Skip to main content

A Cost-Effective Time-Constrained Multi-workflow Scheduling Strategy in Fog Computing

  • Conference paper
  • First Online:
Service-Oriented Computing – ICSOC 2018 Workshops (ICSOC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11434))

Included in the following conference series:

  • 1884 Accesses

Abstract

With the rapid development of Internet of Things and smart services, massive intelligent devices are accessing the cloud data centers, which can cause serious network congestion and high latency issues. Recently, fog computing becomes a popular computing paradigm which can provide computing resources close to the end devices and solve various problems of existing cloud-only based systems. However, due to QoS (Quality of Service) constraints such as time and cost, and also the complexity of various resource types such as end devices, fog nodes and cloud servers, task scheduling in fog computing is still an open issue. To address such a problem, this paper presents a cost-effective scheduling strategy for multi-workflow with time constraints. Firstly, we define the models for workflow execution time and resource cost in fog computing. Afterwards, a novel PSO (Particle Swarm Optimization) based multi-workflow scheduling strategy is proposed where a fitness function is used to evaluate the workflow execution cost under given deadlines. A heart rate monitoring App is employed as a motivating example and comprehensive experimental results show that our proposed strategy can significantly reduce the execution cost of multiple workflows under given deadlines compared with other strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cisco visual networking index: Global mobile data traffic forecast update, 2016–2021 white paper. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html. Accessed 6 Jun 2018

  2. Cisco global cloud index: Forecast and methodology, 2016–2021 white paper. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html. Accessed 6 Jun 2018

  3. Li, C., Xue, Y., Wang, J., et al.: Edge-oriented computing paradigms: A survey on architecture design and system management. ACM Comput. Surv. 51(2), 1–34 (2018)

    Article  Google Scholar 

  4. Deng, R., Lu, R., Lai, C., et al.: Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption. IEEE Internet Things J. 3(6), 1171–1181 (2017)

    Google Scholar 

  5. Bonomi, F., Milito, R., Zhu, J., et al.: Fog computing and its role in the Internet of Things. In: 1st MCC Workshop on Mobile Cloud Computing, pp. 13–16. ACM, Helsinki (2012)

    Google Scholar 

  6. Mahmud, R., Kotagiri, R., Buyya, R.: Fog computing: a taxonomy, survey and future directions. In: Di Martino, B., Li, K.-C., Yang, Laurence T., Esposito, A. (eds.) Internet of Everything. IT, pp. 103–130. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-5861-5_5

    Chapter  Google Scholar 

  7. Roman, R., Lopez, J., Mambo, M.: Mobile edge computing, fog et al.: a survey and analysis of security threats and challenges. Future Gener. Comput. Syst. 78(2), 680–698 (2018)

    Article  Google Scholar 

  8. Ni, L., Zhang, J., Jiang, C., et al.: Resource allocation strategy in fog computing based on priced timed petri nets. IEEE Internet Things J. 4(5), 1216–1228 (2017)

    Article  Google Scholar 

  9. Alonso-Monsalve, S., García-Carballeira, F., Calderón, A.: Fog computing through public-resource computing and storage. In: 2nd International Conference on Fog and Mobile Edge Computing, pp. 81–87. IEEE, Valencia (2017)

    Google Scholar 

  10. Bao, W., Yuan, D., Yang, Z., et al.: Follow me fog: toward seamless handover timing schemes in a fog computing environment. IEEE Commun. Mag. 55(11), 72–78 (2017)

    Article  Google Scholar 

  11. Yin, H., Zhang, X., Liu, H., et al.: Edge provisioning with flexible server placement. IEEE Trans. Parallel Distrib. Syst. 28(4), 1031–1045 (2017)

    Article  Google Scholar 

  12. Masdari, M., Valikardan, S., Shahi, Z., et al.: Towards workflow scheduling in cloud computing: a comprehensive analysis. J. Netw. Comput. Appl. 66(5), 64–82 (2016)

    Article  Google Scholar 

  13. Bittencourt, L.F., Diazmontes, J., Buyya, R., et al.: Mobility-aware application scheduling in fog computing. IEEE Cloud Comput. 4(2), 26–35 (2017)

    Article  Google Scholar 

  14. Hu, P., Ning, H., Qiu, T., et al.: Fog computing based face identification and resolution scheme in Internet of Things. IEEE Trans. Ind. Inf. 13(4), 1910–1920 (2017)

    Article  Google Scholar 

  15. Zeng, D., Gu, L., Guo, S., et al.: Joint optimization of task scheduling and image placement in fog computing supported software-defined embedded system. IEEE Trans. Comput. 65(12), 3702–3712 (2016)

    Article  MathSciNet  Google Scholar 

  16. You, C., Huang, K., Chae, H., et al.: Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Trans. Wirel. Commun. 16(3), 1397–1411 (2016)

    Article  Google Scholar 

  17. Xu, J., Palanisamy, B., Ludwig, H., et al.: Zenith: Utility-aware resource allocation for edge computing. In: IEEE International Conference on Edge Computing, pp. 47–54 (2017)

    Google Scholar 

  18. Pandey, S., Wu, L., Guru, S. M., et al.: A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments. In: 24th International Conference on Advanced Information Networking and Applications, pp. 400–407. IEEE, Biopolis (2010)

    Google Scholar 

  19. Kokilavani, T., George Amalarethinam, D.I.: Load balanced Min-Min algorithm for static metatask scheduling in grid computing. Int. J. Comput. Appl. 20(2), 42–48 (2011)

    Google Scholar 

  20. Rahmani, A.M., Gia, T.N., Negash, B., et al.: Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach. Future Gener. Comput. Syst. 78(2), 641–658 (2018)

    Article  Google Scholar 

  21. Farahani, B., Firouzi, F., Chang, V., et al.: Towards fog-driven IoT eHealth: promises and challenges of IoT in medicine and healthcare. Future Gener. Comput. Syst. 78(2), 659–676 (2018)

    Article  Google Scholar 

  22. Ramírez-Gallego, S., Fernández, A., García, S., et al.: Big data: Tutorial and guidelines on information and process fusion for analytics algorithms with mapreduce. Inf. Fusion 42(6), 51–61 (2018)

    Article  Google Scholar 

  23. Netjinda, N., Sirinaovakul, B., Achalakul, T.: Cost optimal scheduling in Iaas for dependent workload with particle swarm optimization. J. Supercomput. 68(3), 1579–1603 (2014)

    Article  Google Scholar 

  24. Li, X., Jia, X., Zhu, E., et al.: A novel computation method for adaptive inertia weight of task scheduling algorithm. J. Comput. Res. Dev. 53(9), 1990–1999 (2016)

    Google Scholar 

  25. Vaquero, L.M., Rodero-Merino, L.: Finding your way in the fog: towards a comprehensive definition of fog computing. ACM SIGCOMM Comput. Commun. Rev. 44(5), 27–32 (2014)

    Article  Google Scholar 

  26. Chen, X., Jiao, L., Li, W., et al.: Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans. Netw. 24(5), 2795–2808 (2015)

    Article  Google Scholar 

  27. Sarangi, S. R., Goel, S., and Singh, B.: Energy efficient scheduling in IoT networks. In: Proceedings of Symposium on Applied Computing, pp. 1–8. ACM, New York (2018)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under No. 61672034, 61300042, and the Natural Science Foundation of Anhui Province of China under No. 1708085MF160, and the Key Natural Science Foundation of Education Bureau of Anhui Province Project No. KJ2018A0010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, R., Li, X., Liu, X., Xu, J. (2019). A Cost-Effective Time-Constrained Multi-workflow Scheduling Strategy in Fog Computing. In: Liu, X., et al. Service-Oriented Computing – ICSOC 2018 Workshops. ICSOC 2018. Lecture Notes in Computer Science(), vol 11434. Springer, Cham. https://doi.org/10.1007/978-3-030-17642-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17642-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17641-9

  • Online ISBN: 978-3-030-17642-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics