Skip to main content

Mining Text Streams

  • Chapter
  • First Online:
Mining Text Data
  • 20k Accesses

Abstract

The large amount of text data which are continuously produced over time in a variety of large scale applications such as social networks results in massive streams of data. Typically massive text streams are created by very large scale interactions of individuals, or by structured creations of particular kinds of content by dedicated organizations. An example in the latter category would be the massive text streams created by news-wire services. Such text streams provide unprecedented challenges to data mining algorithms from an efficiency perspective. In this chapter, we review text stream mining algorithms for a wide variety of problems in data mining such as clustering, classification and topic modeling. We also discuss a number of future challenges in this area of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 232.09
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 232.09
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. C. Aggarwal. Data Streams: Models and Algorithms, Springer, 2007.

    Google Scholar 

  2. C. C. Aggarwal, J. Han, J. Wang, P. Yu. On Demand Classification of Data Streams, KDD Conference, 2004.

    Google Scholar 

  3. C. C. Aggarwal, P. S. Yu. A Framework for Clustering Massive Text and Categorical Data Streams, SIAM Conference on Data Mining, 2006.

    Google Scholar 

  4. C. C. Aggarwal, J. Han. J. Wang, P. Yu. A Framework for Clustering Evolving Data Streams, VLDB Conference, 2003.

    Google Scholar 

  5. J. Allan, R. Papka, V. Lavrenko. On-line new event detection and tracking. ACM SIGIR Conference, 1998.

    Google Scholar 

  6. J. Allan, V. Lavrenko, H. Jin. First story detection in tdt is hard. ACM CIKM Conference, 2000.

    Google Scholar 

  7. J. Allan, V. Lavrenko, D. Malin, R. Swan. Detections, bounds and timelines: Umass and tdt3, Proceedings of the Topic Detection and Tracking Workshop, 2000.

    Google Scholar 

  8. I. Androutsopoulos, J. Koutsias, K. V. Chandrinos, C. D. Spyropoulos. An experimental comparison of naive Bayesian and keywordbased anti-spam filtering with personal e-mail messages. Proceedings of the ACM SIGIR Conference, 2000.

    Google Scholar 

  9. A. Banerjee, J. Ghosh. Competitive learning mechanisms for scalable, balanced and incremental clustering of streaming texts, NIPS Conference, 2003.

    Google Scholar 

  10. D. Blei, J. Lafferty. Dynamic topic models. ICML Conference, 2006.

    Google Scholar 

  11. T. Brants, F. Chen, A. Farahat. A system for new event detection. ACM SIGIR Conference, 2003.

    Google Scholar 

  12. L. O’Callaghan, A. Meyerson, R. Motwani, N. Mishra, S. Guha. Streaming-Data Algorithms for High-Quality Clustering. ICDE Conference, 2002.

    Google Scholar 

  13. K. Chai, H. Ng, H. Chiu. Bayesian Online Classifiers for Text Classification and Filtering, ACM SIGIR Conference, 2002.

    Google Scholar 

  14. M. Charikar. Similarity Estimation Techniques from Rounding Algorithms, STOC Conference, 2002.

    Google Scholar 

  15. W. Cohen, Y. Singer. Context-sensitive learning methods for text categorization. ACM Transactions on Information Systems, 17(2), pp. 141–173, 1999.

    Article  Google Scholar 

  16. K. Crammer, Y. Singer. A New Family of Online Algorithms for category ranking, ACM SIGIR Conference, 2002.

    Google Scholar 

  17. D. Cutting, D. Karger, J. Pedersen, J. Tukey. Scatter/Gather: A Cluster-based Approach to Browsing Large Document Collections. Proceedings of the SIGIR, 1992.

    Google Scholar 

  18. I. Dagan, Y. Karov, D. Roth. Mistake-driven learning in text categorization. Conference Empirical Methods in Natural Language Processing, 1997.

    Google Scholar 

  19. A. P. Dempster, N. M. Laird, D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of Royal Statistical Society 39: pp. 1–38, 1977.

    MathSciNet  MATH  Google Scholar 

  20. D. Fisher. Knowledge Acquisition via incremental conceptual clustering. Machine Learning, 2: pp. 139–172, 1987.

    Google Scholar 

  21. Y. Freund, R. Schapire, Y. Singer, M. Warmuth. Using and combining predictors that specialize. Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pp. 334–343, 1997.

    Google Scholar 

  22. Y. Freund, R. Schapire. Large Margin Classification using the perceptron Algorithm, COLT, 1998.

    Google Scholar 

  23. G. P. C. Fung, J. X. Yu, H. Lu. Classifying text streams in the presence of concept drifts. PAKDD Conference, 2004.

    Google Scholar 

  24. G. P. C. Fung, J. X. Yu, P. Yu, H. Lu. Parameter Free Bursty Events Detection in Text Streams, VLDB Conference, 2005.

    Google Scholar 

  25. J. H. Gennari, P. Langley, D. Fisher. Models of incremental concept formation. Journal of Artificial Intelligence, 40: pp. 11–61, 1989.

    Article  Google Scholar 

  26. Q. He, K. Chang, E.-P. Lim, J. Zhang. Bursty feature representation for clustering text streams. SDM Conference, 2007.

    Google Scholar 

  27. J. Kleinberg, Bursty and hierarchical structure in streams, ACM KDD Conference, pp. 91–101, 2002.

    Google Scholar 

  28. A. Kontostathis, L. Galitsky,W. M. Pottenger, S. Roy, D. J. Phelps. A survey of emerging trend detection in textual data mining. Survey of Text Mining, pp. 185–224, 2003.

    Google Scholar 

  29. J. Leskovec, L. Backstrom, J. Kleinberg. Meme Tracking and the Dynamics of the News Cycle, KDD Conference, 2009.

    Google Scholar 

  30. D. Lewis. The TREC-4 filtering track: description and analysis. Proceedings of TREC-4, 4th Text Retrieval Conference, pp. 165–180, 1995.

    Google Scholar 

  31. D. Lewis, R. E. Schapire, J. P. Callan, R. Papka. Training algorithms for linear text classifiers. ACM SIGIR Conference, 1996.

    Google Scholar 

  32. Y.-B. Liu, J.-R. Cai, J. Yin, A. W.-C. Fu. Clustering Text Data Streams, Journal of Computer Science and Technology, Vol. 23(1), pp. 112–128, 2008.

    Article  Google Scholar 

  33. Q. Mei, C.-X. Zhai. Discovering Evolutionary Theme Patterns from Text- An Exploration of Temporal Text Mining, ACM KDD Conference, 2005.

    Google Scholar 

  34. H. T. Ng, W. B. Goh, K. L. Low. Feature selection, perceptron learning, and a usability case study for text categorization. SIGIR Conference, 1997.

    Google Scholar 

  35. F. Rosenblatt. The perceptron: A probabilistic model for information and storage organization in the brain, Psychological Review, 65: pp. 386–407, 1958.

    Article  MathSciNet  Google Scholar 

  36. S. Petrovic, M. Osborne, V. Lavrenko. Streaming First Story Detection with Application to Twitter. Proceedings of the ACL Conference, pp. 181–189, 2010.

    Google Scholar 

  37. N. Sahoo, J. Callan, R. Krishnan, G. Duncan, R. Padman. Incremental Hierarchical Clustering of Text Documents, ACM CIKM Conference, 2006.

    Google Scholar 

  38. T. Salles, L. Rocha, G. Pappa, G. Mourao, W. Meira Jr., M. Goncalves. Temporally-aware algorithms for document classification. ACM SIGIR Conference, 2010.

    Google Scholar 

  39. H. Sayyadi, M. Hurst, A. Maykov. Event Detection in Social Streams, AAAI, 2009.

    Google Scholar 

  40. H. Schutze, C. Silverstein. Projections for Efficient Document Clustering, ACM SIGIR Conference, 1997.

    Google Scholar 

  41. H. Schutze, D. Hull, J. Pedersen. A comparison of classifiers and document representations for the routing problem. ACM SIGIR Conference, 1995.

    Google Scholar 

  42. A. Surendran, S. Sra. Incremental Aspect Models for Mining Document Streams. PKDD Conference, 2006.

    Google Scholar 

  43. H. Wang, W. Fan, P. Yu, J. Han, Mining Concept-Drifting Data Streams with Ensemble Classifiers, KDD Conference, 2003.

    Google Scholar 

  44. X. Wang, C.-X. Zhai, X. Hu, R. Sproat. Mining Correlated Bursty Topic Patterns from Correlated Text Streams, ACM KDD Conference, 2007.

    Google Scholar 

  45. E. Wiener, J. O. Pedersen, A. S. Weigend. A Neural Network Approach to Topic Spotting. SDAIR, pp. 317–332, 1995.

    Google Scholar 

  46. Y. Yang, J. Carbonell, R. Brown, T. Pierce, B. T. Archibald, X. Liu. Learning approaches for detecting and tracking news events. IEEE Intelligent Systems, 14(4):32–43, 1999.

    Article  Google Scholar 

  47. Y. Yang, T. Pierce, J. Carbonell. A study on retrospective and online event detection. ACM SIGIR Conference, 1998.

    Google Scholar 

  48. Y.Yang, J. Carbonell, C. Jin. Topic-conditioned Novelty Detection. ACM KDD Conference, 2002.

    Google Scholar 

  49. L. Yao, D. Mimno, A. McCallum. Efficient methods for topic model inference on streaming document collections, ACM KDD Conference, 2009.

    Google Scholar 

  50. K. L. Yu, W. Lam. A new on-line learning algorithm for adaptive text filtering. ACM CIKM Conference, 1998.

    Google Scholar 

  51. J. Zhang, Z. Ghahramani, Y. Yang. A probabilistic model for online document clustering with application to novelty detection. In Saul L., Weiss Y., Bottou L. (eds) Advances in Neural Information Processing Letters, 17, 2005.

    Google Scholar 

  52. Y. Zhang, X. Li, M. Orlowska. One Class Classification of Text Streams with Concept Drift, ICDMW Workshop, 2008.

    Google Scholar 

  53. Q. Zhao, P. Mitra. Event Detection and Visualization for Social Text Streams, ICWSM, 2007.

    Google Scholar 

  54. S. Zhong. Efficient Streaming Text Clustering. Neural Networks, Volume 18, Issue 5-6, 2005.

    Google Scholar 

  55. http://projects.ldc.upenn.edu/TDT/

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charu C. Aggarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Aggarwal, C.C. (2012). Mining Text Streams. In: Aggarwal, C., Zhai, C. (eds) Mining Text Data. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3223-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3223-4_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-3222-7

  • Online ISBN: 978-1-4614-3223-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics