Abstract
Tactile display technology has been widely proved to be effective to human-computer interaction. In multiple quantitative research methods to evaluate VR user experience (such as presence, immersion, and usability), multi-sensory factors are significant proportion. Therefore, the integration of VR-HMD and tactile display is a possible application and innovation trend of VR. The BIP (Break in Presence) phenomenon affects the user's spatial awareness when entering or leaving VR environments. We extracted orientation and localization tasks to discuss the influence of facial vibrotactile display on these tasks. Correlational researches are mainly focused on the parts of human body such as torso, limb, and head regions. We chose face region and to carry out the experiment, a VR-based wearable prototype “VibroMask” was built to implement facial vibrotactile perception. Firstly, the behavioral data of subjects' discrimination of vibrotactile information were tested to obtain the appropriate display paradigm. It was found that the discrimination accuracy of low-frequency vibration was higher with loose wearing status, and the delay offset of one-point vibration could better adapt to the orientation task. Secondly, the effect of facial vibrotactile display on objects’ localization and orientation discriminating task in VR was discussed. Finally, subjects’ feedback was collected by using open-ended questionnaire, it is found that users have a higher subjective evaluation of VR experience with facial vibrotactile display.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Slater, M., Usoh, M.: Presence in immersive virtual environments. In: IEEE Annual Virtual Reality International Symposium, pp. 90–96 (1993)
Witmer, B., Singer, M.: Measuring presence in virtual environments: a presence questionnaire. Presence: Teleoper. Virtual Environ. 7(3), 225–240 (1998). https://doi.org/10.1162/105474698565686
Lessiter, J., Freeman, J., Keogh, E., Davidoff, J.: A cross-media presence questionnaire: the ITC-sense of presence inventory. Presence 10(3), 282–297 (2014)
Nash, E.B., Edwards, G.W., Thompson, J.A., Barfield, W.: A review of presence and performance in virtual environments. Int. J. Hum.-Comput. Interact. 12(1), 1–41 (2000)
Servotte, J., et al.: Virtual reality experience: immersion, sense of presence, and cybersickness. Clin. Simul. Nurs. 38, 35–43 (2020). https://doi.org/10.1016/j.ecns.2019.09.006
Venkatesan, L., Barlow, S., Kieweg, D.: Age- and sex-related changes in vibrotactile sensitivity of hand and face in neurotypical adults. Somatosens. Motor Res. 32 (2014)
Mcdaniel, T., Krishna, S., Balasubramanian, V., Colbry, D., Panchanathan, S.: Using a haptic belt to convey non-verbal communication cues during social interactions to individuals who are blind. IEEE International Workshop on Haptic Audio-visual Environments and Games, pp. 13–18(2008)
Schwind, V., Knierim, P., Haas, N., Henze, N.: Using Presence Questionnaires in Virtual Reality (2019)
Wang, C., Huang, D.-Y., Hsu, S.-W., et al.: Masque: Exploring lateral skin stretch feedback on the face with head-mounted displays. In: Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (UIST '19). Association for Computing Machinery, pp. 439–451 (2019)
Ranasinghe, N., Jain, P., Karwita, S., Tolley, D., Do, E.: Ambiotherm: Enhancing Sense of Presence in Virtual Reality by Simulating Real-World Environmental Conditions, pp. 1731–1742 (2017)
Peiris, R.L., Peng, W., Chen, Z., Chan, L., Minamizawa, K.: ThermoVR: Exploring Integrated Thermal Haptic Feedback with Head Mounted Displays (2017)
Schubert, T., Friedmann, F., Regenbrecht, H.: The experience of presence: factor analytic insights. Presence 10(3), 266–281 (2001)
Makransky, G., Lilleholt, L., Aaby, A.: Development and validation of the multimodal presence scale for virtual reality environments: a confirmatory factor analysis and item response theory approach. Comput. Hum. Behav. 72, 276–285 (2017)
Minamizawa, K., Kakehi, Y., Nakatani, M., Mihara, S., Tachi, S.: TECHTILE toolkit: a prototyping tool for designing haptic media (2012)
Ujitoko, Y., Ban, Y.: Vibrotactile signal generation from texture images or attributes using generative adversarial network (2019)
Durlach, P.J., Fowlkes, J., Metevier, C.J.: Effect of variations in sensory feedback on performance in a virtual reaching task. Presence 14(4), 450–462 (2005)
Tsetserukou, D.: HaptiHug: a novel haptic display for communication of hug over a distance. In: International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, pp. 340–347 (2010)
Al-Sada, M.,, Jiang, K., Ranade, S., Piao, X., Höglund, T., Nakajima, T.: HapticSerpent: A Wearable Haptic Feedback Robot for VR. In: Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems (CHI EA '18). Association for Computing Machinery, Paper LBW624, pp. 1–6 (2018)
Al-, M., Jiang, K., Ranade, S., Kalkattawi, M., Nakajima, T.: HapticSnakes: multi-haptic feedback wearable robots for immersive virtual reality. Virtual Reality 24(2), 191–209 (2019). https://doi.org/10.1007/s10055-019-00404-x
Kwon, C.: A study on the verification of the effect of sensory extension through cutaneous sensation on experiential learning using VR. Virtual Reality 25(1), 19–30 (2020). https://doi.org/10.1007/s10055-020-00435-9
Tsukada, K., Yasumura, M.: Activebelt: Belt-type wearable tactile display for directional navigation. In: International Conference on Ubiquitous Computing. Springer, Berlin, Heidelberg (2004)
Vyas, P., Taha, F.A., Blum, J.R., Cooperstock, J.R.: HapToes: Vibrotactile Numeric Information Delivery via Tactile Toe Display. Haptics Symposium 2020 (2020).
Novich, S.D., Eagleman, D.M.: Using space and time to encode vibrotactile information: toward an estimate of the skin’s achievable throughput. Exp. Brain Res. 233(10), 2777–2788 (2015)
Hollins, M., Goble, A.K.: Vibrotactile adaptation on the face. 49(1), 21–30 (1991)
Dobrzynski, M.K.: Quantifying information transfer through a head-attached vibrotactile display: principles for design and control. IEEE Trans. Biomed. Eng. 59(7), 2011–2018 (2012)
Darken, R.P., Sibert, J.L.: A toolset for navigation in virtual environments. In: Proceedings of the 6th Annual ACM Symposium on User Interface Software and Technology. ACM (1993)
Borg, E., Rönnberg, J., Neovius, L.: Vibratory-coded directional analysis: evaluation of a three-microphone/four-vibrator DSP system. J. Rehabil. Res. Dev. 38 257–63 (2001)
Swapp, D., Pawar, V., Loscos, C.: Interaction with co-located haptic feedback in virtual reality. Virtual Reality 10, 24–30(2006)
Nukarinen, T., Rantala, J., Farooq, A., Raisamo, R.: Delivering Directional Haptic Cues through Eyeglasses and a Seat (2015)
Oliveira, V.A., Brayda, L., Nedel, L., Maciel, A.: Designing a Vibrotactile Head-Mounted Display for Spatial Awareness in 3D Spaces. IEEE Trans. Vis. Comput. Graph. 1 (2017)
Kaul, O.B., Rohs, M.: HapticHead: 3D Guidance and Target Acquisition through a Vibrotactile Grid. Chi Conference Extended Abstracts. ACM (2016)
Oliveira, V.A.D.J., Nedel, L., Maciel, A., Brayda, L.: Spatial discrimination of vibrotactile stimuli around the head. IEEE Haptics Symposium. IEEE (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, K. et al. (2021). A Research on Sensing Localization and Orientation of Objects in VR with Facial Vibrotactile Display. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented and Mixed Reality. HCII 2021. Lecture Notes in Computer Science(), vol 12770. Springer, Cham. https://doi.org/10.1007/978-3-030-77599-5_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-77599-5_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-77598-8
Online ISBN: 978-3-030-77599-5
eBook Packages: Computer ScienceComputer Science (R0)