Abstract
Based on the concept of Immunodominance and Antibody Clonal Selection Theory, This paper proposes a new artificial immune system algorithm, Immune Dominance Clonal Multiobjective Algorithm (IDCMA), for multiobjective 0/1 knapsack problems. IDCMA divides the individual population into three sub-populations and adopts different evolution and selection strategies at them, but the update of each sub-population is not carried out all alone. The performance comparisons among IDCMA, SPEA, HLGA, NPGA, NSGA and VEGA show that IDCMA clearly outperforms the other five MOEAs in terms of solution quality.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hwang, C., Yoon, K.: Multiple Attribute Decision Making: Methods and Applications. Springer, Heidelberg (1981)
Schaffer, J.D.: Multiple objective optimization with vector ecaluated genetic algorithms. PhD thesis, Vanderbilt University (1984)
Abido, M.A.: Environmental economic power dispatch using multiobjective evolutionary algorithms. IEEE Trans. Power Systems 18(4) (November 2003)
Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Trans. Evolutionary Computation 3(4) (November 1999)
Licheng, J., Haifeng, D.: Artificial immune system: progress and prospect (in Chinese). Acta Electronica Sinica 31(10), 1540–1548 (2003)
Coello Coello, C.A., Cortss, N.C.: An Approach to Solve Multiobjective Optimization Problems Based on an Artificial Immune System. In: Timmis, J., Bentley, P.J. (eds.) Proceedings of the First International Conference on Artificial Immune Systems (ICARIS 2002), University of Kent at Canterbury, UK, September, 9-11, pp. 212–221 (2002)
Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Grefenstette, J.J. (ed.) Proceedings of an International Conference on Genetic Algorithms and Their Applications, Pittsburgh, PA, July 24-26, pp. 93–100 (1985), sponsored by Texas Instruments and U.S. Navy Center for Applied Research in Articial Intelligence (NCARAI)
Hajela, P., Lin, C.Y.: Genetic search strategies in multicriterion optimal design. Structural Optimization 4, 99–107 (1992)
Horn, J., Nafpliotis, N.: Multiobjective optimization using the niched pareto genetic algorithm. IlliGAL Report 93005, Illinois Genetic Algorithms Laboratory, University of Illinois, Urbana, Champaign (July 1993)
Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation 2(3), 221–248 (1994)
Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. A dissertation submitted to the Swiss Federal Institute of Technology Zurich for the degree of Doctor of Technical Sciences. Diss. Eth No. 13398 (1999)
Gong, M.G., Du, H.F., Jiao, L.C., Wang, L.: Immune Clonal Selection Algorithm for Multiuser Detection in DS-CDMA Systems. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS (LNAI), vol. 3339, pp. 1219–1225. Springer, Heidelberg (2004)
Jiao, L.C., Gong, M.G., Shang, R.H., Du, H.F., Lu, B.: Clonal Selection with Immune Dominance and Anergy Based Multiobjective Optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 474–489. Springer, Heidelberg (2005)
Gong, M.G., Jiao, L.C., Liu, F., Du, H.F.: The Quaternion Model of Artificial Immune Response. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 207–219. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ma, W., Jiao, L., Gong, M., Liu, F. (2005). An Novel Artificial Immune Systems Multi-objective Optimization Algorithm for 0/1 Knapsack Problems. In: Hao, Y., et al. Computational Intelligence and Security. CIS 2005. Lecture Notes in Computer Science(), vol 3801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11596448_117
Download citation
DOI: https://doi.org/10.1007/11596448_117
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30818-8
Online ISBN: 978-3-540-31599-5
eBook Packages: Computer ScienceComputer Science (R0)