Abstract
We present efficient algorithms for three coloring problems on subcubic graphs (ones with maximum degree 3). These algorithms are based on a simple decomposition principle for subcubic graphs. The first algorithm is for 4-edge coloring, or more generally, 4-list-edge coloring. Our algorithm runs in linear time, and appears to be simpler than previous ones. As evidence we give the first randomized EREW PRAM algorithm that uses O(n/log n) processors and runs in O(log n) time with high probability, where n is the number of vertices of the input graph. The second algorithm is the first linear-time algorithm to 5-total-color subcubic graphs. The third algorithm generalizes this to the first linear-time algorithm to 5-list-total-color subcubic graphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Macmillan (1976)
Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Metody Diskret. Analiz. 3 (1964) 25–30 In Russian.
Gabow, H.N., Nishizeki, T., Kariv, O., Leven, D., Terada, O.: Algorithms for edge-coloring graphs. Technical Report TRECIS-8501, Tohoku University (1985)
Holyer, I.J.: The NP-completeness of edge-coloring. SIAM Journal on Computing 10 (1981) 718–720
Gary, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Co., San Francisco, CA (1979)
Skulrattanakulchai, S.: 4-edge-coloring graphs of maximum degree 3 in linear time. Information Processing Letters 81 (2002) 191–195
Bollobás, B., Harris, A.J.: List-colourings of graphs. Graphs and Combinatorics 1 (1985) 115–127
Chetwynd, A.G., Häggkvist, R.: A note on list-colorings. Journal of Graph Theory 13 (1989) 87–95
Jensen, T.R., Toft, B.: Graph Coloring Problems. John Wiley & Sons (1995)
Vizing, V.G.: Coloring the vertices of a graph in prescribed colors. Metody Diskret. Anal. v Teorii Kodov i Schem 29 (1976) 3–10
Erdős, P., Rubin, A.L., Taylor, H.: Choosability in graphs. In: Proceedings of the West-Coast Conference on Combinatorics, Graph Theory and Computing. Volume XXVI of Congressus Numerantium., Arcata, California (1979) 125–157
Brooks, R.L.: On colouring the nodes of a network. Proceedings of the Cambridge Philosophical Society. Mathematical and Physical Sciences 37 (1941) 194–197
Skulrattanakulchai, S.: Δ-list vertex coloring in linear time. In: Proc. SWAT’ 02. LNCS (2002) To appear.
Juvan, M., Mohar, B., Škrekovski, R.: On list edge-colorings of subcubic graphs. Discrete Mathematics 187 (1998) 137–149
Sánchez-Arroyo, A.: Total colourings and complexity. Master’s thesis, University of Oxford (1989)
Sánchez-Arroyo, A.: Determining the total colouring number is NP-hard. Discrete Mathematics 78 (1989) 315–319
Yap, H.P.: Total Colourings of Graphs. LNM Volume 1623. Springer (1996)
Rosenfeld, M.: On the total coloring of certain graphs. Israel Journal of Mathematics 9 (1971) 396–402
Vijayaditya, N.: On total chromatic number of a graph. Journal of the London Mathematical Society 3 (1971) 405–408
Biedl, T.C., Bose, P., Demaine, E.D., Lubiw, A.: Efficient algorithms for Petersen’s Matching Theorem. Journal of Algorithms 38 (2001) 110–134
Juvan, M., Mohar, B., Škrekovski, R.: List total colorings of graphs. Combinatorics, Probability & Computing 7 (1998) 181–188
Borodin, O.V., Kostochka, A.V., Woodall, D.R.: List edge and list total colourings of multigraphs. Journal of Combinatorial Theory Series B 71 (1997) 184–204
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. Second edn. McGraw-Hill, New York (2001)
Halperin, S., Zwick, U.: Optimal randomized EREW PRAM algorithms for finding spanning forests. Journal of Algorithms 39 (2001) 1–46
Tarjan, R.E., Vishkin, U.: An efficient parallel biconnectivity algorithm. SIAM Journal on Computing 14 (1985) 862–874
Reif, J.H., ed.: Synthesis of Parallel Algorithms. Morgan Kaufmann, CA (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gabow, H.N., Skulrattanakulchai, S. (2002). Coloring Algorithms on Subcubic Graphs. In: Ibarra, O.H., Zhang, L. (eds) Computing and Combinatorics. COCOON 2002. Lecture Notes in Computer Science, vol 2387. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45655-4_9
Download citation
DOI: https://doi.org/10.1007/3-540-45655-4_9
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43996-7
Online ISBN: 978-3-540-45655-1
eBook Packages: Springer Book Archive