Abstract
We discuss how approximation spaces considered in the context of rough sets and information granule theory have evolved over the last 20 years from simple approximation spaces to more complex spaces. Some research trends and challenges for the rough set approach are outlined in this paper. The study of the evolution of approximation space theory and applications is considered in the context of rough sets introduced by Zdzisław Pawlak and the notions of information granulation and computing with words formulated by Lotfi Zadeh. The deepening of our understanding of information granulation and the introduction to new approaches to concept approximation, pattern identification, pattern recognition, pattern languages, clustering, information granule systems, and inductive reasoning have been aided by the introduction of a calculus of information granules based on rough mereology. Central to rough mereology is the inclusion relation to be a part to a degree. This calculus has grown out of an extension of what S. Leśniewski called mereology (the study of what it means to be a part of).
Preview
Unable to display preview. Download preview PDF.
References
Barwise, J., Seligman, J.: Information Flow: The Logic of Distributed Systems, Cambridge University Press, Tracts in Theoretical Computer Science 44, 1997.
Bazan, J., Nguyen, H.S., Skowron, A., Szczuka, M. A view on rough concept approximations (in this volume).
Breiman, L.: Statistical modeling: The two cultures, Statistical Science 16(3), 2001, 199–231.
Brown, F.M.: Boolean Reasoning. Kluwer Academic Publishers, Dordrecht, 1990.
Duentsch, I., Gediga, G.: Rough Set Data Analysis: A Road to Non-invasive Knowledge Discovery. Methods Publishers, Bangor, UK, 2000.
Kloesgen, W., Żytkow, J. (eds.), Handbook of KDD, Oxford University Press, 2002.
Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: A tutorial. In: [16], 1999, 3–98.
Leśniewski, S.: Grundzüge eines neuen Systems der Grundlagen der Mathematik. Fundamenta Mathematicae 14, 1929, 1–81.
Lin, T.Y., Yao, Y.Y., Zadeh, L.A. (eds.): Data Mining, Rough Sets and Granular Computing. Physica-Verlag, Heidelberg, 2002.
Mitchell, T.M.: Machine Learning. Mc Graw-Hill, Portland, 1997.
Nguyen, H.S.: Discretization of Real Value Attributes, Boolean Reasoning Approach, Ph.D. Dissertation, Warsaw University 1997, 1–90.
Nguyen, H.S.: Efficient SQL-learning method for data mining in large data bases. IJCAI’99, 1999, 806–811.
Nguyen, H.S. and Skowron, A.: Quantization of real value attributes. Proceedings of the Second Joint Annual Conference on Information Sciences, Wrightsville Beach, North Carolina, USA, September 28–October 1, 1995, 34–37.
Pal, S.K., Pedrycz, W., Skowron, A., Swiniarski, R. (eds.): Rough-Neuro Computing. Neurocomputing: An International Journal (special volume) 36, 2001.
Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neuro Computing: Techniques for Computing with Words. Springer-Verlag, Berlin, 2003. (to appear).
Pal, S.K., Skowron, A. (eds.): Rough Fuzzy Hybridization: A New Trend in Decision-Making. Springer-Verlag, Singapore, 1999.
Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 1982, 341–356.
Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht, 1991.
Peters, J.F., Ahn, T.C., Degtyaryov, V., Borkowski, M., Ramanna, S.: Line-crawling robot navigation: Rough neurocomputing approach. In: C. Zhou, D. Maravall, D. Ruan (eds.), Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems. Physica-Verlag, Heidelberg, 2003 (to appear).
Peters, J.F., Ramanna, S., Borkowski, M., Skowron, A., Suraj, Z.: Sensor, filter and fusion models with rough Petri nets, Fundamenta Informaticae 47(3–4), 2001, 307–323.
Peters, J.F., Skowron, A., Stepaniuk, J., Ramanna, S.: Towards an ontology of approximate reason. Fundamenta Informaticae, 51(1–2), 2002, 157–173.
Polkowski, L., Skowron, A.: Rough mereology: a new paradigm for approximate reasoning. International J. Approximate Reasoning 15(4), 1996, 333–365.
Polkowski, L., Skowron, A. (eds.): Rough Sets in Knowledge Discovery 1–2. Physica-Verlag, Heidelberg, 1998.
Polkowski, L., Skowron, A.: Towards adaptive calculus of granules. In: [48], 1999, 201–227.
Polkowski, L., Skowron, A.: Rough mereological calculi of granules: A rough set approach to computation. Computational Intelligence 17(3), 2001, 472–492.
Polkowski, L., Skowron, A.: Rough-neuro computing. LNAI 2005, Springer-Verlag, Berlin, 2002, 57–64.
Rissanen, J.J.: Modeling by shortest data description, Automatica 14, 1978, 465–471.
Selman, B., Kautz, H., McAllester, D.: Ten challenges in propositional reasoning and search. IJCAI’97 1, Nagoya, Aichi, Japan, 1997, 50–54.
Skowron, A.: Rough sets in KDD. In: Z. Shi, B. Faltings, and M. Musen (eds.), 16-th World Computer Congress (IFIP’2000): Proc. of Conf. on Intelligent Information Processing (IIP’2000), Pub. House of Electronic Industry, Beijing, 2000, 1–17.
Skowron, A.: Toward intelligent systems: Calculi of information granules. Bulletin of the International Rough Set Society 5(1–2), 2001, 9–30.
Skowron, A., Approximate reasoning by agents in distributed environments. In: N. Zhong, J. Liu, S. Ohsuga, J. Bradshaw (eds.): Intelligent agent technology: Research and development, World Scientific, Singapore, 2001, 28–39.
Skowron, A., Nguyen, H.S.: Boolean reasoning scheme with some applications in data mining. LNCS 1704, 1999, 107–115.
Skowron, A., Nguyen, T.T.: Rough set approach to domain knowledge approximation. (in this volume).
Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: R. Słowiński (ed.), Intelligent Decision Support. Handbook of Applications and Advances of the Rough Set Theory. Kluwer, Dordrecht 1992, 311–362.
Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 1996, 245–253.
Skowron, A., Stepaniuk, J.: Information granules: Towards foundations of granular computing. International Journal of Intelligent Systems 16(1), 2001, 57–86.
Skowron, A., Stepaniuk, J., Peters, J.: Rough sets and infomorphisms: Towards approximation of relations in distributed environments. Fundamenta Informaticae 2003 (to appear).
Skowron A., Szczuka M., Approximate reasoning schemes: Classifiers for computing with words. Proceedings of SMPS 2002, Physica-Verlag, Heidelberg, 2002, 338–345.
Słowiński, R., Greco, S., Matarazzo, B.: Rough set analysis of preference-ordered data. LNAI 2475, Springer-Verlag, Heidelberg, 2002, 44–59.
Ślęzak, D.: Approximate Decision Reducts. Ph.D. Thesis, Warsaw University, 2002 (in Polish).
Swiniarski, R., Skowron, A.: Rough set methods in feature selection and recognition. Pattern Recognition Letters 24(6), 2003, 833–849.
Vapnik, V.: Statistical Learning Theory. Wiley, New York, 1998.
WITAS project. see http://www.ida.liu.se/ext/witas/eng.html. 2001.
Wróblewski, J.: Adaptive Methods of Object Classification. Ph.D. Thesis, Warsaw University, 2002 (in Polish).
Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. on Fuzzy Systems 4, 1996, 103–111.
Zadeh, L.A.: Toward a theory of fuzzy information granulation and its certainty in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90, 1997, 111–127.
Zadeh, L.A.: A new direction in AI: Toward a computational theory of perceptions. AI Magazine 22(1), 2001, 73–84.
Zadeh, L.A., Kacprzyk, J. (eds.): Computing with Words in Information/Intelligent Systems 1–2. Physica-Verlag, Heidelberg, 1999.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Skowron, A., Peters, J.F. (2003). Rough Sets: Trends and Challenges. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2003. Lecture Notes in Computer Science(), vol 2639. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-39205-X_4
Download citation
DOI: https://doi.org/10.1007/3-540-39205-X_4
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-14040-5
Online ISBN: 978-3-540-39205-7
eBook Packages: Springer Book Archive