Skip to main content

Rough Sets: Trends and Challenges

Extended Abstract

  • Conference paper
  • First Online:
Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2639))

  • 784 Accesses

Abstract

We discuss how approximation spaces considered in the context of rough sets and information granule theory have evolved over the last 20 years from simple approximation spaces to more complex spaces. Some research trends and challenges for the rough set approach are outlined in this paper. The study of the evolution of approximation space theory and applications is considered in the context of rough sets introduced by Zdzisław Pawlak and the notions of information granulation and computing with words formulated by Lotfi Zadeh. The deepening of our understanding of information granulation and the introduction to new approaches to concept approximation, pattern identification, pattern recognition, pattern languages, clustering, information granule systems, and inductive reasoning have been aided by the introduction of a calculus of information granules based on rough mereology. Central to rough mereology is the inclusion relation to be a part to a degree. This calculus has grown out of an extension of what S. Leśniewski called mereology (the study of what it means to be a part of).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barwise, J., Seligman, J.: Information Flow: The Logic of Distributed Systems, Cambridge University Press, Tracts in Theoretical Computer Science 44, 1997.

    Google Scholar 

  2. Bazan, J., Nguyen, H.S., Skowron, A., Szczuka, M. A view on rough concept approximations (in this volume).

    Google Scholar 

  3. Breiman, L.: Statistical modeling: The two cultures, Statistical Science 16(3), 2001, 199–231.

    Article  MATH  MathSciNet  Google Scholar 

  4. Brown, F.M.: Boolean Reasoning. Kluwer Academic Publishers, Dordrecht, 1990.

    MATH  Google Scholar 

  5. Duentsch, I., Gediga, G.: Rough Set Data Analysis: A Road to Non-invasive Knowledge Discovery. Methods Publishers, Bangor, UK, 2000.

    Google Scholar 

  6. Kloesgen, W., Żytkow, J. (eds.), Handbook of KDD, Oxford University Press, 2002.

    Google Scholar 

  7. Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: A tutorial. In: [16], 1999, 3–98.

    Google Scholar 

  8. Leśniewski, S.: Grundzüge eines neuen Systems der Grundlagen der Mathematik. Fundamenta Mathematicae 14, 1929, 1–81.

    MATH  Google Scholar 

  9. Lin, T.Y., Yao, Y.Y., Zadeh, L.A. (eds.): Data Mining, Rough Sets and Granular Computing. Physica-Verlag, Heidelberg, 2002.

    MATH  Google Scholar 

  10. Mitchell, T.M.: Machine Learning. Mc Graw-Hill, Portland, 1997.

    MATH  Google Scholar 

  11. Nguyen, H.S.: Discretization of Real Value Attributes, Boolean Reasoning Approach, Ph.D. Dissertation, Warsaw University 1997, 1–90.

    Google Scholar 

  12. Nguyen, H.S.: Efficient SQL-learning method for data mining in large data bases. IJCAI’99, 1999, 806–811.

    Google Scholar 

  13. Nguyen, H.S. and Skowron, A.: Quantization of real value attributes. Proceedings of the Second Joint Annual Conference on Information Sciences, Wrightsville Beach, North Carolina, USA, September 28–October 1, 1995, 34–37.

    Google Scholar 

  14. Pal, S.K., Pedrycz, W., Skowron, A., Swiniarski, R. (eds.): Rough-Neuro Computing. Neurocomputing: An International Journal (special volume) 36, 2001.

    Google Scholar 

  15. Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neuro Computing: Techniques for Computing with Words. Springer-Verlag, Berlin, 2003. (to appear).

    Google Scholar 

  16. Pal, S.K., Skowron, A. (eds.): Rough Fuzzy Hybridization: A New Trend in Decision-Making. Springer-Verlag, Singapore, 1999.

    MATH  Google Scholar 

  17. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 1982, 341–356.

    Article  MATH  MathSciNet  Google Scholar 

  18. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht, 1991.

    MATH  Google Scholar 

  19. Peters, J.F., Ahn, T.C., Degtyaryov, V., Borkowski, M., Ramanna, S.: Line-crawling robot navigation: Rough neurocomputing approach. In: C. Zhou, D. Maravall, D. Ruan (eds.), Fusion of Soft Computing and Hard Computing for Autonomous Robotic Systems. Physica-Verlag, Heidelberg, 2003 (to appear).

    Google Scholar 

  20. Peters, J.F., Ramanna, S., Borkowski, M., Skowron, A., Suraj, Z.: Sensor, filter and fusion models with rough Petri nets, Fundamenta Informaticae 47(3–4), 2001, 307–323.

    MATH  MathSciNet  Google Scholar 

  21. Peters, J.F., Skowron, A., Stepaniuk, J., Ramanna, S.: Towards an ontology of approximate reason. Fundamenta Informaticae, 51(1–2), 2002, 157–173.

    MATH  MathSciNet  Google Scholar 

  22. Polkowski, L., Skowron, A.: Rough mereology: a new paradigm for approximate reasoning. International J. Approximate Reasoning 15(4), 1996, 333–365.

    Article  MATH  MathSciNet  Google Scholar 

  23. Polkowski, L., Skowron, A. (eds.): Rough Sets in Knowledge Discovery 1–2. Physica-Verlag, Heidelberg, 1998.

    Google Scholar 

  24. Polkowski, L., Skowron, A.: Towards adaptive calculus of granules. In: [48], 1999, 201–227.

    Google Scholar 

  25. Polkowski, L., Skowron, A.: Rough mereological calculi of granules: A rough set approach to computation. Computational Intelligence 17(3), 2001, 472–492.

    Article  MathSciNet  Google Scholar 

  26. Polkowski, L., Skowron, A.: Rough-neuro computing. LNAI 2005, Springer-Verlag, Berlin, 2002, 57–64.

    Google Scholar 

  27. Rissanen, J.J.: Modeling by shortest data description, Automatica 14, 1978, 465–471.

    Article  MATH  Google Scholar 

  28. Selman, B., Kautz, H., McAllester, D.: Ten challenges in propositional reasoning and search. IJCAI’97 1, Nagoya, Aichi, Japan, 1997, 50–54.

    Google Scholar 

  29. Skowron, A.: Rough sets in KDD. In: Z. Shi, B. Faltings, and M. Musen (eds.), 16-th World Computer Congress (IFIP’2000): Proc. of Conf. on Intelligent Information Processing (IIP’2000), Pub. House of Electronic Industry, Beijing, 2000, 1–17.

    Google Scholar 

  30. Skowron, A.: Toward intelligent systems: Calculi of information granules. Bulletin of the International Rough Set Society 5(1–2), 2001, 9–30.

    Google Scholar 

  31. Skowron, A., Approximate reasoning by agents in distributed environments. In: N. Zhong, J. Liu, S. Ohsuga, J. Bradshaw (eds.): Intelligent agent technology: Research and development, World Scientific, Singapore, 2001, 28–39.

    Google Scholar 

  32. Skowron, A., Nguyen, H.S.: Boolean reasoning scheme with some applications in data mining. LNCS 1704, 1999, 107–115.

    Google Scholar 

  33. Skowron, A., Nguyen, T.T.: Rough set approach to domain knowledge approximation. (in this volume).

    Google Scholar 

  34. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: R. Słowiński (ed.), Intelligent Decision Support. Handbook of Applications and Advances of the Rough Set Theory. Kluwer, Dordrecht 1992, 311–362.

    Google Scholar 

  35. Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 1996, 245–253.

    MATH  MathSciNet  Google Scholar 

  36. Skowron, A., Stepaniuk, J.: Information granules: Towards foundations of granular computing. International Journal of Intelligent Systems 16(1), 2001, 57–86.

    Article  MATH  Google Scholar 

  37. Skowron, A., Stepaniuk, J., Peters, J.: Rough sets and infomorphisms: Towards approximation of relations in distributed environments. Fundamenta Informaticae 2003 (to appear).

    Google Scholar 

  38. Skowron A., Szczuka M., Approximate reasoning schemes: Classifiers for computing with words. Proceedings of SMPS 2002, Physica-Verlag, Heidelberg, 2002, 338–345.

    Google Scholar 

  39. Słowiński, R., Greco, S., Matarazzo, B.: Rough set analysis of preference-ordered data. LNAI 2475, Springer-Verlag, Heidelberg, 2002, 44–59.

    Google Scholar 

  40. Ślęzak, D.: Approximate Decision Reducts. Ph.D. Thesis, Warsaw University, 2002 (in Polish).

    Google Scholar 

  41. Swiniarski, R., Skowron, A.: Rough set methods in feature selection and recognition. Pattern Recognition Letters 24(6), 2003, 833–849.

    Article  MATH  Google Scholar 

  42. Vapnik, V.: Statistical Learning Theory. Wiley, New York, 1998.

    MATH  Google Scholar 

  43. WITAS project. see http://www.ida.liu.se/ext/witas/eng.html. 2001.

  44. Wróblewski, J.: Adaptive Methods of Object Classification. Ph.D. Thesis, Warsaw University, 2002 (in Polish).

    Google Scholar 

  45. Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. on Fuzzy Systems 4, 1996, 103–111.

    Article  Google Scholar 

  46. Zadeh, L.A.: Toward a theory of fuzzy information granulation and its certainty in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90, 1997, 111–127.

    Article  MATH  MathSciNet  Google Scholar 

  47. Zadeh, L.A.: A new direction in AI: Toward a computational theory of perceptions. AI Magazine 22(1), 2001, 73–84.

    Google Scholar 

  48. Zadeh, L.A., Kacprzyk, J. (eds.): Computing with Words in Information/Intelligent Systems 1–2. Physica-Verlag, Heidelberg, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Skowron, A., Peters, J.F. (2003). Rough Sets: Trends and Challenges. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2003. Lecture Notes in Computer Science(), vol 2639. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-39205-X_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-39205-X_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-14040-5

  • Online ISBN: 978-3-540-39205-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics