Abstract
We study the complexity of some computational problems on finite black-box rings whose elements are encoded as strings of a given length and the ring operations are performed by a black-box oracle. We give a polynomial-time quantum algorithm to compute a basis representation for a given black-box ring. Using this result we obtain polynomial-time quantum algorithms for several natural computational problems over black-box rings.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Annals of Mathematics 160(2), 781–793 (2004)
Agrawal, M., Saxena, N.: Automorphisms of Finite Rings and Applications to Complexity of Problems. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 1–17. Springer, Heidelberg (2005)
Babai, L.: Local Expansion of Vertex-Transitive Graphs and Random Generation in Finite Groups. In: STOC 1991, pp. 164–174 (1991)
Babai, L.: Bounded Round Interactive Proofs in Finite Groups. SIAM J. Discrete Math. 5(1), 88–111 (1992)
Balcázar, J.L., DÃaz, J., Gabarró, D.: Structural Complexity I. ETACS Monographs on Theoretical Computer Science. Springer, Heidelberg (1988) (I)
Balcázar, J.L., DÃaz, J., Gabarró, D.: Structural Complexity II. ETACS Monographs on Theoretical Computer Science. Springer, Heidelberg (1990) (II)
Babai, L., Moran, S.: Arthur-Merlin Games: A Randomized Proof System, and a Hierarchy of Complexity Classes. Journal Comput. Syst. Sciences 36(2), 254–276 (1988)
McDonald, B.R.: Finite Rings with Identity. Marcel Dekker Inc., New York (1974)
Babai, L., Szemerédi, E.: On the complexity of matrix group problems I. In: Proc. 25th IEEE Sympos. on the Foundation of Computer Science, pp. 229–240 (1984)
Vazirani, U., Bernstein, E.: Quantum Complexity Theory. Special issue on Quantum Computation of the Siam Journal of Computing (October 1997)
Cheung, K.K.H., Mosca, M.: Decomposing Finite Abelian Groups. Los Alamos Preprint Archive, quant-ph/0101004 (2001)
Eberly, W.: Computations for algebras and group representations, PhD thesis. University of Toronto (1989)
Friedl, K., Rónyai, L.: Polynomial time solutions for some problems in computational algebra. In: Proc. 17th Ann. Symp. Theory of Computing, pp. 153–162 (1985)
Kayal, N., Saxena, N.: On the Ring Isomorphism and Automorphism Problems. In: IEEE Conference on Computational Complexity, pp. 2–12 (2005)
Lenstra Jr., H.W.: Algorithms in algebraic number theory. Bulletin of the AMS 26(2), 211–244 (1992)
Shor, P.: Polynomial time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509 (1997)
Sanders, T., Shokrollahi, M.A.: Deciding properties of polynomials without factoring. In: Proc. 38th IEEE Foundations of Computer Science, pp. 46–55 (1997)
Gathen, J.v.z., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, Cambridge (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Arvind, V., Das, B., Mukhopadhyay, P. (2006). The Complexity of Black-Box Ring Problems. In: Chen, D.Z., Lee, D.T. (eds) Computing and Combinatorics. COCOON 2006. Lecture Notes in Computer Science, vol 4112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11809678_15
Download citation
DOI: https://doi.org/10.1007/11809678_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-36925-7
Online ISBN: 978-3-540-36926-4
eBook Packages: Computer ScienceComputer Science (R0)