Abstract
This paper presents impedance control through force estimation of a redundantly actuated Parallel Kinematic Manipulator. The impedance control is a model based control that sets a stiffness, damping and apparent inertia in the task space of the robot. The control is based on the feedback linearisation of the dynamics. The impedance control is achieved through an optimization promoting the even distribution of torques over actuators. Next, a force estimator is applied through an nonlinear disturbance observer. Finally, the estimated force is used in the impedance controller to set an apparent inertia of the moving platform of the robot. The approach shows a good response in low frequencies and good external force estimation required for impedance controlled tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Johansson, R., Nilsson, K., Robertsson, A.: Force Control, pp. 1933–1965. Springer, Germany (2015)
URScript example. https://www.universal-robots.com/how-tos-and-faqs/how-to/ur-how-tos/urscript-dynamic-force-control-20571/. Accessed 22 Nov 2017
Briggs, A.J.: An efficient algorithm for one-step planar compliant motion planning with uncertainty. Algorithmica 8(1), 195–208 (1992)
Bruyninckx, H., De Schutter, J.: Specification of force-controlled actions in the ldquo;task frame formalism rdquo;-a synthesis. IEEE Trans. Robot. Autom. 12(4), 581–589 (1996)
FANUC Industrial Applications. http://www.fanuc.eu/ro/en/industrial-applications/automated-material-handling. Accessed 17 Nov 2017
Taghirad, H.D.: Parallel Robots: Mechanics and Control. CRC Press (2013)
Schutz, D., Wahl, F.M.: Robotic Systems for Handling and Assembly, vol. 67. Springer, Heidelberg (2011)
Patel, Y., George, P.: Parallel manipulators applications a survey. In: Modern Mechanical Engineering, pp. 57–64 (2012)
McCallion, H., Pham, D.T.: The analysis of a six degrees of freedom work station for mechanized assembly. In: Proceedings of 5th World Congress on Theory of Machines and Mechanisms, pp. 611616. Montreal (1979)
Ming, A., Higuchi, T.: Study on multiple degree of freedom positioning mechanisms using wires, part 2, development of a planar completely restrained positioning mechanism. Int. J. Jpn. Soc. Prec. Eng. 28(3), 235242 (1994)
Salcudean et al., S.E.: A six degree-of-freedom, hydraulic, one person motion simulator. In: IEEE International Conference on Robotics and Automation, pp. 24372443. San Diego (1994)
Powell, I.L.: The kinematic analysis and simulation of the parallel topology manipulator. Marconi Rev. XLV(226), 121138 (1982). Third Quarter
Company, O., Pierrot, F.: Modeling and design issues of a 3-axis parallel machine tool. Mech. Mach. Theory 37(11), 1325–1345 (2002)
Peshkin, M.A.: Programmed compliance for errorcorrective manipulation. IEEE Trans. Robot. Autom. 6, 473–482 (1990)
Mason, M.T.: Compliance and force control for computer controlled manipulators. IEEE Trans. Syst., Man, Cybern. 11, 418–432 (1981)
Park, H., Bae, J.-H., Park, J.-H., Baeg, M.-H., Park, J.: Intuitive peg-in-hole assembly strategy with a compliant manipulator. IEEE ISR 2013, 1–5 (2013)
Hogan, N.: Impedance control: an approach to manipulation: Part itheory. ASME. J. Dyn. Syst, Meas. Control 107(1), 1–7 (1985)
Briot, S., Gautier, M., Krut, S.: Dynamic parameter identification of actuation redundant parallel robots: application to the dualv. In: AIM: Advanced Intelligent Mechatronics, Jul 2013, Wollongong, Australia. IEEE/ASME, pp. 637–643 (2013)
Kock, S., Schumacher, W.: Redundant Parallel Kinematic Structures and Their Control, pp. 143–157. Springer, Heidelberg (2011)
Cheng, H., Liu, G.F., Yiu, Y.K., Xiong, Z.H., Li, Z.X.: Advantages and dynamics of parallel manipulators with redundant actuation. In: Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180), vol. 1, pp. 171–176 (2001)
Preben Hjørnet. Blueworkforce home page (2016). http://blueworkforce.com/
de Dios Flores Mendez, J., Schiøler, H., Madsen, O., Bai, S.: Impedance control of a redundant parallel manipulator. In: Proceedings of the 14th International Conference on Informatics in Control, Automation and Robotics, pp. 104–111 (2017)
Mohammadi, A., Marquez, H.J., Tavakoli, M.: Nonlinear disturbance observers: design and applications to euler?lagrange systems. IEEE Control Syst. 37(4), 50–72 (2017)
Chen, W.-H., Ballance, D.J., Gawthrop, P.J., O’Reilly, J.: A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 47(4), 932–938 (2000)
Korayem, M.H., Haghighi, R.: Nonlinear Disturbance Observer for Robot Manipulators in 3D Space, pp. 14–23. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Flores-Mendez, J.d.D., Schiøler, H., Madsen, O., Bai, S. (2020). Impedance Control and Force Estimation of a Redundant Parallel Kinematic Manipulator. In: Gusikhin, O., Madani, K. (eds) Informatics in Control, Automation and Robotics . ICINCO 2017. Lecture Notes in Electrical Engineering, vol 495. Springer, Cham. https://doi.org/10.1007/978-3-030-11292-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-11292-9_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-11291-2
Online ISBN: 978-3-030-11292-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)