Abstract
In the paper we consider the knowledge in the form of association rules. The consequents derivable from the given set of association rules constitute the theory for this rule set. We apply maximal covering rules as a concise representation of the theory. We prove that maximal covering rules have precisely computable values of support and confidence, though the theory can contain rules for which these values can be only estimated. Efficient methods of direct and incremental computation of maximal covering rules are offered.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Imielinski, T., Swami, A.: Mining Associations Rules between Sets of Items in Large Databases. In: Proc. of the ACM SIGMOD Conference on Management of Data. Washington, D.C. (1993) 207–216
Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast Discovery of Association Rules. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.): Advances in Knowledge Discovery and Data Mining. AAAI, Menlo Park, California (1996) 307–328
Kryszkiewicz, M.: Representative Association Rules. In: Proc. of PAKDD’ 98. Melbourne, Australia. LNAI 1394. Springer-Verlag (1998) 198–209
Kryszkiewicz, M.: Representative Association Rules and Minimum Condition Maximum Consequence Association Rules. In: Proc. of PKDD’ 98. Nantes, France. LNAI 1510. Springer-Verlag (1998) 361–369
Kryszkiewicz, M.: Mining with Cover and Extension Operators. In: Proc. of PKDD’ 00. Lyon, France. LNAI 1910. Springer-Verlag (2000) 476–482
Kryszkiewicz, M.: Inducing Theory for the Rule Set. In: Proc. of RSCTC’ 00. Banff, Canada (2000) 353–360. To appear as a Springer-Verlag LNAI volume
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kryszkiewicz, M. (2001). Direct and Incremental Computing of Maximal Covering Rules. In: Cheung, D., Williams, G.J., Li, Q. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2001. Lecture Notes in Computer Science(), vol 2035. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45357-1_42
Download citation
DOI: https://doi.org/10.1007/3-540-45357-1_42
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41910-5
Online ISBN: 978-3-540-45357-4
eBook Packages: Springer Book Archive