Abstract
Recent advances in applying deep generative learning to molecular design have led to a large number of novel approaches to the targeted generation of molecules towards specific features and applications. In this work, we expand on the latent space navigation approach, where molecules are optimized by operating in their latent representation inside a deep auto-encoder, by introducing multi-objective evolutionary algorithms (MOEAs), and benchmarking the proposed framework on several objectives from recent literature. Using several case studies from literature, we show that our proposed method is capable of controlling abstract chemical properties, is competitive with other state-of-the-art methods and can perform relevant tasks such as optimizing a predefined molecule while maintaining a similarity threshold. Also, MOEAs allow to generate molecules with a good level of diversity, which is a desired feature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Benítez-Hidalgo, A., Nebro, A.J., García-Nieto, J., Oregi, I., Ser, J.D.: jmetalpy: a python framework for multi-objective optimization with metaheuristics. Swarm Evol. Comput. 51, 100598 (2019)
Bickerton, G.R., Paolini, G.V., Besnard, J., Muresan, S., Hopkins, A.L.: Quantifying the chemical beauty of drugs. Nature Chem. 4(2), 90–98 (2012)
Bresson, X., Laurent, T.: A Two-Step Graph Convolutional Decoder for Molecule Generation. arXiv:1906.03412 [cs, stat] (2019)
Brown, N., McKay, B., Gilardoni, F., Gasteiger, J.: A graph-based genetic algorithm and its application to the multiobjective evolution of median molecules. J. Chem. Inf. Comput. Sci. 44(3), 1079–1087 (2004)
Dai, H., Tian, Y., Dai, B., Skiena, S., Song, L.: Syntax-directed variational autoencoder for structured data. arXiv preprint arXiv:1802.08786 (2018)
Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)
Devi, R.V., Sathya, S.S., Coumar, M.S.: Evolutionary algorithms for de novo drug design - a survey. Appl. Soft. Comput. 27, 543–552 (2015)
DiMasi, J.A., Grabowski, H.G., Hansen, R.W.: Innovation in the pharmaceutical industry: new estimates of R&D costs. J. Health Econ. 47, 20–33 (2016)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
Griffiths, R.R., Hernández-Lobato, J.M.: Constrained Bayesian optimization for automatic chemical design using variational autoencoders. Chem. Sci. 11(2), 577–586 (2020)
Guimaraes, G.L., Sanchez-Lengeling, B., Outeiral, C., Farias, P.L.C., Aspuru-Guzik, A.: Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models. arXiv:1705.10843 (2017)
Gómez-Bombarelli, R., et al.: Automatic chemical design using a data-driven continuous representation of molecules. ACS Central Sci. 4(2), 268–276 (2018)
Huang, R., et al.: Tox21challenge to build predictive models of nuclear receptor and stress response pathways as mediated by exposure to environmental chemicals and drugs. Frontiers Environ. Sci. 3, 85 (2016)
Jin, W., Barzilay, R., Jaakkola, T.: Junction tree variational autoencoder for molecular graph generation. In: International Conference on Machine Learning. pp. 2323–2332. PMLR (2018)
Jin, W., Yang, K., Barzilay, R., Jaakkola, T.: Learning multimodal graph-to-graph translation for molecular optimization. arXiv:1812.01070 [cs, stat] (2019)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
Kukkonen, S., Lampinen, J.: Gde3: the third evolution step of generalized differential evolution. In: 2005 IEEE Congress on Evolutionary Computation. vol. 1, pp. 443–450 (2005)
Kusner, M.J., Paige, B., Hernández-Lobato, J.M.: Grammar variational autoencoder. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1945–1954. JMLR. org (2017)
Landrum, G.: Rdkit: open-source cheminformatics software (2016)
Leguy, J., Cauchy, T., Glavatskikh, M., Duval, B., Da Mota, B.: Evomol: aflexible and interpretable evolutionary algorithm for unbiased de novomolecular generation. Cheminform 12(55) (2020)
Liu, Q., Allamanis, M., Brockschmidt, M., Gaunt, A.: Constrained graph variational autoencoders for molecule design. In: Advances in Neural Information Processing Systems, pp. 7795–7804 (2018)
Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I.: Adversarial autoencoders. In: International Conference on Learning Representations (2016). http://arxiv.org/abs/1511.05644
Marim, L., Lemes, M., Dal Pino Jr, A.: Neural-network-assisted genetic algorithm applied to silicon clusters. Phys. Rev. A 67, 033203 (2003)
Maziarka, Ł., Pocha, A., Kaczmarczyk, J., Rataj, K., Danel, T., Warchoł, M.: Mol-cyclegan: a generative model for molecular optimization. J. Chem. 12(1), 1–18 (2020)
Olivecrona, M., Blaschke, T., Engkvist, O., Chen, H.: Molecular de novo design through deep reinforcement learning (2017)
Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019)
Patra, T.K., Meenakshisundaram, V., Hung, J.H., Simmons, D.S.: Neural-network-biased genetic algorithms for materials design: Evolutionary algorithms that learn (2017)
Polishchuk, P.G., et al.: Estimation of the size of drug-like chemical space based on GDB-17 data. J. Comput.-Aided Mol. Des. 27(8), 675–679 (2013)
Polykovskiy, D., et al.: Molecular sets (MOSES): a benchmarking platform for molecular generation models. Frontiers Pharmacol. 11, 565644 (2020)
Polykovskiy, D., et al.: Entangled conditional adversarial autoencoder for de novo drug discovery. Mol. Pharm. 15(10), 4398–4405 (2018)
Popova, M., Shvets, M., Oliva, J., Isayev, O.: MolecularRNN: Generating realistic molecular graphs with optimized properties. [cs, q-bio, stat] arXiv:1905.13372 (2019)
Ravber, M., Mernik, M., Črepinšek, M.: The impact of quality indicators on the rating of multi-objective evolutionary algorithms. Appl. Soft. Comput. 55, 265–275 (2017)
Rogers, D., Hahn, M.: Extended-connectivity fingerprints. J. Chem. Inf. Model. 50(5), 742–754 (2010)
Samanta, et al.: NeVAE: a deep generative model for molecular graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1110–1117 (2019)
Sattarov, B., Baskin, I.I., Horvath, D., Marcou, G., Bjerrum, E.J., Varnek, A.: De novo molecular design by combining deep deep autoencoder recurrent neural networks with generative topographic mapping. J. Chem. Inf. Model. 59(3), 1182–1196 (2019)
Segler, M.H., Kogej, T., Tyrchan, C., Waller, M.P.: Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Central Sci. 4(1), 120–131 (2018)
Spiegel, J.O., Durrant, J.D.: AutoGrow4: an open-source genetic algorithm for de novo drug design and lead optimization. J. Cheminformatics 12(1), 1–16 (2020). https://doi.org/10.1186/s13321-020-00429-4
Winter, R., Montanari, F., Steffen, A., Briem, H., Noé, F., Clevert, D.A.: Efficient multi-objective molecular optimization in a continuous latent space. Chem. Sci. 10(34), 8016–8024 (2019)
Yoshikawa, N., Terayama, K., Sumita, M., Homma, T., Oono, K., Tsuda, K.: Population-based de novo molecule generation, using grammatical evolution. Chem. Lett. 47(11), 1431–1434 (2018)
You, J., Liu, B., Ying, Z., Pande, V., Leskovec, J.: Graph convolutional policy network for goal-directed molecular graph generation. Adv. Neural Inf. Process. Syst. 31, 6410–6421 (2018)
Zitzler, E., Laumanns, M., Thiele, L.: Spea 2: Improving the strength pareto evolutionary algorithm for multiobjective optimization. Evol. Methods Des. Optim. and Control Appl. Ind. Probl. 3242, 95–100 (2001)
Acknowledgements
This project has received funding from the European Union’s Horizon 2020 research and innovation programme (grant agreement number 814408).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Sousa, T., Correia, J., Pereira, V., Rocha, M. (2021). Combining Multi-objective Evolutionary Algorithms with Deep Generative Models Towards Focused Molecular Design. In: Castillo, P.A., Jiménez Laredo, J.L. (eds) Applications of Evolutionary Computation. EvoApplications 2021. Lecture Notes in Computer Science(), vol 12694. Springer, Cham. https://doi.org/10.1007/978-3-030-72699-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-72699-7_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72698-0
Online ISBN: 978-3-030-72699-7
eBook Packages: Computer ScienceComputer Science (R0)