Abstract
In this paper we present a collection of problems whic have defied solution for some time. We ope that this paper will stimulate renewed interest in these problems, leading to solutions to at least some of them.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M. Abellanas, G. Hernandez, R. Klein, V. Neumann-Lara, and J. Urrutia,“A com-binatorial property of convex sets”. Discrete Comput. Geom. 17 (1997), No. 3, 307–318.
O. Aichholzer and H. Krasser, “ The point set order type data base: A collection of applications and results”. In Proc. 13th Canadian Conference on Computational Geometry CCCG 2001, pages 17–20, Waterloo, Ontario, Canada, 2001.
N. Alon, M. Katchalski and W.R. Pulleyblank,“Cutting disjoint disks by straight lines”, Discrete and Comp. Geom. 4, 239–243, (1989).
I. Barány and D.G. Larman, “A combinatorial property of points and ellipsoids”, Discrete Comp. Geometry 5 (1990) 375–382.
I. Barány. J.H. Schmerl, S.J. Sidney and J. Urrutia, “A combinatorial result about points and balls in Euclidean space”, Discrete Comp. Geometry 4 (1989) 259–262.
J. Czyzowicz, E. Rivera-Campo and J. Urrutia, “Separation of convex sets”. Dis-crete Appl. Math. 51 (1994), No. 3, 325–328.
J. Czyzowicz, E. Rivera Campo, J. Urrutia and J. Zaks,“Separating convex sets on the plane”, Proc. 2nd. Canadian Conference on Computational Geometry, Uni-versity of Ottawa, (1989), pp. 50–54.
J. Czyzowicz, E. Rivera-Campo, J. Urrutia and J. Zaks, “Separating convex sets in the plane”. Discrete Comput. Geom. 7 (1992), No. 2, 189–195.
H. Edelsbrunner, N. Hasan, R. Seidel and X.J. Shen, “Circles through two points that always enclose many points”, Geom. Dedicata, 32 No. 1, 1–12 (1989).
R. Hayward, D. Rappaport y R. Wenger, “Some extremal results on circles con-taining points”, Disc. Comp. Geom. 4 (1989) 253–258.
R. Hayward, “A note on the circle containment problem”, Disc. Comp. Geom. 4 (1989) 263–264.
K. Hope and M. Katchalsk,“Separating plane convex sets”, Math. Scand. 66 (1990), No. 1, 44–46.
H. Ito, H. Uehara, and M. Yokoyama, “NP-completeness of stage illumination prob-lems”, Discrete and Computational Geometry, JCDCG’98, pp. 158–165, Lecture Notes in Computer Science 1763, Springer-Verlag, (2000).
J. Pach, and E. Rivera-Campo, “On circumscribing polygons for line segments”, Computational Geometry, Theory and Applications 10 (1998) 121–124.
V. Neumann-Lara y J. Urrutia, “A combinatorial result on points and circles in the plane”, Discrete Math. 69 (1988) 173–178.
V. Neumann-Lara, E. Rivera-Campo, and J. Urrutia, “Convex partititonings of point sets”, manuscript, 1999.
J. O’Rourke, Art Gallery Theorems and Algorithms, Oxford Univ. Press (1987)
Sherman, T., “Recent results in art galleries”, Proc. IEEE (1992)1384–1399.
Csaba D. Tóth, “Art gallery problem with guards whose range of vision is 180°”, Computational Geometry, Theory and Applications, 17 (2000), 121–134.
H. Tverberg, “A separation property of plane convex sets”. Math. Scand. 45 (1979) No. 2, 255–260.
J. Urrutia, “Art gallery and illumination problems”, In J.-R. Sack and J. Urrutia, eds., Handbook on Computational Geometry, North Holland (2000) 973–1127.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Urrutia, J. (2002). Open Problems in Computational Geometry. In: Rajsbaum, S. (eds) LATIN 2002: Theoretical Informatics. LATIN 2002. Lecture Notes in Computer Science, vol 2286. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45995-2_4
Download citation
DOI: https://doi.org/10.1007/3-540-45995-2_4
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43400-9
Online ISBN: 978-3-540-45995-8
eBook Packages: Springer Book Archive