Skip to main content
Log in

The size of the siphuncle in cephalopod evolution

  • Published:
Senckenbergiana Lethaea Aims and scope Submit manuscript

Abstract

The relative siphuncle surfaces of 250 specimens of the most important clades of shelled cephalopods from the Early Palaeozoic to Cenozoic are compared. An index (si) was calculated, which gives the relative inner surface of the connecting ring relative to the volume of the phragmocone chambers. It is shown that cephalopods with very high si developed strong de-coupling spaces between the outer surface of the siphuncular epithelium and the open space of the phragmocone chambers. Additionally these cephalopods often show depressed cross sections or flattened venters. Conversely, cephalopods with low si show simple connecting rings but very different shell shapes. It is shown that fast buoyancy changes were possible in cephalopods both with high si and low si. The size of the siphuncle is therefore considered not to be a simple measure of the performance of the buoyancy apparatus. Instead it refers to the level of metabolic energy of the cephalopods. It is shown that during their entire evolution shelled cephalopods can be divided into taxa which show evidence of a high energy level metabolism and taxa which show evidence of a low energy level metabolism for buoyancy regulation. The general trend since the end of the Palaeozoic is clearly towards a more energy efficient buoyancy regulation. This trend is considered to be an effect of increasing constraints of selection through time.

Kurzfassung

Die relative Oberfläche des Siphos von 250 Vertretern der wichtigsten Gehäuse — Cephalopoden des Phanerozoikums wird verglichen. Dazu wurde ein Index (si) ermittelt, welcher die relative innere Oberfläche der Siphonalröhre im Bezug zum relativen Volumen des Phragmokons angibt. Es wird gezeigt, daß Cephalopoden mit einem hohen si-Wert starke entkoppelnde Räume zwischen der äußeren Oberfläche des Sipho-Epitheliums und dem freien Volumen der Kammern ausbildeten. Zusätzlich dazu zeigen diese Cephalopoden häufig abgeflachte Venter oder flache Querschnitte. Im Gegensatz dazu zeigen Cephalopoden mit geringem si-Wert sehr einfache Siphonalröhren mit unterschiedlichen Gehäuseformen. Es kann gezeigt werden, daß schnelle Auftriebsänderungen bei Cephalopoden mit hohen als auch mit geringem si-Wert möglich sind. Die relative Größe des Siphos kann daher nicht als einfache Funktion der Leistungsstärke des Auftriebsapparates verstanden werden, sie verweist vielmehr direkt auf die Energie-Effizienz der Auftriebsregulierung. Es kann gezeigt werden, daß die Cephalopoden während ihrer gesamten Evolution funktionell in Taxa mit hohem Energieverbrauch und Taxa mit geringem Energieverbrauch für die Auftriebsregulierung aufgeteilt werden können. Der generelle Trend seit dem Ende des Paläozoikum geht deutlich in Richtung einer Energie-effizienten Auftriebsregulierung. Dieser Trend wird als Folge gestiegener Selektionszwänge seit dieser Zeit erachtet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appellöf, A. (1893): Die Schalen vonSepia, Spirula undNautilus. — Konglinga Svenska Vetenskaps-Akademiens Handlingar,25 (7): 1–105; Stockholm.

    Google Scholar 

  • Balashov, Z. G. (1968): Endoceratoidei ordovika SSSR. — 170 pp., Leningrad (Isdatielstvo Leningradskowo Universiteta).

    Google Scholar 

  • Bandel, K. &Boletzky, S. von (1988): Features of development and functional morphology required in the reconstruction of early coleoid cephalopods. — In:Wiedmann, J. &Kullman, J. [eds.], Cephaolopods: Present and Past: 229–246; (Schweitzerbart’sche) Stuttgart.

    Google Scholar 

  • Bandel, K., Reitner, J. &Stürmer, W. (1983): Coleoids from the lower Devonian black slate („Hunsrück Schiefer“) of the Hunsrück (West Germany). — Neues Jahrbuch für Geologie und Paläontologie Abhandlungen,165 (3): 397–417; Stuttgart.

    Google Scholar 

  • Barskov, I.S. (1999): Why ammonoids have complex septa and sutures? — In:Rozanov, A.Y. &Shevyrev, A.A. [eds.], Fossil Cephalopods: Recent Advances in their Study: 53–61; Moscow (Russian academy of sciences, Paleontological Institute).

    Google Scholar 

  • Becker, T.R. &Kullmann, J. (1996): Palaeozoic ammonoids in space and time. — In:Landman, N. H.;Tanabe, K. &Davis, R. A. [eds.], Ammonoid Paleobiology: 711–735, New York (Plenum Press).

    Google Scholar 

  • Checa, A. (1996): Origin of intracameral sheets in ammonoids. — Lethaia,29: 61–75; Oslo.

    Article  Google Scholar 

  • Chen, J.-Y &Teichert, C. (1983): Cambrian Cephalopoda of China. — Palaeontographica, (A)181: 1–102; Stuttgart.

    Google Scholar 

  • Crick, R.E. (1988): Buoyancy regulation and macroevolution in nautiloid cephalopods. — Senckenberiana lethaea,69 (1/2): 13–42; Frankfurt a. M.

    Google Scholar 

  • Denton, E. J. &Gilpin-Brown, J.B. (1961a): The buoyancy of the cuttlefish,Sepia officinalis (L.). — Journal of the Marine Biological Association of the United Kingdom41: 319–342; London.

    Article  Google Scholar 

  • Denton, E. J. &Gilpin-Brown, J.B. (1961b): The effect of light on the buoyancy of the cuttlefish. — Journal of the Marine Biological Association of the United Kingdom,41: 343–350; London.

    Article  Google Scholar 

  • Denton, E. J. &Gilpin-Brown, J.B. (1966): On the buoyancy of the pearlyNautilus. Journal of the Marine Biological Association of the United Kingdom,46: 723–759; London.

    Article  Google Scholar 

  • Denton, E. J. &Gilpin-Brown, J.B. (1973): Flotation mechanisms in modern cephalopods. — Advances in marine Biology,11: 197–268; London.

    Article  Google Scholar 

  • Denton, E. J., Gilpin-Brown, J. B. &Howarth, J. V. (1961): The osmotic mechanism of the cuttlebone. — Journal of the Marine Biological Association of the United Kingdom,41: 351–356; London.

    Article  Google Scholar 

  • Denton, E. J., Gilpin-Brown, J.B. &Howarth, J.V. (1967): On the buoyancy of theSpirula spirula. — Journal of the Marine Biological Association of the United Kingdom,47: 181–191; London.

    Article  Google Scholar 

  • Diamond, J.M. &Bossert, W.H. (1967): Standing gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. — Journal of General Physiology,50: 2061–2083; London.

    Article  Google Scholar 

  • Doguzhaeva, L.A., Mapes, R. &Mutvei, H. (1999): A late Carboniferous spirulid coleoid from the southern Mid Continent (USA). — In:Olóriz, F. &Rodíguez-Tovar, F.J. [eds.], Advancing research on living and fossil Cephalopods: 47–57; New York (Kluwer Academic/Plenum).

    Google Scholar 

  • Doguzhaeva, L.A. &Shkolin, A.A. (1999): Siphuncle of “Loxoceras” (Pseudactinoceridae) from the Lower Carboniferous of Central Russia: Ultrastructure, phylogenetic implications and functional morphology. — In:Rozanov, A.Y. &Shevyrev, A.A. [eds.] Fossil Cephalopods: Recent Advances in their Study: 271–287; Moscow (Russian Academy of Sciences, Paleontological Institute).

    Google Scholar 

  • Dzik, J. (1984): Phylogeny of the Nautiloidea. — Palaeontologia Polonica,45: 3–203; Warszawa.

    Google Scholar 

  • Dzik, J. &Korn, D. (1992): Devonian ancestors ofNautilus. — Paläontologische Zeitschrift,66: 81–98; Stuttgart.

    Google Scholar 

  • Flower, R.H. (1955): Saltations in nautiloid coiling. — Evolution,9: 244–260; Lawrence, Kansas.

    Article  Google Scholar 

  • Flower, R.H. (1957): Studies of the Actinocerida. — New Mexico State Bureau Mines & Mineral Resources. Memoir,2: 1–100; Socorro, New Mexico.

    Google Scholar 

  • Flower, R.H. (1964): The nautiloid order Ellesmeroceratida (Cephalopoda). — New Mexico Institute of Mining and Technology, State Bureau of Mines and Mineral Resources, Memoir12: 1–164; Socorro.

    Google Scholar 

  • Flower, R.H. &Kummel, B. (1950): A classification of the Nautiloidea. — Journal of Paleontology,24: 604–616, Tulsa, Oklahoma.

    Google Scholar 

  • Flower, R.H. &Gordon, M. (1959): More Mississippian belemnites. — Journal of Palaeontology33 (5): 805–842; Tulsa, Oklahoma.

    Google Scholar 

  • Flower, R.H. &Teichert C. (1957): The cephalopod order Discosorida. — University of Kansas Paleontological Contributions, Article21 (Mollusca, Article 6): 1–144; Lawrence, Kansas.

    Google Scholar 

  • Furnish, W.M. &Glenister, B.F. (1964): Nautiloidea-Tarphycerida. — In:Teichert, C., Kummel, B., Sweet, W.C., Stenzel, H.B., Furnish, W.M., Glenister, B.F., Erben, H.K., Moore, R.C. &Zeller, D.E.N. [eds.], Treatise on Invertebrate Paleontology, Part K, Mollusca 3, Cephalopoda, K343-K368, Boulder, Colorado (Geological Society of America & The University of Kansas Press).

    Google Scholar 

  • Greenwald, L., Cook, C. B. &Ward, P. D. (1982): The structure of the chamberedNautilus siphuncle: The siphonal epithelium. — Journal of Morphology,172: 5–22; London.

    Article  Google Scholar 

  • Greenwald, L., Verdeerber, G. &Singley, C. (1984): Localization of Na-K ATPhase activity in theNautilus siphuncle. — The Journal of Experimental Zoology,229: 481–484; London.

    Article  Google Scholar 

  • Heptonstall, W. B. (1970): Buoyancy control in ammonoids. — Lethaia,3: 317–328; Oslo.

    Article  Google Scholar 

  • Hewitt, R. A. (1996): Architecture and strength of the ammonoid shell. — In:Landman, N. H.;Tanabe, K. &Davis, R. A. [eds.], Ammonoid Paleobiology: 297–339; New York (Plenum Press)

    Google Scholar 

  • Hewitt, R. A. &Westermann, G. E. G. (1996): Post-mortem behaviour of Early Palaeozoic nautiloids and paleobathymetry. — Paläontologische Zeitschrift,70 (3/4): 405–424; Stuttgart.

    Google Scholar 

  • Hewitt, R. A. &Westermann, G. E. G. (1997): Mechanical significance of ammonoid septa with complex sutures. — Lethaia,30: 205–212; Oslo.

    Google Scholar 

  • Hook, S. C. &Flower, R.H. (1977): Late Canadian (Zones J, K) cephalopod faunas from southwestern United States. New Mexico Bureau of Mines and Mineral Resources Memoir,32: 1–56, Socorro.

    Google Scholar 

  • House, M.R. (1988): Extinction and survival in the cephalopoda. — In:Larwood, G.P. [eds.] Extinction and survival in the fossil record. Systematical Association Special Volume34: 139–154, Oxford (Clarendon Press).

    Google Scholar 

  • Jacobs, D.K. (1996): Chambered cehalopod shells, buoyancy, structure and decoupling: history and red herrings. — Palaios,11: 610–614; Tulsa.

    Article  Google Scholar 

  • Jacobs, D.K. &Chamberlain, J.A.Jr. (1996): Buoyancy and hydrodynamics in ammonoids. — In:Landman, N. H., Tanabe, K. &Davis, R. A. [eds.], Ammonoid paleobiology: 169–224; New York (Plenum Press).

    Google Scholar 

  • Jeletzky, J.A. (1966): Comparative morphology, phylogeny and classification of fossil Coleoidea. — Paleontological Contributions University of Kansas, Mollusca7: 1–162; Lawrence.

    Google Scholar 

  • Kröger, B. (2002): On the efficiency of the buoyancy apparatus in ammonoids. — Evidence from sublethal shell injuries. — Lethaia,35: 31–40; Oslo

    Google Scholar 

  • Kulicki, C. (1996): Ammonoid shell microstructure. — In:Landman, N. H.;Tanabe, K. &Davis, R. A. [eds.], Ammonoid Paleobiology: 65–101; New York (Plenum Press)

    Google Scholar 

  • Kulicki, C &Mutvei, H. (1988): Functional interpretation of ammonoid septa. — In:Wiedmann, J. &Kullman, J. [eds.], Cephaolopods: Present and Past: 215–228; (Schweitzerbart’sche) Stuttgart.

    Google Scholar 

  • Mangum, C.P. &Towle, D. (1982): TheNautilus siphuncle as an ion pump. — Pacific Science,36 (3): 273–282; Hawaij.

    Google Scholar 

  • McKinney, M.L. (1990): Classifying and analysing evolutionary trends. — In:McNamara, K.J. [eds.], Evolutionary Trends: 28–59; London (Belhaven Press).

    Google Scholar 

  • Meyer, J.C. (1993): Un nouveau coleoide sepioide,Ceratisepia elongata nov. gen., nov. spec. du Paléocène inférieur (Danien) du Vigny. Implications taxinomiques et phylogénétiques. — Geobios,15: 287–304; Lyon.

    Article  Google Scholar 

  • Mutvei, H. (1964): On the secondary internal calcaerous lining of the wall of the siphonal tube in certain fossil cephaolopods. — Arkiv för Zoologi,16 (21): 375–424; Stockholm.

    Google Scholar 

  • Mutvei, H. (1997a): Characterization of actinoceratoid cephalopods by their siphuncular structure. — Lethaia,29: 339–348; Oslo.

    Article  Google Scholar 

  • Mutvei, H. (1997b): Siphuncular structure in Ordovician endocerid cephalopods.. — Acta Palaeontologica Polonica,42 (3): 375–390; Warzawa.

    Google Scholar 

  • Mutvei, H. (2002): Connecting ring structure and its significance for classification of orthoceratid cephalopods. — Acta Palaeontologica Polonica,47 (1): 157–168; Warzawa.

    Google Scholar 

  • Packard, A. (1972): Cephalopods and fish: The limits of convergence. — Biological Revue Cambridge Philosophical Society,47: 241–307; Cambridge.

    Article  Google Scholar 

  • Pörtner, H.-O. &Zielinski, S. (1998): Environmental constraints and the physiology of performance in squids. — South African Journal of marine Science,20: 207–223, Cape Town.

    Google Scholar 

  • Shimanskiy, V.N. (1954): [Straight nautiloids and bactritoids of the Sakmarian and Artinskian stages of the southern Urals.] — Akademia Nauk SSSR, Trudy Paleontologicheskiy Instituta,44: 156 pp.; Moskwa.

    Google Scholar 

  • Schindewolf, O.H. (1934): Zur Stammesgeschichte der Cephalopoden. — Jahrbuch der Preussischen Geologischen Landesanstalt und Bergakademie,55: 258–283; Berlin.

    Google Scholar 

  • Schipp, R. (1987): General morphological and functional characteristics of the cephalopod circulatory system. An introduction. — Experienta,43: 474–477; Basel.

    Article  Google Scholar 

  • Schubert, H. (1982): Kapillarität in porösen Feststoffsystemen. — 343 pp., Berlin/Heidelberg/New York (Springer Verlag).

    Google Scholar 

  • Stürmer, W. (1985): A small coleoid cephalopod with soft parts from the Lower Devonian discovered using radiography. — Nature,318 (6041): 53–55; New York.

    Article  Google Scholar 

  • Stumbur, H. (1960): [Life-time injuries in some nautiloid shells]. — Paleontogicheskiy Zhurnal,1960 (4): 133–135, Moscow.

    Google Scholar 

  • Sweet, W.C. (1964): Nautiloidea-Oncocerida. — In:Teichert, C., Kummel, B., Sweet, W.C., Stenzel, H.B., Furnish, W.M., Glenister, B.F., Erben, H.K., Moore, R.C. &Zeller, D.E.N. [eds.], Treatise on Invertebrate Paleontology, Part K, Mollusca 3, Cephalopoda: K277-K319; Boulder, Colorado (Geological Society of America & The University of Kansas Press).

    Google Scholar 

  • Tanabe, K. &Landman, N. (1996): Septal neck-siphuncular complex of Ammonoids. — In:Landman, N.H. (ed.), Ammonoid Paleobiology: 129–165, New York (Plenum Press).

    Google Scholar 

  • Tanabe, K., Mapes, R.H., Sasaki, T. &Landman, N.H. (2000): Soft-part anatomy of the siphuncle in Permian prolecanitid ammonoids. — Lethaia,33: 83–91; Oslo.

    Article  Google Scholar 

  • Teichert, C. (1933): Der Bau der actinoceroiden Cephalopoden. — Palaeontographica, (A)77: 111–230; Stuttgart.

    Google Scholar 

  • Troedsson, G. T. (1926): On the Middle and Upper Ordovician faunas of northern Greenland. I. Cephalopods. — Meddelendse Gronland,71: 1–157, Kobnhavn.

    Google Scholar 

  • Ulrich, E.O., Foerste, A.F. &Miller, A.K. (1943): Ozarkian and Canadian cephalopods. Part II. Brevicones. — Geological Society of America Special Papers,58: 1–157; New York.

    Google Scholar 

  • Ulrich, E.O., Foerste, A.F., Miller, A.K. &Unklesbay, A.G. (1944): Ozarkian and Canadian Cephalopods Part III: Longicones and summary. — Geological Society of America Special Papers,59: 1–226; New York.

    Google Scholar 

  • Vermeij, G.J. (1987): Evolution and escalation. An ecological history of life. — 527 pp., Princeton (Princeton Universiy Press).

    Google Scholar 

  • Ward, P. D. (1979): Cameral liquid inNautilus and ammonites. — Paleobiology,5 (1): 40–49; Davis.

    Google Scholar 

  • Ward, P. D. (1982): The relationship of siphuncle size to emptying rates in chambered cephalopods: Implications for cephalopod paleobiology. — Paleobiology,8 (4): 426–433; Davis.

    Google Scholar 

  • Ward, P.D. (1986): Rates and Processes of Compensatory Buoyancy Change inNautilus macromphalus. —Veliger,28 (4): 356–368; Berkeley.

    Google Scholar 

  • Ward, P.D. (1987): The natural History ofNautilus. — 267 pp., Winchester (Allen & Unwin).

    Google Scholar 

  • Ward, P. D. &Greenwald, L. (1981): Chamber refilling inNautilus. — Journal of the Marine biological Association of the United Kingdom,62: 469–475; London.

    Article  Google Scholar 

  • Wells, M.J. (1988): The mantle muscle and mantle cavity of cephalopods. — In:Trueman, E.R. &Clark, M.R. [eds.], The Mollusca,11, Form and Function: 287–300; New York (Academic Press).

    Google Scholar 

  • Wells, M.J. &Wells, J. (1991) IsSepia really anOctopus? — In:Boucaud-Camou, E. [eds.], La Seiche, The Cuttlefish: 79–92, Caen (Université de Caen).

    Google Scholar 

  • Weitschat, W. &Bandel, K. (1991): Organic components in phragmocones of Boreal Triassic ammonoids: implications for ammonoid biology. — Paläontologische Zeitschrift,65 (3/4): 269–303; Stuttgart.

    Google Scholar 

  • Westermann, G.E.G. (1971): Form, structure and function of shell and siphuncle in coiled Mesozoic ammonoids. — Life Science Contributions Royal Ontario Museum78: 1–39; Ontario.

    Google Scholar 

  • Westermann, G.E.G. (1999): Life Habits of Nautiloids. — In:Savazzi, E. [eds.]: Functional Morphology of the Invertebrate Skeleton: 263–297; New York / London (Wiley & Sons Ltd.).

    Google Scholar 

  • Yochelson, E.L.;Flower, R.H. &Webers, G.F. (1973): The bearing of the new Late Cambrian monoplacophoran genusKnightoceras upon the origin of the Cephalopoda. — Lethaia,6: 275–310, Oslo.

    Article  Google Scholar 

  • Young, R.E., Veccione, M. &Donovan, D.T. (1998) The evolution of coleoid cephalopods and their present biodiversity and ecology. — South African Journal of marine Science,20: 393–420, Cape Town.

    Google Scholar 

  • Zhuravleva, F. A. (1972): Devonskiy nautiloidei. Otryad Discosorida. — Trudy Paleontologicheskovo Instituta Akademiya Nauk SSSR,134: 3–307; Moskwa.

    Google Scholar 

  • Zhuravleva, F. A. (1974): Devonskiy nautiloidei. Otryady Oncoceratida, Tarphyceratida, Nautilida. — Trudy Paleontologicheskovo Instituta Akademiya Nauk SSSR,142: 5–142; Moskwa.

    Google Scholar 

  • Zhuravleva, F.A. (1994): Septal necks in the evolution of the cephalopods. — Paleontological Journal28 (3): 67–83; Moscow.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Kröger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kröger, B. The size of the siphuncle in cephalopod evolution. Senckenbergiana Lethaea 83, 39–52 (2003). https://doi.org/10.1007/BF03043304

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03043304

Keywords