOWN in another function.
2Additional key binding for VT200/VT300/VT400 devices.

F.2. Response Syntax for Built-In Functions
The following sections show the default response syntax for the built-in functions used for navigation
and intrafield editing.

F.2.1. Navigation Functions

302

Appendix F. Built-In Functions

Navigation functions are functions that move among the active objects on the activation list. These
functions have default function responses. You can declare your own function response to override the
default response.

● DOWN ITEM

Function Response DOWN ITEM
 If LOWERMOST ITEM Then
 Message
 %NO_DOWN_ITEM
 Else
 Position To DOWN ITEM
 End If
End Response

● DOWN OCCURRENCE

Function Response DOWN OCCURRENCE
 If LAST OCCURRENCE VERTICAL Then
 Message
 %NODOWNOCC
 Else
 Position To DOWN OCCURRENCE
 End If
End Response

● EXIT GROUP NEXT

Function Response EXIT GROUP NEXT
 Position To EXIT GROUP NEXT
End Response

● EXIT GROUP PREVIOUS

Function Response EXIT GROUP PREVIOUS
 Position To EXIT GROUP PREVIOUS
End Response

● LEFT ITEM

Function Response LEFT ITEM
 If LEFTMOST ITEM Then
 Message
 %NO_LEFT_ITEM
 Else
 Position To LEFT ITEM
 End If
End Response

● LEFT OCCURRENCE

Function Response LEFT OCCURRENCE
 If FIRST OCCURRENCE HORIZONTAL Then
 Message
 %NOLEFTOCC
 Else
 Position To LEFT OCCURRENCE
 End If

303

Appendix F. Built-In Functions

End Response

● NEXT HELP

Function Response NEXT HELP
 If HELP MESSAGE AVAILABLE Then
 Message Help
 Else
 If HELP PANEL EXISTS Then
 Enter Help
 Else
 If HELP ACTIVE Then
 Message
 %NO_MORE_HELP
 Position To CURRENT ITEM
 Else
 If HELP MESSAGE EXISTS Then
 Message
 %NO_MORE_HELP
 Position To CURRENT ITEM
 Else
 Message
 %NO_HELP_AVAIL
 End If
 End If
 End If
 End If
End Response

● NEXT ITEM

Function Response NEXT ITEM
 If LAST ITEM Then
 Message
 %NO_NEXT_ITEM
 Else
 Position To NEXT ITEM
 End If
End Response

● NEXT PANEL

Function Response NEXT PANEL
 Position To NEXT PANEL
End Response

● PREVIOUS ITEM

Function Response PREVIOUS ITEM
 If FIRST ITEM Then
 Message %NO_PREV_ITEM
 Else
 Position To PREVIOUS ITEM
 End If
End Response

● PREVIOUS PANEL

Function Response PREVIOUS PANEL

304

Appendix F. Built-In Functions

 Position To PREVIOUS PANEL
End Response

● REFRESH DISPLAY

Function Response REFRESH DISPLAY
 REFRESH ALL
End Response

● RIGHT ITEM

Function Response RIGHT ITEM
 If RIGHTMOST ITEM Then
 Message
 %NO_RIGHT_ITEM
 Else
 Position To RIGHT ITEM
 End If
End Response

● RIGHT OCCURRENCE

Function Response RIGHT OCCURRENCE
 If LAST OCCURRENCE HORIZONTAL Then
 Message
 %NORIGHOCC
 Else
 Position To RIGHT OCCURRENCE
 End If
End Response

● TERMINATE HELP

Function Response TERMINATE HELP
 If HELP ACTIVE Then
 Exit Help
 Else
 Message
 %HELP_INACTIVE
 End If
End Response

● TRANSMIT

Function Response TRANSMIT
 If HELP ACTIVE Then
 Exit Help
 Else
 Return
 End If
End Response

● UP ITEM

Function Response UP ITEM
 If UPPERMOST ITEM Then
 Message
 %NO_UP_ITEM
 Else

305

Appendix F. Built-In Functions

 Position To UP ITEM
 End If
End Response

● UP OCCURRENCE

Function Response UP OCCURRENCE
 If FIRST OCCURRENCE VERTICAL Then
 Message
 %NOUPOCC
 Else
 Position To UP OCCURRENCE
 End If
End Response

F.2.2. Intrafield Editing Functions
The following built-in functions are used for intrafield editing. On character-cell devices, you cannot
declare a function response for these built-in functions. On window devices, you can neither declare a
function response nor rebind the keys for these built-in functions. In most cases, the intrafield functions
are provided automatically by the windowing system. See Appendix G, "Intrafield Editing Functions" for
more information about these and other intrafield editing functions.

● CURSOR DOWN

● CURSOR LEFT

● CURSOR RIGHT

● CURSOR UP

● DELETE CHARACTER

● ERASE FIELD (not available in window layouts)

● INSERT LINE

● INSERT OVERSTRIKE (not available in window layouts)

● INSERT PUSH

F.3. Contextual Built-in Functions
The following sections describe special built-in functions. These functions are not listed in Table F.1,
"Default Key Bindings for Built-In Functions" because there are no default key bindings for them.

In each case, the response is not bound to a specific key, but reflects a particular context; it may depend
on the cursor context, it may do nothing by default (and output a message to that effect), or it may
depend on the windowing environment.

You cannot bind contextual functions to a key, but you can declare a different response.

F.3.1. Character-Cell Functions
The following functions are used in character-cell layouts only.

306

Appendix F. Built-In Functions

BOUNDARY Functions
The BOUNDARY functions are provided to allow extra control during navigation. Your form should not
depend on these functions for vital features.

● BOUNDARY CURSOR DOWN

Function Response BOUNDARY CURSOR DOWN
 Message %CANTMOVEDOWN
End Response

● BOUNDARY CURSOR LEFT

Function Response BOUNDARY CURSOR LEFT
 Message %CANTMOVELEFT
End Response

● BOUNDARY CURSOR RIGHT

Function Response BOUNDARY CURSOR RIGHT
 Message %CANTMOVERIGHT
End Response

● BOUNDARY CURSOR UP

Function Response BOUNDARY CURSOR UP
 Message %CANTMOVEUP
End Response

● BOUNDARY DELETE LEFT

Function Response BOUNDARY DELETE LEFT
End Response

BUILTIN Function
The BUILTIN function is intended for all built-in intrafield and navigation functions that do not have
explicitly declared function responses at the same level. Its usual purpose is to keep the text cursor from
leaving a particular area of the form or to catch any input.

Function Response BUILTIN FUNCTION
End Response

UNDEFINED Function
The UNDEFINED function is invoked only when the operator presses a key that corresponds to no
function response. The only valid action that a response can take is to issue an error message.

Function Response UNDEFINED FUNCTION
 Message %NO_FUNC_RESPONSE
End Response

USER Function
The USER function is intended for user-defined functions that do not have explicitly declared function
responses at the same level. Its usual purpose is to keep the text cursor from leaving a particular area of
the form or to catch any input.

Function Response USER FUNCTION

307

Appendix F. Built-In Functions

End Response

F.3.2. Window Functions
DECwindows Motif systems define certain mouse actions and keystrokes to provide the following special
functions, used only in window layouts. See Section F.5, "Window Considerations for Function Key
Bindings" for information about focus change processing (FOCUS CHANGE) and processing associated
with the locator (TRIGGER OBJECT and VALUE CHANGE).

FOCUS CHANGE
The FOCUS CHANGE function response is executed by functions that move the input focus from one
active item to another. The response is executed for the current activation item.

Function Response FOCUS CHANGE
 Position Immediate to FOCUS CHANGE
End Response

TRIGGER OBJECT
The TRIGGER OBJECT function response is executed by functions that trigger push buttons.

Function Response TRIGGER OBJECT
End Response

VALUE CHANGED
The VALUE CHANGED function response is executed by functions that cause the value of slider fields
to change.

Function Response VALUE CHANGED
End Response

F.4. Character-Cell Considerations for
Function Key Bindings
Rebinding NEXT ITEM and INSERT LINE
If you declare your own function rebinding for NEXT ITEM or INSERT LINE, ensure that the functions
are used consistently by being aware of the following interactions:

● If you use the defaults for all DECforms built-in functions, note that:

• The NEXT ITEM function is bound by default to the Return,Tab, and Enter keys
(%CARRIAGE_RETURN, %HORIZONTAL_TAB, %KP_ENTER) on the keypad.

• The Enter key is distinguished from the Return key on character-cell keyboards only when the
keypad is in application mode.

• The INSERT LINE function is bound by default to the key sequence PF1/Return (%PF1
%CARRIAGE_RETURN).

● Because of the default bindings, the operator must press a two-key sequence (PF1/Return) to invoke
the function INSERT LINE.

308

Appendix F. Built-In Functions

To allow the operator to press only the Return key to invoke INSERT LINE, enter the following at
the layout level:

Function
 Insert Line Is %RETURN
End Function
Builtin Function Response NEXT ITEM

The line “Builtin Function Response NEXT ITEM ” is necessary to reestablish the Return, Enter,
and Tab keys as the NEXT ITEM function for the rest of the form.

In the text field, enter the following:

Builtin Function Response INSERT LINE

This function response has the effect of accepting the Return key as the INSERT LINE function
because the Form Manager sees the INSERT LINE function first (at the text field level) as it
searches up the hierarchy to find a function response that applies to the key.

Now the operator must press the Tab key from the keypad to invoke the NEXT ITEM function.
Depending on the keypad mode setting, the Enter key is interpreted as follows:

○ If keypad mode is %KEYPAD_APPLICATION, the Enter key is interpreted as Enter, which
invokes the NEXT ITEM function.

○ If keypad mode is %KEYPAD_NUMERIC, the Enter key is interpreted as Return, which
invokes the INSERT LINE function.

You can determine which keypad mode is in effect by using the DISPLAY clause in the text field.

Function Key Processing for Text Processing
You should be aware of the Form Manager's algorithm for finding the appropriate function to execute
for a key. Whenever the operator presses a key, the Form Manager does the following:

1. For the object that is the current activation item (field or push button), looks at all the function
responses declared in that object. If the name of the function is bound to the key, the Form Manager
executes that function response and stops searching.

2. If the object is in a group, searches the group function responses. Because groups may be nested,
the Form Manager searches each level of the nesting from the deepest up to the panel level. If any
function response is found bound to the key, the Form Manager executes that function response and
stops searching.

3. Searches the panel level. If any function response is found bound to the key, the Form Manager
executes that function response and stops searching.

4. Searches the layout level. If any function response is found bound to the key, the Form Manager
executes that function response and stops searching.

5. If no function has been found by this time, searches the DECforms defaults, in two stages:

a. Searches the rebound built-in functions (these are built-in functions that the form has changed to
keys other than the DECforms defaults). If any function response is found bound to the key, the
Form Manager executes that function response and stops searching.

309

Appendix F. Built-In Functions

b. Searches the built-in functions that still have the original DECforms bindings. If any function
response is found bound to the key, the Form Manager executes that function response and stops
searching.

F.5. Window Considerations for Function Key
Bindings
Focus Change Processing
Focus is another name for the current activation item. An item has focus if it will receive input from the
keyboard. Focus change is an event outside normal keyboard processing intended to change focus.

A focus change can occur when:

● The operator brings a window to the top by clicking on the banner or other non-DECforms active
part of the window,or by entering the system-reserved keystrokes for changing the window that has
focus. The windowing system selects an item in the window to receive the focus—either the last
active item in that window that had focus or, in the case of the first display of the window, the first
active item in the window.

● A window belonging to another process goes away (because it is deleted or minimized) and the
windowing system assigns focus to a DECforms window. Again, the windowing system selects an
item to receive focus.

● The operator positions the locator in a field or push button and presses MB1. The MB1 down click
is the focus change event. See the section called “Locator Processing” for the action of releasing
MB1.

You cannot rebind the FOCUS CHANGE function to any keys. The function is generated by DECforms
interpreting messages from the windowing system. On DECwindows Motif systems, the function
also may be generated by a function key not recognized by DECforms, but used by Motif for its own
navigation.

Focus Change Processing from the Locator
Locator is a generic term that refers to a pointing mechanism, such as a mouse or track ball.

If a focus change is directed to the current activation item, the Form Manager does nothing (it ignores
the event), because focus is where it belongs.

If a focus change is not directed to the current activation item, the Form Manager executes the FOCUS
CHANGE function response. The default response is POSITION IMMEDIATE TO Focus Change.
The normal accept phase processing for this response step is to exit the current activation item without
further validation and to make the item receiving focus the new current activation item.

You can override the default behavior by declaring a function response at any level. Because the Form
Manager delivers a FOCUS CHANGE function to the current activation item, that item (or its ancestors)
may choose an action different than the default by specifying its own FOCUS CHANGE function
response. That item might, for example, specify a null function response so that the locator button has no
effect (does not change focus – effectively nullifying the effect of the focus change event, trapping focus
in this activation item). Alternately, the item might specify POSITION TO Focus Change, allowing the
refocusing to take place only if no validation failure occurs on the current activation item.

310

Appendix F. Built-In Functions

The response POSITION...TO Focus Change has effect only while the FOCUS CHANGE function
response is being executed; it is ignored at other times.

Focus Change Processing from the Keyboard
On DECwindows Motif systems, the Tab and the Shift/Tab keys are not defined by default for
navigation. Motif interprets these keys as Motif keyboard transversal, meaning that Motif selects
another active item on the same panel to be the next recipient of focus (a FOCUS CHANGE function in
DECforms terms).

DECforms uses the functions NEXT ITEM and PREVIOUS ITEM to provide item-to-item navigation.
The DECforms functions are not necessarily bound to the same panel. The default for NEXT ITEM,
when the current activation item is the last item on the panel, is to go to the next panel, if any. Similarly,
the default for PREVIOUS ITEM, when the current activation item is the first item on the panel, is to go
to the previous panel, if any. This navigation is useful in heavy data entry situations where the operator is
continuously typing fields that are located across several panels.

You can override this behaviour, and program behavior similar to the Motif behavior,by using the
conditions PANEL FIRST ITEM and PANEL LAST ITEM.

Also, you can rebind the NEXT ITEM function to the Tab key but you should be aware that, by so
doing, the Tab key no longer gives the default Motif traversal behavior. (The Ctrl/Tab keys still yield
Motif traversal.)Similar considerations apply to the PREVIOUS ITEM function. You should consider
whether the consistent Motif behavior of the Tab key is more important than the additional functions
provided by DECforms.

Locator Processing
On DECwindows systems, DECforms does not let you associate user-defined functions with the locator.
It does, however, provide several types of processing with the locator: window manipulation, text
selection, slider value change, the FOCUS CHANGE function,and the TRIGGER OBJECT function for
push buttons.

DECforms provides window manipulations using locators consistent with the platform. Manipulations
include the ability to move, raise, lower, minimize, or maximize windows, and to pan windows, arrays,
and text fields using scroll bars. These features are available automatically whenever the IFDL specifies
the enabling display objects: decorations for viewports and scroll bars for panels, text fields, and panel
groups.

DECforms supports use of the locator to select items from picture fields or text fields for cutting or
copying to the clipboard and from the clipboard. These functions are available automatically, without any
syntax needed in the IFDL. Cutting and pasting are considered intrafield editing operations and can be
executed only on active items; Appendix G, "Intrafield Editing Functions" describes the specific functions
recognized.

The operator can use the locator to move the slider indicator, changing a slider field's value. This
operation is available automatically, as an implied intrafield editing operation for slider fields. If the
operator changes the value of the slider, either by moving the slider indicator or by changing the slider
value from the keyboard, the Form Manager executes the VALUE CHANGED function.

When the operator positions the locator in a DECforms window and clicks a locator button, that action
can generate zero, one, or two DECforms functions. The actual mechanism is easier to understand if
you realize that a button click consists of two separate actions: a down click and an up click. These two
actions generate two events, which the Form Manager turns into DECforms functions.

311

Appendix F. Built-In Functions

If the locator is not within the current activation item when the down click occurs, the Form Manager
generates the FOCUS CHANGE function for the current activation item, which is processed as
described previously, possibly changing the current activation item. If the locator is within the current
activation item, the Form Manager does nothing on the down click.

After all the processing for the down click, including the complete processing for any FOCUS CHANGE
function, the Form Manager takes care of the up click event. (The current activation item for the up click
and the down click may be different.) If the up click occurs in the current activation item and that is the
same item in which the down click occurred and if the current activation item is a push button, the Form
Manager generates a TRIGGER OBJECT function; otherwise, the Form Manager ignores the up click.

There are several possible cases for locator down clicks implied by the preceding rules. They are
explained here to help in understanding the behavior of the locator.

● The locator is outside the current activation item and is not on an active item:

• If the locator is in the same panel as the current activation item, nothing happens (no functions
are executed, either on down click or on up click).

• If the locator is in a different panel than the current activation item, the FOCUS CHANGE
function is executed. No matter where the up click occurs, nothing happens.

● The locator is outside the current activation item and is on an active item that is a push button:

The FOCUS CHANGE function is executed. If the up click happens in the same item as the down
click and if that item has become the current activation item, the TRIGGER OBJECT function is
executed. For either of the following situations, no function is executed on the up click: the item
pointed to by the locator does not become the current activation item or the operator moves the
locator out of the item before the up click.

● The locator is outside the current activation item and is on an active item that is not a push button:

The FOCUS CHANGE function is executed. No matter where the up click occurs, nothing happens.

● The locator is inside the current activation item:

No FOCUS CHANGE function is executed for the down click. If the up click occurs when the
locator is in the same item and it is a push button, the TRIGGER OBJECT function is executed. If
the operator moves the locator out of the current activation item and then performs the up click, or if
the current activation item is not a push button, the TRIGGER OBJECT function is not executed.

Keypad Function Key Bindings
Use of the numeric keypad is different for window devices than it is for character-cell devices.

DECwindows Motif Systems—The keypad on LKxxx keyboards contains 18 keys. The top row of keys,
labelled PF1, PF2, PF3, and PF4, and the Enter key are treated as function keys on DECwindows Motif
systems. The remaining 13 keys—0 to 9, minus (–), comma (,), and period (.)—can be used either as
numeric keys or function keys. The choice of numeric or function keys must be made, for the most part,
once per application; it cannot be changed depending on context.

To use the keypad for data entry of numbers, you should not define any functions using those 13 keys
(%KP_0 to%KP_PERIOD).

To use the keypad as function keys, you can define functions using the keys. However, once a keypad
key has a function response defined for it, no object in the scope of the response can use the key for data

312

Appendix F. Built-In Functions

entry; the key always generates a function. If you define even one of the numeric keys on the keypad as a
function, the keypad essentially cannot be used for numeric data entry, because that key can no longer be
used as a number. The operator could, of course, enter the digit from the main keyboard, but that would
be awkward, a misuse of the keypad, and bad input design.

It is possible to define the three keys %KP_MINUS, %KP_COMMA, and %KP_PERIOD as functions
and still be able to use the numbers on the keypad to enter data. However, the main keyboard then must
be used to enter a minus, comma, or period. If your numbers are not signed and do not have decimal
points, the preceding may be a useful alternative for you, but if you want to use the keypad for entry of
numeric, signed, decimal data, VSI recommends you not use any keypad keys as functions.

Keyboard Function Key Bindings
LK201 keyboards cannot recognize three chording keys simultaneously. For example, the LK201
keyboard cannot generate the code for key sequences involving the Ctrl key, the Shift key, the Alt key,
and some other key at the same time.

Though other keyboards do not have this restriction, VSI recommends that you not use such function
bindings.

F.5.1. System-Reserved Keys
In Table F.2, "System Reserved Keys" ,the following special functions are reserved by DECwindows. You
cannot rebind these keys, and you should not use their key names when defining other functions.

Table F.2. System Reserved Keys

Meaning DECwindows Motif Default

Expand an icon into its window Alt/F5
Start move window mode Alt/F7
Start resize window mode Alt/F8
Shrink current window to an icon Alt/F9
Expand window size to whole screen Alt/F10
Push window behind all others Alt/F3
Close application Alt/F4
Switch to last application used, and then to next
application

Alt/Tab

Switch to previous application Alt/Shift/Tab
Open control menu for application Shift/F11
Move to next window in window family Alt/F6
Move to previous window in window family Alt/Shift/F6
Console mode Ctrl/*1/F2
Next window Alt/F11
Open control menu Alt/Select
Previous window Alt/Shift/F11
Pseudo mouse mode Ctrl/Shift/F3
Toggle Ctrl/Alt/1

313

Appendix F. Built-In Functions

Meaning DECwindows Motif Default

Reserved Ctrl/Alt/F1
Reserved Ctrl/Alt/F4
Reserved Ctrl/Alt/F14
Reserved Ctrl/Alt/Help
Reserved Ctrl/Alt/Do
Reserved Ctrl/Alt/F17
Reserved Ctrl/Alt/F18
Reserved Ctrl/Alt/Find
Reserved Ctrl/Alt/Insert
Reserved Ctrl/Alt/Remove
Scroll bar up2 Prev Screen

Ctrl/Alt/Left Arrow
Scroll bar down2 Next Screen

Ctrl/Alt/Right Arrow
Scroll bar left2 Alt/Left Arrow

Ctrl/Prev Screen
Scroll bar right2 Alt/Right Arrow

Ctrl/Next Screen
1Any combination of Shift and Alt
2Reserved whenever the current window has scroll bars.

F.5.2. OpenVMS System Function Keys
Certain Control key functions on OpenVMS systems are bound to a particular action. To define
DECforms functions that use those Control key combinations, you must perform additional setup beyond
what is specified in the form itself.

For information about changing terminal driver characteristics and key bindings so you can enable these
system function keys for DECforms use, see your operating system documentation.

314

Appendix G. Intrafield Editing
Functions
Intrafield editing functions are built-in functions that you use to enter and edit data in an elementary
display object such as a field or push button label. The meaning of each function is defined based on the
type of device you are using; DECforms does not let you declare a function response for these functions.

Intrafield editing functions are context-sensitive; the function might perform different editing for
different display objects. In some cases (for example, push buttons), an intrafield editing function might
not be meaningful and is ignored if it is the applicable function.

This appendix summarizes the following:

● Character-cell intrafield editing functions

● Window intrafield editing functions

● Keys reserved in window layouts

G.1. Intrafield Editing Functions for Character-
Cell Devices
The Form Manager provides intrafield editing keys that allow the operator to move the cursor within a
field, to erase the field, and to delete characters. You can override the default keys by rebinding new keys
to the functions.

Table G.1, "Character-Cell Editing Functions" lists the intrafield editing keys for character-cell devices.

Table G.1. Character-Cell Editing Functions

Function Meaning Default Key

PICTURE FIELD

Cursor Left
Cursor Right

Move the cursor in the direction specified; arrow keys
automatically skip over insertion literals

Left Arrow
Right Arrow

Delete Character Delete the previous character Delete
Erase Field Erase the contents of the field; fill each picture character

with the default character for the element
Ctrl/J
F13

Insert Overstrike Toggle insertion mode between insert and overstrike Ctrl/A
F14

TEXT FIELD

All those in PICTURE
FIELD
Cursor Up
Cursor Down

Move the cursor in the direction specified; arrow keys
automatically skip over insertion literals

Up Arrow
Down Arrow

Insert Line Insert a new-line character into the form data item and
reformat the text field

Return

315

Appendix G. Intrafield Editing Functions

G.1.1. Data Entry and Editing Details
The following sections provide additional details about the operations associated with intrafield editing
and data entry.

Using Insert and Overstrike Mode

In overstrike mode, data characters that the operator enters into a field overstrike the character in the
current cursor position. After each character is entered, the cursor moves right to the next data position.
If the cursor is not over a data position, an error is generated.

If AUTOSKIP processing was specified and the cursor is forced to move into the hanging cursor position
after entering data into the rightmost data position (the position one character cell to the right of the last
data position) in the field, an AUTOSKIP condition occurs.

In left justified insert mode, data characters that you enter into the field cause all data characters to the
right of the cursor to be shifted one position to the right. The character entered then is inserted in the
data position under the cursor and the cursor moves right one data position.

If the field is full before the character is entered into the field, afield full condition occurs. If entering the
data character into the field causes the field to become full, and if AUTOSKIP processing was specified,
an AUTOSKIP condition occurs.

In right justified insert mode, data characters that the operator enters into the field cause all data
characters from the cursor position to be shifted one position to the left. The character entered then is
inserted in the data position under the cursor. If the field is full before the character is entered into the
field, afield full condition occurs. If entering the data character into the field causes the field to become
full, and if AUTOSKIP processing was specified, an AUTOSKIP condition occurs.

Entering Periods or Commas

If the field in which data is being entered is a Format 2 field and the operator enters a decimal point or
comma while the cursor is sitting on the decimal point or comma, the cursor shifts right into the decimal
portion of the field and enters left justified overstrike mode. This behavior is only allowed if the input
mode is justification decimal. Otherwise the decimal point and comma keys are treated as field input.

Justification decimal causes all data characters to the left of the decimal point to be entered in right
justified insert mode and all data characters to the right of the decimal point to be entered in left justified
overstrike mode.

Entering Sign

To change the sign of the field, the operator can enter either the plus (+) or minus (–) key. This causes
the sign (if any) to be changed to reflect the new value. If no sign appears in the field, an error is
generated. Sign characters can be entered anytime during field input.

Inserting Lines

INSERT LINE inserts, at the character position, a new-line character into the form data item and
reformats the text field by remapping the form data item to the text field area.

316

Appendix G. Intrafield Editing Functions

G.2. IntraField Editing Functions for Window
Devices
DECwindows Motif provides basic intrafield editing keys that allow the operator to move the cursor
within the field, to erase the field, and to delete characters. The functions are provided by the windowing
system; you cannot declare responses for the mor rebind them to different keys. In addition, VSI
recommends that you not use these key combinations when defining other functions.

Table G.2, "Window Intrafield Editing Functions" lists the intrafield editing keys for window devices. The
table also lists mouse buttons, because mouse operations are essentially intrafield operations.

Table G.2. Window Intrafield Editing Functions

Function Meaning Default Keys

PICTURE FIELD

Cursor Left
Cursor Right

Move the cursor one character in the direction
specified

Left Arrow
Right Arrow

Large Left Move left one word Ctrl/Left Arrow
Large Right Move right one word Ctrl/Right Arrow
Field Start Move to start of field (same as start of line for one

line fields)
Ctrl/Alt/Left Arrow

Field End Move to end of field (same as start of line for one
line fields)

Ctrl/Alt/Right Arrow

Line Start Move to start of line Alt/Left Arrow
F12
Ctrl/H

Line End Move to end of line Alt/Right Arrow
Ctrl/E

Text Scroll Left Scrolls left in field Ctrl/Prev Screen
Text Scroll Right Scrolls right in field Ctrl/Next Screen
Select Character Left Select or cancel selection left one character Shift/Left Arrow
Select Character Right Select or cancel selection right one character Shift/Right Arrow
Select Word Left Select or cancel selection left one word Ctrl/Shift/Left Arrow
Select Word Right Select or cancel selection right one word Ctrl/Shift/Right Arrow
Select Line Start Select or cancel selection to start of line Shift/Alt/Left Arrow

Ctrl/Shift/H
Select Line End Select or cancel selection to end of line Shift/Alt/Right Arrow

Ctrl/Shift/E
Start Select Start a selection region Select
Select Range Select string from text cursor point to mouse

pointer
Ctrl/Shift/Space
Shift/Select

Reselect Range Restore previous selection Ctrl/Shift/Space Ctrl/
Shift/Select

Select All Select entire text field Ctrl/Slash (/)

317

Appendix G. Intrafield Editing Functions

Function Meaning Default Keys

Deselect All Deselect entire text field (any data key also
deselects)

Ctrl/Backslash (\)

Delete Next Character If any characters are selected, delete them; else
delete character to right (left for Hebrew) of
insertion point

Shift/Delete

Delete Previous
Character

Delete character to left (right for Hebrew) of
insertion point

Delete

Delete Previous Word Delete word to left (right for Hebrew) of insertion
point

F13
Ctrl/J
Ctrl/Shift/J

Delete Start Line Delete from insertion point to start of line Ctrl/U
Ctrl/Shift/U

Delete End Line Delete from insertion point to end of line Ctrl/Remove
Erase Field Delete entire field Not available
Insert Overstrike Toggle between insert overstrike mode Not available
Copy To Clipboard Copy selected text to clipboard Shift/Remove
Cut to Clipboard Delete and copy selected text to clipboard Remove
Paste From Clipboard Paste clipboard to field Insert Here
Primary Copy Copy selected text to cursor Alt/Shift/Remove
Primary Cut Cut and move selected text to cursor Alt/Remove
Disjoint Selection Toggle between Normal and Disjoint Selection

Modes (also called Add Mode in Motif)
Shift/F8

Undo Edit Undo last editing action Alt/Delete
Restore Text Restores text to value prior to editing Ctrl/Shift/Insert Here
Set Text Cursor Within field, set text cursor to locator MB1
Locator Extend Extend text selection from text cursor to locator Shift/MB1
Locator Select Select text MB1 drag
Locator Word Select Select word that locator is on MB1 double click
Primary Locator Paste Cut or copy current text selection to locator

position (operator depends on object being cut or
copied and on destination)

MB2

Primary Locator Copy Copy text selection to locator position Ctrl/MB2
Primary Locator Cut Cut (move) text selection to locator position Alt/MB2
Quick Locator Paste Cut or copy secondary selection to text cursor MB2
Quick Locator Copy Copy secondary selection to text cursor Ctrl/Shift/MB2
Quick Locator Cut Cut secondary selection to text cursor Alt/Shift/MB2
TEXT FIELD

All those in PICTURE
FIELD
Cursor Down Move down one line Down Arrow
Cursor Up Move up one line Up Arrow

318

Appendix G. Intrafield Editing Functions

Function Meaning Default Keys

Insert Line Insert Carriage Return into data Return
Ctrl/Return

Paragraph Up Move to previous paragraph Ctrl/Up Arrow
Paragraph Down Move to next paragraph Ctrl/Down Arrow
Page Up Move up one page Prev Screen
Page Down Move down one page Next Screen
Select Line Up Select line of text up Shift/Up Arrow
Select Line Down Select line of text down Shift/Down Arrow
SLIDER FIELD

Cursor Down Move slider down by smallest amount Down Arrow
Cursor Left Move slider left by smallest amount Left Arrow
Cursor Right Move slider right by smallest amount Right Arrow
Cursor Up Move slider up by smallest amount Up Arrow
Large Down Move slider down by 10 percent Ctrl/Down Arrow
Large Left Move slider left by 10 percent Ctrl/Left Arrow
Large Right Move slider right by 10 percent Ctrl/Right Arrow
Large Up Move slider up by 10 percent Ctrl/Up Arrow
Line End Move slider to maximum value Alt/Right Arrow
Line Start Move slider to minimum value Alt/Left Arrow
PUSH BUTTON

Trigger Object Execute button response Return
Ctrl/Return
Enter
Space
Alt/Space
Select
MB1

G.2.1. Data Entry and Editing Details
Field input for picture fields and text fields is in left-justified insert mode. Additionally, you must
explicitly provide insertion literals including sign, decimal point, currency, and exponential characters for
picture fields.

Validation of input to picture fields does not occur until the data conversion stage, when the input picture
is used to de-edit the field input. For more information, see the PICTURE STRING section of this
manual.

When a data input field is full, at run time the system automatically executes a NEXT ITEM function
response.

319

Appendix G. Intrafield Editing Functions

G.2.2. Reserved Intrafield Editing Keys
Table G.3, "Reserved Intrafield Editing Keys" lists the intrafield editing keys and key combinations that
are reserved for DECforms future development. You should not use these key names when defining
functions (in addition to the key names listed in Table G.2, "Window Intrafield Editing Functions").

Table G.3. Reserved Intrafield Editing Keys

Enter
All combinations of Ctrl, Shift, Alt with Up Arrow
All combinations of Ctrl, Shift, Alt with Down Arrow
All combinations of Ctrl, Shift, Alt with Left Arrow
All combinations of Ctrl, Shift, Alt with Right Arrow
MB3
F4, F10, F11

320

	VSI DECforms IFDL Reference Manual
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Related Documents
	5. OpenVMS Documentation
	6. VSI Encourages Your Comments
	7. Conventions

	Chapter 1. Independent Form Description Language
	1.1. IFDL Concepts
	1.1.1. IFDL Syntax Conventions
	1.1.2. Name Sharing

	1.2. IFDL Syntax Descriptions
	ACCEPT RESPONSE Declaration
	ACTIVATE Response Step
	ACTIVE HIGHLIGHT Clause
	ATOMIC Clause
	ATTRIBUTE Declaration
	BUILTIN FUNCTION Clause
	CALL Response Step
	COLOR Clause
	CONCEALED Clause
	CONDITIONAL EXPRESSION
	CONTROL TEXT RESPONSE Declaration
	COPY Statement
	DATETIME DATA Clause
	DATETIME FIELD Clause
	DEACTIVATE Response Step
	DEVICE Declaration
	DISABLE RESPONSE Declaration
	DISPLAY ATTRIBUTE Entry
	DISPLAY Clause
	DISPLAY Response Step
	DISPLAY VIEWPORT Clause
	EDITING Clause
	ELEMENTARY ATTRIBUTE
	ENABLE RESPONSE Declaration
	ENTER HELP Response Step
	ENTRY RESPONSE Declaration
	EXIT HELP Response Step
	EXIT RESPONSE Declaration
	EXTENT Clause
	EXTERNAL RESPONSE Declaration
	FIELD DEFAULT Application
	FIELD DEFAULT Declaration
	FIELD DEFAULT Entry
	FIELD VALIDATION Entry
	FONT Declaration
	FORM DATA Declaration
	FORM Declaration
	FORM RECORD Declaration
	FUNCTION Declaration
	FUNCTION RESPONSE Declaration
	GROUP Declaration
	HELP PANEL Declaration
	HIGHLIGHT WHEN Clause
	ICON Declaration
	IF Response Step
	IMPLEMENTOR ATTRIBUTE
	INCLUDE Response Step
	INPUT PICTURE Clause
	INTERNAL RESPONSE Declaration
	INVALID Response Step
	ITEM DESCRIPTION Entry
	LAYOUT Declaration
	LET Response Step
	LIST Declaration
	LITERAL Declaration
	LITERAL DEFAULT Application
	LITERAL DEFAULT Declaration
	LITERAL DEFAULT Entry
	LOCATION Clause
	MESSAGE Clause
	MESSAGE PANEL Declaration
	MESSAGE Response Step
	NUMERIC EXPRESSION
	OUTPUT PICTURE Clause
	PANEL Declaration
	PATTERN Clause
	PICTURE FIELD Declaration
	PICTURE STRING
	POSITION Response Step
	POSTDISPLAY Clause
	PRINT Response Step
	PROTECTED Clause
	PUSH BUTTON Declaration
	RECEIVE RESPONSE Declaration
	RECORD IDENTIFIER Declaration
	RECORD LIST Declaration
	REFRESH Response Step
	REMOVE Response Step
	RESET Response Step
	RESPONSE STEP Clause
	RETURN Response Step
	SCROLL BAR Clause
	SEND RESPONSE Declaration
	SIGNAL Response Step
	SLIDER FIELD Declaration
	STRING EXPRESSION
	TEXT DATA Clause
	TEXT FIELD Declaration
	TEXT RECORD FIELD Clause
	TIMEOUT Clause
	TRANSCEIVE RESPONSE Declaration
	TRANSFER Clause
	VALIDATE Response Step
	VALIDATION RESPONSE Declaration
	VIEWPORT Declaration

	Appendix A. Using Arrays with DECforms Software
	A.1. Qualified Names
	A.2. Specifying Subscripts
	A.2.1. Numeric Subscripts
	A.2.2. Slice Subscripts
	A.2.3. Range Subscripts
	A.2.4. Corresponding Subscripts

	A.3. Singular, Array, and Corresponding References
	A.3.1. Singular References: Data, Field, Icon, and Button References
	A.3.2. Data, Field, Icon, and Button Array References
	A.3.3. Singular Group References: Data Group and Panel Group References
	A.3.4. Data Group and Panel Group Array References
	A.3.5. Corresponding Data References

	A.4. Scalar Numeric Expressions
	A.5. Corresponding Numeric Expressions

	Appendix B. DECforms Data Types
	Appendix C. IFDL Reserved Words
	Appendix D. DECforms Function Key Names
	D.1. Function Key Names for the DEC Multinational Character Set
	D.2. Key Names for the Keypads and Top Row Function Keys

	Appendix E. DECforms Hebrew User's Guide
	E.1. Hebrew Terminals
	E.1.1. Information for DECforms/Hebrew Version 1.0 Users

	E.2. Hebrew Fields and Literals
	E.2.1. Text Path
	E.2.2. Character Set
	E.2.3. Logical/Physical Order

	E.3. Hebrew Icons
	E.4. Hebrew Values in Fields
	E.5. Hebrew Fields and Literals Column Clause
	E.6. Hebrew Pictures and Justification
	E.7. Hebrew Messages
	E.8. Bidirectional Editing in a Panel Field
	E.9. Activation Order in a Hebrew Form
	E.10. LSE Support
	E.11. DEC FMS to DECforms Forms Conversion
	E.12. Hebrew Installation Notes

	Appendix F. Built-In Functions
	F.1. Default Key Bindings for Built-in Functions
	F.2. Response Syntax for Built-In Functions
	F.2.1. Navigation Functions
	F.2.2. Intrafield Editing Functions

	F.3. Contextual Built-in Functions
	F.3.1. Character-Cell Functions
	F.3.2. Window Functions

	F.4. Character-Cell Considerations for Function Key Bindings
	F.5. Window Considerations for Function Key Bindings
	F.5.1. System-Reserved Keys
	F.5.2. OpenVMS System Function Keys

	Appendix G. Intrafield Editing Functions
	G.1. Intrafield Editing Functions for Character-Cell Devices
	G.1.1. Data Entry and Editing Details

	G.2. IntraField Editing Functions for Window Devices
	G.2.1. Data Entry and Editing Details
	G.2.2. Reserved Intrafield Editing Keys

