Abstract
One-class classification techniques are able to, based only on examples of a normal profile, induce a classifier that is capable of identifying novel classes or profile changes. However, the performance of different novelty detection approaches may depend on the domain considered. This paper applies combined one-class classifiers to detect novelty in gene expression data. Results indicate that the robustness of the classification is increased with this combined approach.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alizadeh, A.A., Eisen, M.B., Davisintegral, R.E., Maintegral, C., Lossos, I.S., Rosenwaldintegral, A., Boldrick, J.C., Sabetintegral, H., Tranintegral, T., Yuintegral, X., Powell, J.I., Yang, L., Marti, G.E., Moore, T., Hudson Jr, J., Lu, L., Lewis, D.B., Tibshirani, R., Sherlock, G., Chan, W.C., Greiner, T.C., Weisenburger, D.D., Armitage, J.O., Warnke, R., Levy, R., Wilson, W., Grever, M.R., Byrd, J.C., Botstein, D., Brown, P.O., Staudt, L.M.: Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000)
Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of National Academy of Sciences USA 96, 6745–6750 (1999)
Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)
Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)
de Souza, B.F.: Seleção de características para svms aplicadas a dados de expressão gênica. Master thesis, Universidade de Sâo Paulo (USP), Instituto de Ciências Matemâticas e de Computação, ICMC (2005)
Duda, R.O., Hart, P.E.: Pattern Classification, 2nd edn. Wiley Interscience, Hoboken (2001)
Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: Class discovery and class prediction by gene expression. Science 286, 531–537 (1999)
Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Heidelberg (2001)
Marsland, S.: Novelty detection in learning systems. Neural Computing Surveys 3, 157–195 (2003)
Parzen, E.: On the estimation of a probability density function and mode. Annals of Mathematical Statistics 33, 1065–1076 (1962)
Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Computation 13(7), 1443–1471 (2001)
Tax, D.M.J.: One-class classifiers. PhD thesis, Delf University of Technology, Faculty of Information Technology and Systems (2001)
Tax, D.M.J.: DDtools, the data description toolbox for matlab. version 1.1.2 (March 2005), http://www-ict.ewi.tudelft.nl/~davidt/dd_tools.html
West, M., Blanchette, C., Dressman, H., Huang, E., Ishida, S., Spang, R., Zuzan, H., Jr., J.A.O., Marks, J.R., Nevins, J.R.: Predicting the clinical status of human breast cancer by using gene expression profiles. Proceedings of National Academy of Sciences USA 98(20), 11462–11467
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Spinosa, E.J., de Carvalho, A.C.P.L.F. (2005). Combining One-Class Classifiers for Robust Novelty Detection in Gene Expression Data. In: Setubal, J.C., Verjovski-Almeida, S. (eds) Advances in Bioinformatics and Computational Biology. BSB 2005. Lecture Notes in Computer Science(), vol 3594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11532323_7
Download citation
DOI: https://doi.org/10.1007/11532323_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28008-8
Online ISBN: 978-3-540-31861-3
eBook Packages: Computer ScienceComputer Science (R0)