Skip to main content

Targeted Attack for Deep Hashing Based Retrieval

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12346))

Included in the following conference series:

  • 17k Accesses

Abstract

The deep hashing based retrieval method is widely adopted in large-scale image and video retrieval. However, there is little investigation on its security. In this paper, we propose a novel method, dubbed deep hashing targeted attack (DHTA), to study the targeted attack on such retrieval. Specifically, we first formulate the targeted attack as a point-to-set optimization, which minimizes the average distance between the hash code of an adversarial example and those of a set of objects with the target label. Then we design a novel component-voting scheme to obtain an anchor code as the representative of the set of hash codes of objects with the target label, whose optimality guarantee is also theoretically derived. To balance the performance and perceptibility, we propose to minimize the Hamming distance between the hash code of the adversarial example and the anchor code under the \(\ell ^\infty \) restriction on the perturbation. Extensive experiments verify that DHTA is effective in attacking both deep hashing based image retrieval and video retrieval.

J. Bai, B. Chen and Y. Li—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, Y., Zeng, Y., Jiang, Y., Wang, Y., Xia, S.T., Guo, W.: Improving query efficiency of black-box adversarial attack. In: ECCV 2020 (2020)

    Google Scholar 

  2. Cao, Y., Long, M., Liu, B., Wang, J.: Deep Cauchy Hashing for hamming space retrieval. In: CVPR (2018)

    Google Scholar 

  3. Cao, Z., Long, M., Wang, J., Yu, P.S.: HashNet: deep learning to hash by continuation. In: ICCV (2017)

    Google Scholar 

  4. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: IEEE S&P (2017)

    Google Scholar 

  5. Carlini, N., Wagner, D.: Audio adversarial examples: targeted attacks on speech-to-text. In: IEEE S&P Workshops (2018)

    Google Scholar 

  6. Chen, W., Zhang, Z., Hu, X., Wu, B.: Boosting decision-based black-box adversarial attacks with random sign flip. In: ECCV (2020)

    Google Scholar 

  7. Chen, Y., Lai, Z., Ding, Y., Lin, K., Wong, W.K.: Deep supervised hashing with anchor graph. In: CVPR (2019)

    Google Scholar 

  8. Chen, Z., Yuan, X., Lu, J., Tian, Q., Zhou, J.: Deep hashing via discrepancy minimization. In: CVPR (2018)

    Google Scholar 

  9. Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: NUS-WIDE: a real-world web image database from national university of Singapore. In: ICMR (2009)

    Google Scholar 

  10. Dong, Y., et al.: Boosting adversarial attacks with momentum. In: CVPR (2018)

    Google Scholar 

  11. Dong, Y., et al.: Efficient decision-based black-box adversarial attacks on face recognition. In: CVPR (2019)

    Google Scholar 

  12. Duan, R., Ma, X., Wang, Y., Bailey, J., Qin, A.K., Yang, Y.: Adversarial camouflage: hiding physical-world attacks with natural styles. In: CVPR (2020)

    Google Scholar 

  13. Eykholt, K., et al.: Robust physical-world attacks on deep learning visual classification. In: CVPR (2018)

    Google Scholar 

  14. Fan, Y., Wu, B., Li, T., Zhang, Y., Li, M., Li, Z., Yang, Y.: Sparse adversarial attack via perturbation factorization. In: ECCV (2020)

    Google Scholar 

  15. Feng, Y., Chen, B., Dai, T., Xia, S.T.: Adversarial attack on deep product quantization network for image retrieval. In: AAAI (2020)

    Google Scholar 

  16. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: ICLR (2015)

    Google Scholar 

  17. Gu, Y., Ma, C., Yang, J.: Supervised recurrent hashing for large scale video retrieval. In: ACM MM (2016)

    Google Scholar 

  18. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  19. Hu, D., Nie, F., Li, X.: Deep binary reconstruction for cross-modal hashing. IEEE Trans. Multimedia 21(4), 973–985 (2018)

    Article  Google Scholar 

  20. Jhuang, H., Gall, J., Zuffi, S., Schmid, C., Black, M.J.: Towards understanding action recognition. In: ICCV (2013)

    Google Scholar 

  21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NeurIPS, pp. 1097–1105 (2012)

    Google Scholar 

  22. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world. In: ICLR (2017)

    Google Scholar 

  23. Lai, H., Pan, Y., Liu, Y., Yan, S.: Simultaneous feature learning and hash coding with deep neural networks. In: CVPR (2015)

    Google Scholar 

  24. Li, C., Deng, C., Li, N., Liu, W., Gao, X., Tao, D.: Self-supervised adversarial hashing networks for cross-modal retrieval. In: CVPR (2018)

    Google Scholar 

  25. Li, J., Ji, R., Liu, H., Hong, X., Gao, Y., Tian, Q.: Universal perturbation attack against image retrieval. In: ICCV (2019)

    Google Scholar 

  26. Li, P., Wang, M., Cheng, J., Xu, C., Lu, H.: Spectral hashing with semantically consistent graph for image indexing. IEEE Trans. Multimedia 15(1), 141–152 (2012)

    Article  Google Scholar 

  27. Li, S., Chen, Z., Lu, J., Li, X., Zhou, J.: Neighborhood preserving hashing for scalable video retrieval. In: ICCV, pp. 8212–8221 (2019)

    Google Scholar 

  28. Liu, H., Wang, R., Shan, S., Chen, X.: Deep supervised hashing for fast image retrieval. In: CVPR (2016)

    Google Scholar 

  29. Liu, W., Wang, J., Ji, R., Jiang, Y.G., Chang, S.F.: Supervised hashing with kernels. In: CVPR (2012)

    Google Scholar 

  30. Ma, X., et al.: Understanding adversarial attacks on deep learning based medical image analysis systems. Pattern Recogn. (2019)

    Google Scholar 

  31. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate method to fool deep neural networks. In: CVPR (2016)

    Google Scholar 

  32. Qin, Y., Carlini, N., Cottrell, G., Goodfellow, I., Raffel, C.: Imperceptible, robust, and targeted adversarial examples for automatic speech recognition. In: ICML (2019)

    Google Scholar 

  33. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  34. Shen, F., Shen, C., Liu, W., Tao Shen, H.: Supervised discrete hashing. In: CVPR (2015)

    Google Scholar 

  35. Shen, F., Xu, Y., Liu, L., Yang, Y., Huang, Z., Shen, H.T.: Unsupervised deep hashing with similarity-adaptive and discrete optimization. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 3034–3044 (2018)

    Article  Google Scholar 

  36. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  37. Song, J., Zhang, H., Li, X., Gao, L., Wang, M., Hong, R.: Self-supervised video hashing with hierarchical binary auto-encoder. IEEE Trans. Image Process. 27(7), 3210–3221 (2018)

    Article  MathSciNet  Google Scholar 

  38. Soomro, K., Zamir, A.R., Shah, M.: Ucf101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  39. Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR (2014)

    Google Scholar 

  40. Tolias, G., Radenovic, F., Chum, O.: Targeted mismatch adversarial attack: query with a flower to retrieve the tower. In: ICCV (2019)

    Google Scholar 

  41. Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., McDaniel, P.: Ensemble adversarial training: attacks and defenses. In: ICLR (2018)

    Google Scholar 

  42. Wang, J., Zhang, T., Sebe, N., Shen, H.T., et al.: A survey on learning to hash. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 769–790 (2017)

    Article  Google Scholar 

  43. Wang, J., Liu, W., Kumar, S., Chang, S.F.: Learning to hash for indexing big data-a survey. Proc. IEEE 104(1), 34–57 (2015)

    Article  Google Scholar 

  44. Wu, D., Lin, Z., Li, B., Ye, M., Wang, W.: Deep supervised hashing for multi-label and large-scale image retrieval. In: ICMR (2017)

    Google Scholar 

  45. Wu, D., Wang, Y., Xia, S.T., Bailey, J., Ma, X.: Skip connections matter: on the transferability of adversarial examples generated with ResNets. In: ICLR (2020)

    Google Scholar 

  46. Wu, G., et al.: Unsupervised deep video hashing via balanced code for large-scale video retrieval. IEEE Trans. Image Process. 28(4), 1993–2007 (2018)

    Article  MathSciNet  Google Scholar 

  47. Xia, R., Pan, Y., Lai, H., Liu, C., Yan, S.: Supervised hashing for image retrieval via image representation learning. In: AAAI (2014)

    Google Scholar 

  48. Xu, Y., et al.: Exact adversarial attack to image captioning via structured output learning with latent variables. In: CVPR (2019)

    Google Scholar 

  49. Yan, X., Zhang, L., Li, W.J.: Semi-supervised deep hashing with a bipartite graph. In: IJCAI (2017)

    Google Scholar 

  50. Yang, E., Liu, T., Deng, C., Liu, W., Tao, D.: DistillHash: unsupervised deep hashing by distilling data pairs. In: CVPR (2019)

    Google Scholar 

  51. Yang, E., Liu, T., Deng, C., Tao, D.: Adversarial examples for hamming space search. IEEE Trans. Cybern. 50(4), 1473–1484 (2018)

    Article  Google Scholar 

  52. Yao, Z., Gholami, A., Xu, P., Keutzer, K., Mahoney, M.W.: Trust region based adversarial attack on neural networks. In: CVPR (2019)

    Google Scholar 

  53. Zhao, F., Huang, Y., Wang, L., Tan, T.: Deep semantic ranking based hashing for multi-label image retrieval. In: CVPR (2015)

    Google Scholar 

  54. Zuva, K., Zuva, T.: Evaluation of information retrieval systems. Int. J. Comput. Sci. Inf. Technol. 4(3), 35 (2012)

    Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Key Research and Development Program of China under Grant 2018YFB1800204, the National Natural Science Foundation of China under Grant 61771273, the R&D Program of Shenzhen under Grant JCYJ20180508152204044, the project “PCL Future Greater-Bay Area Network Facilities for Large-scale Experiments and Applications (LZC0019)”, the Natutal Sciences and Engineering Research Council of Canada under Grant RGPIN203035-16, and the Canada Research Chairs Program. We also thank vivo and Rejoice Sport Tech. co., LTD. for their GPUs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1513 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bai, J. et al. (2020). Targeted Attack for Deep Hashing Based Retrieval. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12346. Springer, Cham. https://doi.org/10.1007/978-3-030-58452-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58452-8_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58451-1

  • Online ISBN: 978-3-030-58452-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics