Abstract
The concept of transparency order is a useful measure for the robustness of (n, m)-functions (cryptographic S-boxes as mappings from \(GF(2)^n\) to \(GF(2)^m\)) to multi-bit Differential Power Analysis (DPA). The recently redefined notion of transparency order (\(\mathcal {RTO}\)), based on the cross-correlation coefficients, uses a very delicate assumption that the adversary has a priori knowledge about the so called pre-charged logic value (a constant register value set by a system) used in DPA-like attacks. Moreover, quite contradictorily, this constant value is used as a variable when maximizing \(\mathcal {RTO}\). To make the attack scenario more realistic, the notion of differential transparency order (\(\mathcal {DTO}\)) is defined for (n, m)-functions, which can efficiently eliminate the impact posed by this pre-charged logic value. By considering (4, 4) S-boxes which are commonly used in the design of lightweight block ciphers, we deduce in the simulated scenario that the information leakage using \(\mathcal {DTO}\) is usually larger compared to the standard indicator. Towards its practical applications, we illustrate that the correlation power analysis (CPA) based on the novel notion of \(\mathcal {DTO}\) performs better than that uses the classical notion of \(\mathcal {RTO}\). This conclusion is confirmed in two cases, i.e. CPA against MARVIN and CPA against PRESENT-128.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçın, T.: Block ciphers – focus on the linear layer (feat. PRIDE). In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 57–76. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_4
Banik, S., et al.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_17
Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing applications - extended abstract. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_14
Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2
Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_5
Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007, Part II. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_31
Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Yu., Sim, S.M., Todo, Y.: GIFT: a small present - towards reaching the limit of lightweight encryption. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–345. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_16
De Canni\(\grave{e}\)re, C.: Analysis and design of symmetric encryption algorithms (Ph.D.), Katholieke Universiteit Leuven (2007)
Chakraborty, K., Sarkar, S., Maitra, S., Mazumdar, B., Mukhopadhyay, D., Prouff, E.: Redefining the transparency order. Des. Codes Cryptogr. 82(1–2), 95–115 (2017)
Daemen, J., Rijmen, V.: The Design of Rijndael: AES-the Advanced Encryption Standard. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-04722-4
Fei, Y., Adam Ding, A., Lao, J., Zhang, L.: A Statistics-based Fundamental Model for Side-channel Attack Analysis. Cryptology ePrint Archive, report 2014/152 (2014). http://eprint.iacr.org/2014/152
Fischer, W., Gammel, B.M., Kniffler, O., Velten, J.: Differential power analysis of stream ciphers. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 257–270. Springer, Heidelberg (2006). https://doi.org/10.1007/11967668_17
Fei, Y., Luo, Q., Ding, A.A.: A statistical model for DPA with novel algorithmic confusion analysis. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 233–250. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_14
Guilley, S., Hoogvorst, P., Pacalet, R.: Differential power analysis model and some results. In: Quisquater, J.-J., Paradinas, P., Deswarte, Y., El Kalam, A.A. (eds.) CARDIS 2004. IIFIP, vol. 153, pp. 127–142. Springer, Boston, MA (2004). https://doi.org/10.1007/1-4020-8147-2_9
Guillot, P., Millérioux, G., Dravie, B., El Mrabet, N.: Spectral approach for correlation power analysis. In: El Hajji, S., Nitaj, A., Souidi, E.M. (eds.) C2SI 2017. LNCS, vol. 10194, pp. 238–253. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55589-8_16
Simplício, M.A., Jr., Barbuda, P.D.F.F.S., Barreto, P.S.L.M.: The MARVIN message authentication code and the LETTERSOUP authenticated encryption scheme. Secur. Commun. Netw. 2(2), pp. 165–180 (2009)
Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) Advances in Cryptology - CRYPTO 1999, pp. 388–397. Springer, Heidelberg (1999)
Li, H., Zhou, Y., Ming, J., Yang, G., Jin, C.: The notion of transparency order, revisited. Comput. J. (2020). https://doi.org/10.1093/comjnl/bxaa069
Nyberg, K., Knudsen, L.R.: Provable security against a differential attack. J. Cryptol. 8(1), 27–37 (1995)
Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical second-order DPA attacks for masked smart card implementations of block ciphers. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192–207. Springer, Heidelberg (2006). https://doi.org/10.1007/11605805_13
Prouff, E.: DPA attacks and S-boxes. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 424–441. Springer, Heidelberg (2005). https://doi.org/10.1007/11502760_29
Rothaus, O.S.: On bent functions. J. Comb. Theory A 20, 300–305 (1976)
Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo: an ultra-lightweight blockciphe. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_23
Wang, Q., Stănică, P.: Transparency order for Boolean functions: analysis and construction. Des. Codes Crypt. 87(9), 2043–2059 (2019). https://doi.org/10.1007/s10623-019-00604-1
Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21554-4_19
Zhou, Yu., Dong, X., Wei, Y.: On the transparency order relationships between one Boolean function and its decomposition functions. J. Inf. Secur. Appl. 58, 1–9 (2021)
Acknowledgments
Yu Zhou is supported in part by the Sichuan Science and Technology Program (2020JDJQ0076). Yongzhuang Wei is supported by the National Natural Science Foundation of China (61872103), the Guangxi Science and Technology Foundation (Guike AB18281019) and the Guangxi Natural Science Foundation (2019GXNSFGA245004). Hailong Zhang is supported by the National Natural Science Foundation of China (61872040). Enes Pasalic is supported in part by the Slovenian Research Agency (research program P1-0404 and research projects J1-9108, J1-1694, N1-0159, J1-2451). Luyang Li is supported by the Natural Science Foundation of Shaanxi Provincial Department of Education (20JK0911).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhou, Y., Wei, Y., Zhang, H., Li, L., Pasalic, E., Wu, W. (2021). Transparency Order of (n, m)-Functions—Its Further Characterization and Applications. In: Liu, J.K., Katsikas, S., Meng, W., Susilo, W., Intan, R. (eds) Information Security. ISC 2021. Lecture Notes in Computer Science(), vol 13118. Springer, Cham. https://doi.org/10.1007/978-3-030-91356-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-91356-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-91355-7
Online ISBN: 978-3-030-91356-4
eBook Packages: Computer ScienceComputer Science (R0)