Abstract
Machine learning models often need to be adapted to new contexts, for instance, to deal with situations where the target concept changes. In hierarchical classification, the modularity and flexibility of learning techniques allows us to deal directly with changes in the learning problem by readapting the structure of the model, instead of having to retrain the model from the scratch. In this work, we propose a method for adapting hierarchical models to changes in the target classes. We experimentally evaluate our method over different datasets. The results show that our novel approach improves the original model, and compared to the retraining approach, it performs quite competitive while it implies a significantly smaller computational cost.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alcalá-Fdez, J., et al.: Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Mult.-Valued Log. Soft Comput. 17(2–3), 255–287 (2011)
Cauwenberghs, G., Poggio, T.: Incremental and decremental SVM learning. In: Advances in Neural Information Processing Systems, pp. 409–415 (2001)
Chandak, M.B.: Role of big-data in classification and novel class detection in data streams. J. Big Data 3(1), 5 (2016)
Da, Q., Yu, Y., Zhou, Z.H.: Learning with augmented class by exploiting unlabeled data. In: Twenty-Eighth AAAI Conference on Artificial Intelligence (2014)
Farid, D.M., et al.: An adaptive ensemble classifier for mining concept drifting data streams. Expert. Syst. Appl. 40(15), 5895–5906 (2013)
Ferri-Ramírez, C., Hernández-Orallo, J., Ramírez-Quintana, M.J.: Incremental learning of functional logic programs. In: Kuchen, H., Ueda, K. (eds.) FLOPS 2001. LNCS, vol. 2024, pp. 233–247. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44716-4_15
García, S., Herrera, F.: An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. J. Mach. Learn. Res. 9, 2677–2694 (2008)
Giraud-Carrier, C.: A note on the utility of incremental learning. AI Commun. 13(4), 215–223 (2000)
Hernández-Orallo, J., et al.: Reframing in context: a systematic approach for model reuse in machine learning. AI Commun. 29(5), 551–566 (2016)
Jain, L.P., Scheirer, W.J., Boult, T.E.: Multi-class open set recognition using probability of inclusion. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 393–409. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_26
Klinkenberg, R., Joachims, T.: Detecting concept drift with support vector machines. In: ICML, pp. 487–494 (2000)
Moreno-Torres, J.G., Raeder, T., Alaiz-RodríGuez, R.: A unifying view on dataset shift in classification. Pattern Recognit. 45, 521–530 (2012)
Mu, X., Ting, K.M., Zhou, Z.H.: Classification under streaming emerging new classes: a solution using completely-random trees. IEEE Trans. Knowl. Data Eng. 29(8), 1605–1618 (2017)
Muhlbaier, M.D., Topalis, A., Polikar, R.: Learn \(^{++}\).NC: combining ensemble of classifiers with dynamically weighted consult-and-vote for efficient incremental learning of new classes. IEEE Trans. Neural Netw. 20(1), 152–168 (2009)
Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N.D.: Dataset Shift in Machine Learning. The MIT Press, Cambridge (2009)
Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77(1–3), 125–141 (2008)
Scheirer, W.J., Jain, L.P.: Probability models for open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2317–2324 (2014)
Scheirer, W.J., de Rezende Rocha, A., Sapkota, A., Boult, T.E.: Toward open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1757–1772 (2013)
Silva-Palacios, D., Ferri, C., Ramírez-Quintana, M.J.: Probabilistic class hierarchies for multiclass classification. J. Comput. Sci. 26, 254–263 (2018)
ZareMoodi, P., Beigy, H., Siahroudi, S.K.: Novel class detection in data streams using local patterns and neighborhood graph. Neurocomputing 158, 234–245 (2015)
Zhang, B.F., Su, J.S., Xu, X.: A class-incremental learning method for multi-class support vector machines in text classification, pp. 2581–2585. IEEE (2006)
Acknowledgements
This work was partially supported by the EU (FEDER) and the Spanish MINECO under grant TIN 2015-69175-C4-1-R, and by Generalitat Valenciana PROMETEOII2015/013. This work has been supported by the Secretary of Higher Education, Science and Technology (SENESCYT: Secretaría Nacional de Educación Superior, Ciencia y Tecnología), of the Republic of Ecuador.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Silva-Palacios, D., Ferri, C., Ramirez-Quintana, M.J. (2018). Adapting Hierarchical Multiclass Classification to Changes in the Target Concept. In: Herrera, F., et al. Advances in Artificial Intelligence. CAEPIA 2018. Lecture Notes in Computer Science(), vol 11160. Springer, Cham. https://doi.org/10.1007/978-3-030-00374-6_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-00374-6_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00373-9
Online ISBN: 978-3-030-00374-6
eBook Packages: Computer ScienceComputer Science (R0)