Skip to main content

KeVlar-Tz: A Secure Cache for Arm TrustZone

(Practical Experience Report)

  • Conference paper
  • First Online:
Distributed Applications and Interoperable Systems (DAIS 2021)

Abstract

Edge devices are increasingly in charge of storing privacy-sensitive data, in particular implantables, wearables, and nearables can potentially collect and process high-resolution vital signs 24/7. Storing and performing computations over such data in a privacy-preserving fashion is of paramount importance. We present KeVlar-Tz, an application-level trusted cache designed to leverage Arm TrustZone, a popular trusted execution environment available in consumer-grade devices. To facilitate the integration with existing systems and IoT devices and protocols, KeVlar-Tz exposes a REST-based interface with connection endpoints inside the TrustZone enclave. Furthermore, it exploits the on-device secure persistent storage to guarantee durability of data across reboots. We fully implemented KeVlar-Tz on top of the Op-Tee framework, and experimentally evaluated its performance. Our results showcase performance trade-offs, for instance in terms of throughput and latency, for various workloads, and we believe our results can be useful for practitioners and in general developers of systems for TrustZone. KeVlar-Tz is available as open-source at https://github.com/mqttz/kevlar-tz/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://moore4medical.eu/.

  2. 2.

    http://www.tabede.eu/.

  3. 3.

    https://github.com/linaro-swg/optee_examples/tree/master/secure_storage.

  4. 4.

    https://web.mit.edu/freebsd/head/contrib/wpa/src/utils/base64.c.

  5. 5.

    https://www.qemu.org.

References

  1. ARM TrustZone Developer. https://developer.arm.com/technologies/trustzone. Accessed 15 Feb 2021

  2. TEE Client API Specification v1.0 (GPD\_SPE\_007). https://globalplatform.org/specs-library/tee-client-api-specification/. Accessed 15 Feb 2021

  3. TEE Internal Core API Specification v1.2.1 (GPD\_SPE\_010). https://globalplatform.wpengine.com/specs-library/tee-internal-core-api-specification-v1-2/. Accessed 15 Feb 2021

  4. Digital impact how technology is accelerating global problem solving (2018). https://www.cisco.com/c/dam/assets/csr/pdf/Digital-Impact-Playbook.pdf

  5. AWS Nitro Enclaves (2021). https://aws.amazon.com/ec2/nitro/nitro-enclaves/

  6. Confidential VM and Compute Engine (2021). https://cloud.google.com/compute/confidential-vm/docs/about-cvm

  7. Global platform (2021). http://www.globalplatform.org

  8. OP-TEE Secure Storage API (2021). https://optee.readthedocs.io/en/latest/architecture/secure_storage.html

  9. Wearable computing devices market - growth, trends, COVID-19 impact, and forecasts (2021–2026) (2021). https://www.researchandmarkets.com/reports/4787502/wearable-computing-devices-market-growth

  10. Alves, T., Felton, D.: TrustZone: integrated hardware and software security. ARM Inf. Q. 3(4), 18–24 (2004)

    Google Scholar 

  11. Amacher, J., Schiavoni, V.: On the performance of ARM TrustZone. In: Pereira, J., Ricci, L. (eds.) DAIS 2019. LNCS, vol. 11534, pp. 133–151. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22496-7_9

    Chapter  Google Scholar 

  12. Bennett, T.R., Wu, J., Kehtarnavaz, N., Jafari, R.: Inertial measurement unit-based wearable computers for assisted living applications: a signal processing perspective. IEEE Sig. Process. Mag. 33(2), 28–35 (2016)

    Article  Google Scholar 

  13. Cao, Z., Dong, S., Vemuri, S., Du, D.H.C.: Characterizing, modeling, and benchmarking RocksDB key-value workloads at Facebook. In: Proceedings of USENIX FAST 20, pp. 209–223. USENIX Association (2020)

    Google Scholar 

  14. Chaudhuri, S., Pawar, T.D., Duttagupta, S.: Ambulation Analysis in Wearable ECG. Springer, Heidelberg (2009). https://doi.org/10.1007/978-1-4419-0724-0

    Book  Google Scholar 

  15. Chételat, O., et al.: Clinical validation of LTMS-S: a wearable system for vital signs monitoring. In: Proceedings of IEEE EMBC 2015, pp. 3125–3128 (2015)

    Google Scholar 

  16. Costan, V., Devadas, S.: IntelSGX explained. IACR Cryptol. ePrint Arch. 2016(86), 1–118 (2016)

    Google Scholar 

  17. Coyle, S., Curto, V.F., Benito-Lopez, F., Florea, L., Diamond, D.: Wearable bio and chemical sensors. In: Wearable Sensors, pp. 65–83. Elsevier (2014)

    Google Scholar 

  18. Delgado-Gonzalo, R., et al.: Human energy expenditure models: beyond state-of-the-art commercialized embedded algorithms. In: Duffy, V.G. (ed.) DHM 2014. LNCS, vol. 8529, pp. 3–14. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07725-3_1

    Chapter  Google Scholar 

  19. Delgado-Gonzalo, R., et al.: Physical activity. In: Tamura, T., Chen, W. (eds.) Seamless Healthcare Monitoring, pp. 413–455. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-69362-0_14

    Chapter  Google Scholar 

  20. Farahani, S.: ZigBee Wireless Networks and Transceivers. Newnes, Oxford (2011)

    Google Scholar 

  21. Faraone, A., Delgado-Gonzalo, R.: Convolutional-recurrent neural networks on low-power wearable platforms for cardiac arrhythmia detection. In: Proceedings of IEEE AICAS 2020, pp. 153–157 (2020)

    Google Scholar 

  22. Gentilal, M., Martins, P., Sousa, L.: TrustZone-backed bitcoin wallet. In: Proceedings of CS2 2017, pp. 25–28 (2017)

    Google Scholar 

  23. Gentry, C., et al.: A Fully Homomorphic Encryption Scheme, vol. 20. Stanford University, Stanford (2009)

    MATH  Google Scholar 

  24. Gokhale, S., Agrawal, N., Noonan, S., Ungureanu, C.: KVZone and the search for a write-optimized key-value store. In: HotStorage (2010)

    Google Scholar 

  25. Göttel, C., et al.: Security, performance and energy trade-offs of hardware-assisted memory protection mechanisms. In: Proceedings of SRDS 2018, pp. 133–142. IEEE (2018)

    Google Scholar 

  26. Halevi, S., Shoup, V.: Design and implementation of a homomorphic-encryption library. IBM Res. (Manuscr.) 6(12–15), 8–36 (2013)

    Google Scholar 

  27. Han, J., Haihong, E., Le, G., Du, J.: Survey on NoSQL database. In: Proceedings of PerCom 2011, pp. 363–366. IEEE (2011)

    Google Scholar 

  28. Havet, A., Pires, R., Felber, P., Pasin, M., Rouvoy, R., Schiavoni, V.: SecureStreams: a reactive middleware framework for secure data stream processing. In: Proceedings of ACM DEBS 2017, DEBS ’17, pp. 124–133. Association for Computing Machinery (2017)

    Google Scholar 

  29. Jouppi, N.P.: Cache write policies and performance. ACM SIGARCH Comput. Archit. News 21(2), 191–201 (1993)

    Article  Google Scholar 

  30. Kaplan, D., Powell, J., Woller, T.: AMD memory encryption. White paper (2016)

    Google Scholar 

  31. Lee, D., Kohlbrenner, D., Shinde, S., Asanović, K., Song, D.: Keystone: an open framework for architecting trusted execution environments. In: Proceedings of EuroSys 2020, pp. 1–16 (2020)

    Google Scholar 

  32. Lee, W.S., Hong, S.H.: Implementation of a KNX-ZigBee gateway for home automation. In: Proceedings of IEEE ICCE 2009, ISCE’09, pp. 545–549. IEEE (2009)

    Google Scholar 

  33. Li, Y., Hong, S.H.: BACnet-EnOcean smart grid gateway and its application to demand response in buildings. Energy Build. 78, 183–191 (2014)

    Article  Google Scholar 

  34. Lin, H., Bergmann, N.W.: IoT privacy and security challenges for smart home environments. Information 7(3), 44 (2016)

    Article  Google Scholar 

  35. Padalalu, P., Mahajan, S., Dabir, K., Mitkar, S., Javale, D.: Smart water dripping system for agriculture/farming. In: Proceedings of I2CT 2017, pp. 659–662. IEEE (2017)

    Google Scholar 

  36. Park, H., Zhai, S., Lu, L., Lin, F.X.: StreamBox-TZ: secure stream analytics at the edge with TrustZone. In: Proceedings of USENIX ATC 2019, pp. 537–554. USENIX Association (2019)

    Google Scholar 

  37. Pinto, S., Santos, N.: Demystifying arm TrustZone: a comprehensive survey. ACM Comput. Surv. (CSUR) 51(6), 1–36 (2019)

    Article  Google Scholar 

  38. Reddy, A.K., Paramasivam, P., Vemula, P.B.: Mobile secure data protection using eMMC RPMB partition. In: Proceedings of CoCoNet 2015, pp. 946–950. IEEE (2015)

    Google Scholar 

  39. Sasaki, T., Tomita, K., Hayaki, Y., Liew, S.P., Yamagaki, N.: Secure IoT device architecture using TrustZone. In: Proceedings of IEEE SECON 2020, pp. 1–6 (2020)

    Google Scholar 

  40. Segarra, C., Delgado-Gonzalo, R., Schiavoni, V.: MQT-TZ: hardening IoT brokers using ARM TrustZone. In: Proceedings of SRDS 2020 (2020)

    Google Scholar 

  41. Segarra, C., Delgado-Gonzalo, R., Lemay, M., Aublin, P.-L., Pietzuch, P., Schiavoni, V.: Using trusted execution environments for secure stream processing of medical data. In: Pereira, J., Ricci, L. (eds.) DAIS 2019. LNCS, vol. 11534, pp. 91–107. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22496-7_6

    Chapter  Google Scholar 

  42. Tamura, T., Maeda, Y., Sekine, M., Yoshida, M.: Wearable photoplethysmographic sensors–past and present. Electronics 3(2), 282–302 (2014)

    Article  Google Scholar 

  43. Wan, S., Sun, M., Sun, K., Zhang, N., He, X.: RusTEE: developing memory-safe ARM TrustZone applications. In: Proceedings of ACSAC 2020, ACSAC ’20, pp. 442–453. Association for Computing Machinery (2020)

    Google Scholar 

  44. Zhang, N., Sun, K., Lou, W., Hou, Y.T.: CaSE: cache-assisted secure execution on ARM processors. In: Proceedings of IEEE SP 2016, pp. 72–90 (2016)

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by Moore4Medical, which has received funding within the Electronic Components and Systems for European Leadership Joint Undertaking (ECSEL JU) in collaboration with the European Union’s H2020 framework Programme (H2020/2014-2020) and National Authorities, under grant agreement H2020-ECSEL-2019-IA-876190. Moreover, this project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 766733.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Schiavoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benedito, O., Delgado-Gonzalo, R., Schiavoni, V. (2021). KeVlar-Tz: A Secure Cache for Arm TrustZone. In: Matos, M., Greve, F. (eds) Distributed Applications and Interoperable Systems. DAIS 2021. Lecture Notes in Computer Science(), vol 12718. Springer, Cham. https://doi.org/10.1007/978-3-030-78198-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78198-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78197-2

  • Online ISBN: 978-3-030-78198-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics