Skip to main content

Wind Energy Harvesting from Artificial Grass by Using Micro Fibre Composite

  • Conference paper
  • First Online:
Physics and Mechanics of New Materials and Their Applications (PHENMA 2021)

Part of the book series: Springer Proceedings in Materials ((SPM,volume 10))

  • 583 Accesses

Abstract

Energy harvesting technologies from ambient sources are the most interesting area of researchers nowadays because everyone is looking for an alternative to these conventional power sources. Ambient energy is extracted from thermal energy, solar energy, electromagnetic waves and vibration energy sources. The vibration energy is found a great presence nowadays. Micro Fiber Composite (MFC) is used to convert mechanical energy to electrical energy and vice versa. The various applications of MFC are available in the field of sensors and actuators. In this work, artificial grass is designed to harvest wind energy. The different structures of cantilever beams are designed. MFC is attached to the cantilever beam and converts the wind energy to electrical energy. The Finite Element analysis has been performed using ANSYS Multiphysics to analyze the electrical and mechanical properties. One artificial grass with proof mass gives the 0.0123 W.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 210.99
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. H.J. Song, Y.-T. Choi, N.M. Wereley, A.S. Purekar, J. Intell. Mater. Syst. Struct. 21(6), 647 (2010)

    Article  Google Scholar 

  2. S.R. Anton, H.A. Sodano, Smart Mater. Struct 16(3), 1 (2007)

    Article  Google Scholar 

  3. S. Roundy, P.K. Wright, Smart Mater. Struct. 13(5), 1131 (2004)

    Article  Google Scholar 

  4. H.S. Kim, J. Kim, J. Kim, Int. J. Precis. Eng. Manuf. 12(6), 1129 (2011)

    Article  Google Scholar 

  5. A.M. Khalatkar, R. Kumar, R. Haldkar, D. Jhodkar, Arduino-Based Tuned Electromagnetic Shaker Using Relay for MEMS Cantilever Beam (Springer, Singapore, 2019)

    Google Scholar 

  6. A. Khalatkar, V.K. Gupta, R. Haldkar, SPIE Smart Nano-Micro Mater. Devices 8204, 82042G (2011)

    Article  Google Scholar 

  7. A.M. Khalatkar, R.H. Haldkar, V.K. Gupta, in Proceedingof the 2nd International Conference on Mechanical, Material Engineering (ICMME 2014), November 2223, 2014, Shiyan, Hubei, China, 4212 (2014), pp. 110116

    Google Scholar 

  8. S. Ju, S.H. Chae, Y. Choi, C. Ji, Sens. Actuators, A 226, 126 (2015)

    Article  CAS  Google Scholar 

  9. S. Orrego et al., Appl. Energy 194, 212 (2017)

    Article  Google Scholar 

  10. G. Fei, G. Liu, B.L. Chung, H.H. Chan, B.L. Chung, H.H. Chan, Appl. Phys. Lett. 115(3), 033901 (2019)

    Google Scholar 

  11. M. Safaei, H.A. Sodano, S.R. Anton, Smart Mater. Struct. 28(11), 113001 (2019)

    Google Scholar 

  12. T. Narolia, V.K. Gupta, I.A. Parinov, J. Intell. Mater. Syst. Struct. 31(13), 1594 (2020)

    Article  CAS  Google Scholar 

  13. C.Q.G. Muñoz, G.Z. Alcalde, F.P.G. Márquez, Appl. Sci. 10(17), 5951 (2020)

    Article  Google Scholar 

  14. J. Liu et al., Microelec. Eng. 231, 111333 (2020)

    Google Scholar 

  15. T. Shi, L. Zou, K.C.S. Kwok, Wind Energy, 1–13 (2021)

    Google Scholar 

  16. Z. Lai, S. Wang, L. Zhu, G. Zhang, J. Wang, K. Yang, Mechan. Syst. Signal Proc. 150, 107212 (2021)

    Google Scholar 

  17. T. Narolia, V.K. Gupta, I.A. Parinov, in Advanced MaterialsProceedings of the International Conference on “Physics and Mechanics of New Materials and Their Applications”, PHENMA 2019, Springer Proceedings in Materials, ed. by Ivan A. Parinov, Shun-Hsyung Chang, Banh Tien Long (Springer Nature, Cham, Switzerland, vol. 6, 2020), p. 503

    Google Scholar 

  18. Macro Fiber Composite—MFC, Smart Mater. 8 (2017) https://www.smart-material.com/media/Datasheets/MFC_V2.3-Web-full-brochure.pdf

  19. N. Wu, Q. Wang, X. Xie, Smart Mater. Struct. 22(9), 095023 (2013)

    Google Scholar 

Download references

Acknowledgements

Research was financially supported by Southern Federal University, grant No. VnGr-07/2020-04-IM (Ministry of Science and Higher Education of the Russian Federation).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haldkar, R.K., Parinov, I.A. (2021). Wind Energy Harvesting from Artificial Grass by Using Micro Fibre Composite. In: Parinov, I.A., Chang, SH., Kim, YH., Noda, NA. (eds) Physics and Mechanics of New Materials and Their Applications. PHENMA 2021. Springer Proceedings in Materials, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-76481-4_42

Download citation

Publish with us

Policies and ethics