Abstract
We study the dynamical behavior of D-dimensional linear cellular automata over Z m . We provide easy-to-check necessary and sufficient conditions for a D-dimensional linear cellular automata over Z m to be sensitive to initial conditions, expansive, strongly transitive, and equicontinuous.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
H. Aso and N. Honda. Dynamical characteristics of linear cellular automata. Journal of Computer and System, Sciences, 30:291–317, 1985.
G. Cattaneo, E. Formenti, G. Manzini, and L. Margara. On ergodic linear cellular automata over Z m . In 14th Annual Symposium on Theoretical Aspects of Computer Science (STACS '97), volume 1200 of LNCS, pages 427–438. Springer Verlag, 1997.
K. Culik, J. Pachl, and S. Yu. On the limit sets of cellular automata. SIAM Journal of Computing, 18:831–842, 1989.
K. Culik and S. Yu. Undecidability of CA classification schemes. Complex Systems, 2:177–190, 1988.
P. Favati, G. Lotti, and L. Margara. One dimensional additive cellular automata are chaotic according to Devaney's definition of chaos. Theoretical Computer Science, 174:157–170, 1997.
M. Finelli, G. Manzini, and L. Margara. Lyapunov exponents vs expansivity and sensitivity in cellular automata. Journal of Complexity. To appear.
M. Garzon. Models of Massive Parallelism. EATCS Texts in Theoretical Computer Science. Springer Verlag, 1995.
P. Guan and Y. He. Exacts results for deterministic cellular automata with additive rules. Jour. Stat. Physics, 43:463–478, 1986.
M. Ito, N. Osato, and M. Nasu. Linear cellular automata over Z m . Journal of Computer and System Sciences, 27:125–140, 1983.
J. Kari. Rice's theorem for the limit set of cellular automata. Theoretical Computer Science, 127(2):229–254, 1994.
G. Manzini and L. Margara. A complete and efficiently computable topological classification of D-dimensional linear cellular automata over Z m . Technical Report B4-96-18, Istituto di Matematica Computazionale, CNR, Pisa, Italy, 1996.
T. Sato. Group structured linear cellular automata over Z m . Journal of Computer and System, Sciences, 49(l):18–23, 1994.
S. Takahashi. Self-similarity of linear cellular automata. Journal of Computer and System Sciences, 44(1):114–140, 1992.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Manzini, G., Margara, L. (1997). A complete and efficiently computable topological classification of D-dimensional linear cellular automata over Z m . In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds) Automata, Languages and Programming. ICALP 1997. Lecture Notes in Computer Science, vol 1256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63165-8_232
Download citation
DOI: https://doi.org/10.1007/3-540-63165-8_232
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63165-1
Online ISBN: 978-3-540-69194-5
eBook Packages: Springer Book Archive